A D are g 2 Dete D E - D
DT BavesI|a : 0 A 0 PIE 0 C
Background

eSystem administrators would like to make a decision to detect
software failure with individual metrics (ex. CPU utilization,
Memory usage, Disk 1/0).

oThe failure, for example, is defined that the maximum response
time of the web server is more than three seconds.

Correcting system data in real-time

Machine learning for failure detection

eMachine learning is used for failure detection.

eLearning data selection is needed for real-time update, but it is

Resources Monitoring metrics

CPU Utilization(%)
Memory Usage (bytes)
Network Send and receive (bytes/sec)
Disk I/0 operation (ops/sec)
Web access Request, max/avg response time

We collect web access data from Load Balancer only.

difficult since raw data retrieved from system would be too much. RLUItS
(Prob) (sec)
roac 5
4
Real-time data I time dat Series of 2
gal-ime cata Classifier Probability
@ update 1
)\ merge 0
i> L J i> 0 5 10 15 20 25 30 35
min
—®— Prob_Our_approach(%)—®— Prob_All data(%) ()
Decision Accumulated —®— Max_Resp_Time(sec) = Threshold(sec)
Program " Data Learner

eDecision Program gets Real-Time Data and decide whether the
data is usable or not (using clustering mechanism). Usable data is
merged to the Accumulated Data.

eAccumulated Data is input to learner.

oClassifier gets Real-Time Data and Learner, and outputs Series of

Probability of failure.

eUsing this mechanism, it is possible to update the training data
within one minute.

When the max response time is above the threshold, we define the
interval as failure.

Environment
P e e
| Load I
Client Balancer Web server
Apache L Apache _Web:ApacheCoyote Database | |
Jmeter |l | mod_proxy_ AP: Tomcat MysQL I
System: JPetStore
| balancer I

A g

Mﬂ%
g

Real-time data Stress

Evaluation

Element All data

Our approach

1) # of failures 107
2) Detected failures 60 90
2)/1) 0.561 0.841
Our approach’s value is much better than all data’s.
Discussion
Element All data Our approach
3) # of alerts raised 64 102
4) True alerts 57 90
5) 4) raised just on time 22 48
4)/3) 0.891 0.882

As a result, we confirmed that we could find software failure in
advance with our approach.

