
Technical Report of Osaka University, Department of Computer Science, Graduate School of Information 
Science and Technology 

Raula G. Kula, Takashi Ishio and Katsuro Inoue are with the Software Engineering Laboratory, Osaka 
University, Japan. E-mail: {raula-k, ishio, inoue} @ist.osaka-u.ac.jp. Coen De Roover is with the Software 
Languages Lab, Vrije Universiteit Brussel, Brussels, Belgium. E-mail: cderoove@vub.ac.be. Daniel M. 
German is with the University of Victoria, Canada. E-mail: dmg@turingmachine.org 

 

 

 

Modeling Library Dependencies and 
Updates in Large 

Super Repository Universes 

 

 

 
Raula Gaikovina Kulaa, Coen De Rooverb, Daniel M. Germanc, Takashi 

Ishiob, Katsuro Inouea 
 
 

Osaka University, Japana 
Vrije Universiteit Brussel, Brussels, Belgiumb 

University of Victoria, Canadac 

 

 

 

 

 

Technical Report: 11092015-SEL 



Modeling Library Dependencies and Updates in Large

Super Repository Universes

Raula Gaikovina Kulaa,∗, Coen De Rooverb, Daniel M. Germanc, Takashi
Ishioa, Katsuro Inouea

aOsaka University, Japan
bVrije Universiteit Brussel, Brussels, Belgium

cUniversity of Victoria, Canada

Abstract

Popular (re)use of third-party open-source software (OSS) provides evidence
of how large library hosting super repositories (like maven central) influence
the software development world today. Updating libraries is crucial, with
recent studies highlighting risks and vulnerabilities with aging OSS libraries.
Decisions to adopt a newer library can range from trivial (security threat)
to complex (assessment of work required to accommodate the changes). By
leveraging the ‘wisdom of the super repository crowd’, we propose a simple
and efficient approach to recommending ‘consented’ library updates. Our
Software Universe Graph (SUG) models library dependency and update in-
formation mined from super repositories. To evaluate, we first constructed
a SUG from with 1.6 million nodes of about over 37,600 unique maven arti-
facts. Results show that although most projects have a high reuse tendency,
most projects have less popularity across the repository. We found on me-
dian average, each project has 2 dependencies and 5 other projects that are
dependent on it. Secondly, as a case study, we apply our SUG metrics to
two real-world examples. Our adoption-diffusion profiling depict advanced
popularity perspectives. We envision our SUG model can be extended to
allow for more recommendations such as replacement or new libraries.
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1. Introduction

The (re)use of third-party software is now commonplace in today’s soft-
ware development, both open source software (OSS) and commercial settings
alike [1], [2]. Software libraries come with the promise of being able to reuse
quality implementations, preventing ‘reinventions of the wheel’ and speed-
ing up development. Examples of popular reuse libraries are the Spring
[3] web framework and the Apache commons [4] collection of utility func-
tions. Widespread use of OSS libraries has lead to massive stores of project
repositories such as The Central Repository (Maven) [5], Sourceforge [6]
and Github [7]. For instance, as of October 5th 2015, Maven (https:
//search.maven.org/#stats) hosted over 120,000 unique projects.

Software is constantly evolving. With new versions continuously released,
the maintenance of system’s dependencies is not practiced enough. A study
by Grinter identified aging libraries a threat to software livelihood [8]. In
2014, Sonatype reported that on average 24% of buggy code in applications
were linked to severe flaws in their outdated libraries. That same year, the
threat of high profile vulnerabilities Shellshock1, HeartBleed2 and Poodle3

highlighted the need to update dependencies in applications (also referred
to as systems in this paper). Security vulnerabilities updates are a trivial
decision as its threat to software quality outweighs the costs. Security experts
recommend to update, regardless of the size of the changes to be made.

More complex decisions are encountered when assessing the different risks
and effort required to accommodate the changes. Many studies [9, 10, 11],
have reported that unless the underlying need is apparent, most maintainers
are unmotivated or hesitant to update. Our previous work [12] considered
that developers exhibit a latency to migrate to the latest version released.

To this end, tools and techniques have been developed to address certain
risks of migration. Take for instance, library incompatibility. Research tools
such as SemDiff [13] and industry counterparts like clirr [14] are used to
assist with library compatibility issues during migration. Moreover, other
external technical, organizational or social factors also influence a maintain-
ers decision to update. For instance, a maintainers personal preference or
compliance to the organizational practices may influence the decision. These

1https://shellshocker.net/
2http://heartbleed.com/
3https://poodlebleed.com/
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techniques though effective, only solve a specific risk.
With the advancements in online repository usage and data mining, we

provide a much more efficient and simpler solution to library update recom-
mendations. Building on our previous work on visualizing the evolution of a
system and its library dependencies [15] and on popular dependency combi-
nations [16], we introduce the Software Universe Graph (SUG) as a generic
means to model and quantify “wisdom-of-the-crowd” insights for a software
repository universe. We extend on the simple usage popularity metric with
metrics to describe adoption-diffusion. Our popularity is a measure of usage
at any point in time. The SUG is used to profile adoption-diffusion charac-
teristics of library versions over the super repository. For the evaluation, we
show a real-world construction of a SUG , then through adoption-diffusion
profiling demonstrate practical library migration recommendations. The pro-
files show 1.) distinction between popularity among a small set of projects
and popularity across the whole super repository, 2.) older versions can be
still popular, 3.) and we can predict trends of attractive versions. The paper
makes the following contributions:

• We introduce the graph-based SUG model to represent library depen-
dency and update relationships within a large-scale super repository
universe. We demonstrate practicality by construction from maven.

• We use the SUG to present the notion of adoption-diffusion profiles for
a project. We use real-world system to demonstrate usage.

• We show through adoption-diffusion profiles, the SUG can provide prac-
tical library migration recommendations.

The paper layout is as follows. Section 2 details the motivation of the
SUG. Section 3 explains in detail the formal aspects of the SUG model. Sec-
tion 4 introduces the metrics applied to the SUG model. Section 5 discusses
the evaluation with the results presented in section 6. Discussions and re-
lated works are later shown in Section 7 and 8 respectability. Finally, we
close with conclusions in Section 9.

2. Mining the ‘wisdom of the crowd’ from Super Repositories

Our approach involves studying the different library dependency rela-
tionships that exist in the super repository over time. Concretely, we are
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concerned with the diffusion of newer libraries. According to the Diffusion
of Innovations (DoI) theory [17], successful technologies have different types
of users: innovators, early adopters, the early majority, the late majority,
and laggards. Applied to the super repository dependency relationships, we
would like to understand the diffusion in terms of popular migration toward
the different versions of libraries. Our rational is that crowd ’consent’ of a
library is evident by its successful adoption and diffusion over its predeces-
sors. Our adoption-diffusion concept is inspired by use-diffusion [18] metrics
used in the field of economics and marketing.

The changes in the complex web of dependency relationships in the super
repository characterizes the ripping effect of updating a single library depen-
dency. The colloquial term ‘dependency hell’, to describe these complexity
of managing these dependencies. Maven and Gradle4 are examples of depen-
dency management build tools employed for applications. In this paper, we
formulate a model in which adoption-diffusion relationships can be captured,
quantified and visualized using defined metrics of popularity and adoption-
diffusion. Using a graph-based approach, we model dependency and update
relations to handle all software systems in a super repository.

3. The Super Repository Universe

3.1. Modeling Super Software Repositories

In this section, we show in Figure 1 how our model handles the realities
of library dependencies and update across software repositories. We consider
the virtual repository universe that encompasses both publicly accessible
and private repositories. We define a project release as a published software
unit with a version identifier. For instance, version 3.6.3 of SymmetricDs

(SymmetricDs3.6.3). A project release is either in source or in executable for-
mat. Examples of language-specific source code are *.java, *.cpp, *.jss

accompanied by configuration build files. Executables are compiled bina-
ries such as jar, exe or dll files ready for (re)use. A project release may
be superseded by a newer project release, creating an update relationship.
Project releases can use other project releases as libraries and vice-versa,
forming a dependency relation. Project releases linked by update relation-
ships are managed by a project repository. Project repositories may manage

4http://gradle.org/
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Figure 1: Meta-model of the real world and the proposed SUG model.

project release relations through project-specific conventions such as Seman-
tic Versioning (SemVer)5. The super repository hosts multiple project repos-
itories. Related work refers to these as ‘super’ repositories or repositories
of repositories [19], [20]. We discern two types of super repositories: those
that host libraries and those that host systems. Examples of library-hosting
super repositories include Maven for JVM libraries, RubyGems6 for Ruby
libraries, and nuget7 for .NET and npm8 for JavaScript libraries. Examples
of system-hosting super repositories include GitHub and Sourceforge
which primarily serve as hubs for collaborative development and end-user
download respectively.

As depicted in Figure 1, the SUG is an abstract representation of the
realities of super repositories. Related studies reveal web-like complex de-
pendencies between project releases, making the distinction between systems
and libraries dependent on perspective [21], [22]. Dependencies can even span

5http://semver.org
6https://rubygems.org
7https://www.nuget.org
8https://www.npmjs.com
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Figure 2: Example of the Software Universe Graph

.

across super repositories. Therefore, the model should not be restrictive in
system or library identification. The model should also not be restrictive
in implementation issues such as programming language and control version
systems. Specifically there are two types of software universe models, the nor-
mal SUG (introduced in Section 3.2) that corresponds to the project releases
and the P-SUG that correponds to dependencies at the project repository
level. The P-SUG is an aggregation of nodes and edges (merged dependency
edges and dropped update edges) related to one particular project repository
(later introduced in Section 3.3).

3.2. The Software Universe Graph (SUG)

Figure 2 depicts the basic elements of the Software Universe Graph.
Let G(N,E) be a SUG. N is a set of nodes, with each node represent-
ing a project release instance. For instance, SymmetricDs version 3.6.3

(SymmetricDs3.6.3) is a project release instance represented as a single node.
For any SUG, the edges E are composed of Edep and Eup. Edep is a set of
dependency edges and Eup is a set of update edges.

Definition 1. An edge u → v ∈ Edep means that u depends on v (depend).
Reverse-dependency (rev-depend) refers to the inverse.

depend(u) ≡ {v|u→ v} (1)

rev-depend(u) ≡ {v|v → u} (2)
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Dependency-relations can be extracted from either the source code or
from build configuration files. As depicted in Figure 2, node a1 (system)
has a depend relation to node x1 (library). Note that node x1 has reverse
dependencies (rev-depend) to nodes a1, q1 and q2. Parallel edges for node
pairs are not allowed. In this paper, we focus on popular project releases
that are connected by many depend-relation edges.

Definition 2. For a given node u, popularity is the number of incoming
depend-relation edges.

popularity(u) ≡ |rev-depend(u)| (3)

For instance in Figure 2, for node x1, popularity(x1) = |rev-depend(x1)| =
|{a1, q1, q2}| = 3.

Definition 3. An edge a⇒ b ∈ Eup represents an update-relation from node
a to b, meaning b is the immediate successor release of a.

Update-relations refer to when a succeeding release of a project release
is made available. Figure 2 shows that node q1 is first updated to node q2.
Later on, node q2 is updated to the latest node q3. Hence, q1⇒ q2⇒ q3.

Let any SUG node u be denoted by three attributes: <name, release,

time>. For a node u, we define:

• u.name Name is the string representing the identifier of a software
project.

For nodes x and y, if x⇒ y, then x.name = y.name holds in the SUG.

• u.release. Release denotes a version reference for a software project.
For nodes u and v, if u⇒ v then v is the immediate successor of u.

• u.time. Time refers to the time-stamp at which node u was released.
For nodes x and y of x⇒ y, x.time < y.time.

The SUG node for a release 9 of junit, for instance, is <name = "junit",

release= "4.11", time="2012-11-14">.

9http://mvnrepository.com/artifact/junit/junit/4.11: accessed 2014-08-02
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Figure 3: Temporal property of the SUG

Property 1. A SUG monotonically increases its nodes and edges.

Let SUG Gt = (N,E) be at time t. At a later time t′ > t, we observe an
extension of Gt, such that: Gt′ = (N∪∆N,E∪∆E) where ∆E∩(N×N) = ∅.
Figure 3 depicts that Gt′ is composed of Gt augmented with newly added
node a3 and its corresponding a3→ x2 and a2⇒ a3 relations. We now can
introduce Popularityt(x) for a node x at time t. This provides the popularity
of x in Gt.

10

3.3. The Project-level Software Universe Graph (P-SUG)

We consider a set of the same name nodes for a node x, such that:

Project(x) ≡ {y|y +⇒ x ∨ x
+⇒ y ∨ x = y} where a

+⇒ b is the transi-
tive closure on any update-relation a ⇒ b. The name attribute determines
project membership. P-SUG is a merged graph of a SUG whose same name
nodes are merged into a single node.11 Consider the example in Figure 4.
Figure 4(a) shows a SUG with respective projects annotated. Figure 4(b)
depicts the related P-SUG.

Definition 4. Variety represents the number of different projects that de-
pend on a project release

10We define that Popularityt(x) = 0 if t < x.time
11Formally we define the P-SUG G′ = (N ′, E′) of a SUG G = (N,E = Edep∪Eup) where

N ′ = {Project(n)|n ∈ N} and E′ = {Project(a)→ Project(b)|a, b ∈ N ∧ a→ b ∈ Edep}

8
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.

Let variety for a P-SUG node u be defined as:

variety(u) ≡ |rev-depend(u′)| (4)

where u′ is a merged P-SUG node from u. For example, in Figure 4, variety(a1) =
|{rev-depend(a)}| = |{c, d, e}| = 3.

4. SUG Adoption-diffusion Profiling

Profile types. To demonstrate implementation of the model, we show how the
SUG can be leveraged particularity for library adoption-diffusion (introduced
in Section 2). As an extension on our work on Library Dependency Plots [15],
we introduce Diffusion Profiling (DP). For any project releases, DP is a pair of
popularity and variety at any given point in time t, such that popularityt(x)
and varietyt(x) for a SUG node x. For popularity, we plot the number of
software projects using a particular release of the project. Conversely in
the variety plot, we track the number of projects that use a specific release.
The DPs provide a temporal means to evaluate popularity and the adoptive
behavior nature. Since DPs plot both the popularityt and corresponding
varietyt on a SUG, we can use them to understand the adoption-diffusion at
both project release and project levels.
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project release 1.8.4 and 1.8.5

Profile characteristics (Superseding point and Curve Steepness). Particularly
interesting characteristic is the temporal superseding point (ss point), which
is the time at which the point where one project release popularity overtakes
another. A very attractive version is defined as to have no other library
versions superseding it. Another characteristic of the DPs is the steepness
of the curve; when the curve halts, and when the curve is superseded by a
successive release curve. A saturated curve may suggest that a release is no
longer attractive and not recommended for adoption.

In Figure 5 we shows an example of the profile characteristics of the
DPs of mockito-core project. For illustration purposes –and to simplify
the curve– this DP only shows two releases. Note the crossing of lines,
which is described as the superseding point where mockito−core1.8.5 succeeds
mockito − core1.8.4 in both popularityt (2012-6) and varietyt (2011-12).
In both cases, we conclude that mockito − core1.8.5 is recommended as the
more attractive project release version to adopt.

5. Empirical Evaluation

5.1. Research Questions

To evaluate our SUG approach we modeled dependency and evolution
of releases within a real super repositories. The goal of the evaluation is to
answer the following questions:
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• RQ1 Are we able to model a real-world super repository as an SUG?
and if so, what knowledge can we extract from the model? We want
to extract interesting observations such as internal reuse, that occurs
within the super repository.

• RQ2 Can we leverage the SUG to profile library adoption-diffusion?
and if so, what useful patterns are observed? We want to use DPs to
recommend practical library migrations.

5.2. Research Method

For the first research question, the research method is by empirical study
of a typical super repository. For the second method, through use cases, we
demonstrate practicality of the DPs.

Research Method for RQ1. For the first research question, we first provide a
detailed description of the construction of a SUG, including the node, edges
and attributes definitions and statistics. To understand the reuse within a
SUG, we measure how many projects are being used internally. Thus, for a
SUG U = {N,E} and its corresponding P-SUG U ′ = {N ′, E ′}:

reuse = |
⋃
n∈N

rev-depend(n′)| (5)

where n′ is merged node in N ′ from n.

Research Method for RQ2. For the second research question, we use two pop-
ular libraries from the built SUG in our case studies, each used to illustrate
practicality of our approach. Concretely, for the adoption-diffusion profil-
ing, we analyze for each library the profile types and profile characteristics
(i.e, superseding point and curve steepness). We also show how each library
adoption-diffusion profile may correspond to real world changes. There are
many other factors to consider, however in this study, we manually cross-
reference with release logs for supporting evidence to explain the different
profile characteristics observed.

5.3. Dataset

For RQ1, we model the Maven super repository, which hosts many JVM
project artefacts. Most projects in this super repository are open-source
Java, Scala or Clojure libraries (referred to as artefacts). Recently the Maven
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Table 1: SUG statistics for Maven SUG

Maven Super Repository
time period 2005/11/03 – 2014/12/30
# of SUG nodes 1,664,648
# of SUG floating nodes 11,482
# of P-SUG nodes(# of projects) 37,638
# of P-SUG nodes depended on
by any other P-SUG nodes(# of reused projects) 26,156

Table 2: Depend-relation edge statistics for Maven P-SUG

outgoing edges incoming edges
Min 1 1
1st Quartile 3 2
Median 5 2
Mean 11.29 9.02
3rd Quartile 12 5
Max (org.glassfish) 1,166 (junit) 9,691

libraries have been gaining widespread usage through dependency manage-
ment such as maven2 and gradle build tools. We conducted our experiments
on a local offline copy of the super repository, snapshot from 2005/11/03 to
2014/12/30. For RQ2, we employ two well-known Maven libraries for our case
study. We use the SUG to analyze 6 versions (2.1 – 2.6) of Commons-lang,
a helper utility library and 11 versions (2.1 – 4.0) of asm a java bytecode
manipulation library. The intention is to show the different features of the
adoption-diffusion plots.

All tools, scripts, data and result of systems are available from the paper’s
replication package at:

http://sel.ist.osaka-u.ac.jp/people/raula-k/SUG/index.html.

6. Results

6.1. Construction of the SUG

For the Maven super repository, we construct the SUG from the POM
configuration file. Every project in the Maven repository includes a Project
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Object Model file (i.e., POM.xml), that describes the project’s configu-
ration meta-data —including its compile-time dependencies12. We cus-
tomized a tool13 that implements the maven-model14 parser to extract related
SUG edges dependency information from all release version of the POM-files
in the repository. Similarly encountered by Raemaekers[23], Maven’s de-
pendency management mechanism15 is rather complex with elements such
as transitive and imported POMs.Using the formalized model we built the
Maven SUG M where M(N,Edep ∪Eup). Taking x ∈ N , each property is as
follows:

• Edep. The <dependency> attribute of the POM.xml explicitly references
the use relation between artefacts. At this stage, we do not resolve
transitive dependencies.

• Eup. The <version> attribute of the POM.xml explicitly references the
release version of an artefact. Using the time attribute of the node, we
then determine the order of nodes within a project.

• x.name. The <artifactId> was originally used, however it was found

12Refer to http://maven.apache.org/pom.html for the data structure
13PomWalker: https://github.com/raux/PomWalker
14maven-model version 3.1.1. Our tool can handle Maven 1.x, 2.x and 3.
15http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.

html
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in many cases to be too generic. The concatenation of <groupId>

produced a more unique project separation.

• x.release. The <version> attribute of the POM.xml explicitly refer-
ences the release version of an artefact.

• x.time. The time-stamp of when the artifact (jar file) was uploaded
into Maven was used to extract time of the node.

A downside of using <groupId> as the name attribute, is that common
projects are lost if they have moved domain (i.e., changed<groupId>). An
example is when the findbugs library change groupID from

<net.sourceforge.findbugs> to <com.google.code.findbugs>. Al-
though our tool is unable to resolve explicit references, it is able to handle
inheritance attributes of Super POM. Through the Dependency Management

attribute the parent and child POMs files were resolved.
Table 1 details the constructed Maven SUG. As shown we were able to

mine and generate 1,664,648 nodes, spanning across 9 years. Independent
software releases (i.e.,nodes without incoming or outgoing depend-relation
edges) are refereed to as floating nodes in the SUG. We depict internal reuse
within super repository (26,156 projects used by 37,638 projects). The result
is typical as most Maven artifacts are known to comprise of libraries or frame-
works. Statistical summary of the outgoing and incoming depend-relation in
P-SUG (known as the variety) is presented in Table 2 and Figure 6. We find
that org.glassfish project is the most depending project with the most
outgoing edges in this SUG. Conversely, testing library Junit is found to be
the most depended upon library adopted across a variety of projects in the
super repository.

In the Maven super repository, there is a high chance that a project
may have internal dependencies (with 26,156 projects used by 37,638
projects). Very few nodes are floating with no dependencies. Most nodes
have very low depend-relations edges (median of 5 outgoing and 2 in-
coming). However, there exists a subset of very popular projects such as
junit, that are popular across the super repository or org.glassfish
that depend on many other projects.

14
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Figure 7: Diffusion Plots for selected Maven projects. The left hand depicts the
popularityt while the right shows the varietyt for their respective releases.

6.2. Maven Profiling Types

In Figure 7(a), the popularityt plot clearly depicts asm3.1 as the most
attractive release. However, in the corresponding varietyt plot, it is has
only 5 additional projects than asm3.2. Manual analysis of the pom.xml

file indicates many of the popularity counts belong to large frameworks like
com.sun.jersey.glassfish. We observe these dependents have a rapid
release cycle, each time creating a depend edge in the SUG. Although this
popularity may indicate a library’s stability within this domain, it does not
mean that it is widely used elsewhere in the super repository.

varietyt is a more reliable measure of widespread use across the super
repository. Libraries with high popularityt but low varietyt are possibly
specialized or depended upon by projects with rapid release cycles.
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6.3. Profile characteristic (Superseding Point)

From Figure 7(b), the DPs depict a case where an older release is still
very much used today. We observe Commons-lang2.4 (light blue) as still
the most popular (no other version has passed its superseding point). This
is consistent in both popularityt and varietyt plots, making it the most at-
tractive release.

Manual cross-check with documentation. Looking at the logs16, we notice
that Commons-lang2.4 first supported the Java JDK version 1.2. Since
version 3.x (released in 2011-07-18) supports Java JDK 5.0, version 2.5 (re-
leased in 2010-2-23) or 2.6 (released in 2011-01-16) showed less adoption.

Older releases may be still an attractive release for adoption.

6.4. Profile characteristic (Curve Steepness)

The steepness of the curve can indicate trends of popularity. For instance
in the popularityt plot of Figure 7(b), we observe that Commons-lang2.4

(light blue) experienced a very strong diagonal (attractive), which is now
slowing down. From 2012 onwards, all curves become horizontal, indicating
all releases are not attractive for adoption.

Manual cross-check with documentation. As noted in the documentation17,
the next release (commons-lang3) version 3.0 was moved to a new project,
allowing both projects to be used side-by-side. The horizontal curve may be
caused by this competing version 3.0.

Diagonal or vertical spikes shows potential attraction by the crowd while
horizontal curves indicate lesser dependents than before.

Based on the results, we return to practical recommendations for our case
study. Commons-lang2.4 is a viable library to adopt or continue use as it
is very popular and the curve steepness shows that the crowd still find the
version attractive. However, the horizontal curve at the end of all releases
suggest that system maintainers should consider (commons-lang3) version
3.0 to be used-side-by-side with commons-lang2.4.

16http://commons.apache.org/proper/commons-lang/release-history.html
17http://commons.apache.org/proper/commons-lang/article3_0.html
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For the asm library, although asm3.1 has more popularity appeal overall,
the varietyt plot suggest asm3.2 is just as attractive for adoption. To decide
between the two libraries, the system maintainer can not seek documenta-
tion18 on new bug fixes and features for asm3.2.

Finally, we address the research questions. For RQ1, we were able to
successfully generate the SUG for the Maven Super Repository. For RQ2,
we demonstrated how diffusion patterns can be important indicators for po-
tential library candidate adoptions.

7. Discussion

7.1. Study Implications

Advancements in data storage and mining repository techniques and
tools, make possible the study of popularity and ‘follow the crowd’ ap-
proaches. We have shown that the SUG can model the update and depend
relationships in a typical super repository.

As mentioned in Section 1, there are many different factors for updating
libraries: technical (vulnerabilities), organizational (platform specification or
use of a component) and personal (knowledge) that influences the decision
to migrate libraries. In the results, we show that the SUG metrics and visu-
alizations provide a starting point of investigation of the crowd ’consented’
libraries to adopt. It is a much easier start before browsing all the release
logs to differentiate differences. Other methods such as library compatibility
are more precise but requires compilations and running of the tool.

There is related work that focus on popularity such as [24] and recently
Hora et. al [25]. However, we show in the popularityt and the corresponding
varietyt DPs similar popularity trends.

In this paper, we only leverage the SUG metrics to describe adoption-
diffusion. We believe that the model can generate other more complex results
such as co-dependency evolution and recommendation of outside libraries
or similar libraries. The generic and robust nature of the SUG makes for
promising future extensions.

7.2. SUG Extensions

Our SUG model is designed to rely on the dependency chains but differs
from typical graph cyclic based approaches such as ranking (such as page

18http://asm.ow2.org/history.html
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ranking), reference counting and component ranking, which is common for
measuring popularity [26], [27]. The current graph modeled structure allows
for faster and scalable querying, which we utilize for the adoption-diffusion.

We envision the SUG as a foundation in which many other features can be
built. As we study more systems, we will consider integrating ‘containment’
and ‘transitive’ concepts of object-oriented software into the SUG. We also
plan to address issues of authentication of the name attribute, and to expand
beyond the name attribute for project classifications, by incorporating more
sophisticated techniques and tools used in ‘code clone’ such as code clone
detection [28], [29] and ‘origin’ analysis [30], [31] to determine a common
project. Another complex but useful operation that was not presented in this
paper is the tracing of systems that have abandoned or dropped a library
dependency.

7.3. Threats to Validity

The main threat to the internal validity is the real-world evaluation by
maintainers. We have been working closely with system integration indus-
trial partners to develop and test our visualizations. We argue though our
examples are sufficient to demonstrate possible library recommendations. In
this study, we used the pom.xml attributes to build the SUG. The abstract
nature of the SUG allows for incorporation of other programming languages
which provide their own library hosting repository. Therefore, we believe the
SUG to be a universal approach for any type of super repository.

For external threats, our datasets only includes information about depen-
dencies that are explicitly stated in project configuration files, such as the
Maven POM configuration files. we assume consistencies between the stated
dependencies and actual dependencies. Also, we do not take into account
unaccounted reuse such as copy-and-paste and clone-and-own from within
the libraries. Although gauging dependencies by the configuration file only
provides for a sample of the actual reuse, we believe this is sufficient to give
an impression of trends within each universe. We understand that our data
and analysis are dependent on the tools and analysis techniques. Threats
include parsing techniques. However, we believe that our samples are large
enough to be representative of the real world.
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8. Related Work

8.1. Popularity Metrics

Studying library usage in terms of absolute popularity is not a new con-
cept. Holmes et al. appeal to popularity as the main indicator to identify
libraries of interest [32]. Eisenberg et al. improve navigation through a li-
brary’s structure using the popularity of its elements to scale their depic-
tion [33]. De Roover et al. explore library popularity in terms of source-level
usage patterns [34]. Popularity over time has received less attention. Mileva
et al. study popularity over time to identify the most commonly used library
versions [24]. Follow-up work applies the theory of diffusion to identify and
predict version usage trends [35]. Similar to our diffusion work, Bloemen
et al. [36] explored the diffusion of Gentoo packages. Using the Bass Diffu-
sion Model, they modeled the diffusion of Gentoo packages over time. Other
related work includes the ‘library migration graphs’ of Teyton et al.[26]. Re-
cently Hora introduced apiwave in visualizations to show popularity trends
at the API level. [25].

Our work extends on popularity for more indepth analysis of the ‘wisdom
of the crowd’. Our study investigates co-dependency and diffusion instead of
migration. Consequently, our graph implements an incremental approach as
opposed to the cyclic migration graph model.

8.2. The Software Repository Universe as Ecosystems

Recently, there has been an increase in research that perceives software
systems as ecosystems. Work such as Bosch [37] have studied the transition
from Product Lines to an Software Ecosystem approach. German et al. [21]
studied the GNU R project as an ecosystem over time. Since the projects
inception, the studied found that user-contributed systems have been grow-
ing faster than core-systems and identified differences of how they attracted
active communities. Mens et al [38] perform ecological studies of open source
software ecosystems with similar results.

Haenni et al. [22] performed a survey to identify the information that de-
velopers lack to make decisions about the selection, adoption and co-evolution
of upstream and downstream projects in a software ecosystem.

8.3. Code Search and Library Recommendation Systems

Code search is prominent among research on software reuse with many
benefits for system maintainers [39]. Examples of available code search en-
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gines are google code19 and black duck open hub 20. Tools such as Ichi-tracker
[40], Spars [27], MUDAblue [41] and ParserWeb [42] just a few of the many
available search tools that crawl software repositories mining different soft-
ware attributes and patterns with different intentions. For instance, SpotWeb
searches for different library usage patterns while MUDAblue automatically
categorizes related software systems. We crawl the super repositories, using
mined data to construct our abstract SUG models. Differently, our work
involves purely popularity metrics to locate through model operations and
visualization different co-dependency and adoption-diffusion behavior.

Most existing library recommendation work are based on commonly used
together patterns at the method level, i.e., API usage patterns at the method
level of granularity. Other related work only recommend support for exist-
ing libraries in systems, using code examples or linkage to online learning
resources. The most related work of recommendation at the library level of
granularity is by Thung et al. [43]. Through Mining Software Repositories
(MSR), they use association rule mining on historic software artifacts to de-
termine commonly used libraries. Inspired by these existing work, we believe
the SUG model can be leveraged by to expand the current work and provide
a means towards better library recommendation systems.

In regard to the SUG attributes and properties, there exists many related
definitions of software variability and dependency relationships. In Software
Product Line Engineering (SPL), terms such as ‘product’ variability has been
used extensively [37], [44], [45]. In the code clones field, Kim et al. [46] coined
clone ‘genealogies’ to track variability between software of similar origins.
In addition, systems and libraries are not explicitly distinguished. The co-
dependency operations on the SUG demonstrate more ‘basic’ aspects of the
model, although domain specific filtering may be required. Another complex
but useful operation that was not presented in this paper is the tracing of
systems that have abandoned or dropped a library dependency.

9. Conclusion and Future Work

OSS libraries are now prominent in modern software development. With
the rise of super repositories such as Maven, Sourceforge, and GitHub,

19https://code.google.com/
20https://code.openhub.net/
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several opportunities have arisen to uncover insights valuable to the manage-
ment of library dependencies through intelligent super repository mining. In
this paper, we present the SUG model as a means to represent, query and
quantify different super repositories in a generic manner. Immediate future
work focuses on evaluating the SUG with actual system maintainers. We
are also developing SUGs prototypes of different super repositories to gain
feedback and explore other potential future uses of the model.

Our work is towards empowering maintainers to make more informed de-
cisions about whether or not to update the library dependencies of a system.
Combining its “wisdom-of-the-crowd” insights with complementary work on
compatibility checking of API changes, should give rise to a comprehensive
recommendation system for dependency management.
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