
Modeling and Visualizing
Library Dependency Updates

Raula Gaikovina Kula

Joint work:
Osaka University

University of Victoria, Canada
Vrije Universiteit Brussel, Belgium

1http://sel.ist.osaka-u.ac.jp/SARF/index.html.en

5th Asian Workshop of Advanced Software
Engineering (AWASE2016)

Nara, Japan, 19-20 March, 2016

1. Introduction - A story on Software
Reuse, APIs and Library Dependencies

2. Problem Statement – The need to model
and visualize Library Dependency and
Updates

3. Results - Two published works of our
model

4. Future Works – The story continues…

2

Software Reuse , APIs and Library Dependencies

3

there was once a set of useful
functions…

How can I access all these useful
functions without reinventing each time

A library was born

Software Reuse , APIs and Library Dependencies

4

Library

Application Programming Interface (API)

System

Dependency

Software Reuse , APIs and Library Dependencies

5

API

System A

System B

Library

Yes, I am able to reuse in many projects

Software Reuse , APIs and
Library Dependencies

6

Useful function

API

System A

System B

Why adopt libraries?
o needed features
o inherited quality
o time/effort cost efficient
o avoid reinvent wheel

Software Systems and Library Dependencies

7

library
System

I can make more efficient systems with
inherited quality

Software Reuse , APIs and Library Dependencies

8

Library a

API

System a

System b

Library a’

Bug
Vulnerability

New Features
update

Evolving Software Systems and their Library
Dependencies

9

library
System

10

library
System

System Maintainer needs to decide `if’,
`when’ and `what to update?’

An example of Dependency Hell[1] within the
Web of Library Dependencies

[1] M. Jang, “Linux annoyances for
geeks,” 2009.

Rise of online library super-repositories

11

CRAN

With the rise of massive online super-
repositories

Maven Central now has over

Motivation

12

System Maintainer needs to decide `if’,
`when’ and `what to update?’

 How can we leverage the wisdom of the crowd, to
systematically mine and extract the evolution of both
systems and library dependencies in these super-
repositories?

Propose: Mining Library Usage Trends[1,2]

13

We can mine data from
similar systems to find
`wisdom of the crowd’

Similar OSS
systems

[1] Y. M. Mileva, V. Dallmeier, M. Burger, and A.
Zeller, “Mining trends of library usage,” in ERCIM
Workshops, 2009, pp. 57–62.
[2] C. De Roover, R. L¨ammel, and E. Pek, “Multi-
dimensional exploration of api usage,” in Proc. of
Int. Conf. on Prog. Comp.(ICPC), 2013.

Different Universes, similar super-repositories

14

Maven 2

CRAN

15

a d

b

updates

depends

a depends on b
b depends on c
d is a updated version of a
e is an updated version of b

Model of Dependency and Update Relations
SUG (Software Universe Graph)[3]

c

time

depends

e

[3] Raula Gaikovina Kula and Coen De Roover and Daniel M. German and
Takashi Ishio and Katsuro Inoue, “Modeling Library Dependencies and Updates
in Large Super Repository Universes”, Osaka University Technical Report,
2015/10/29

Two different works based on the SUG

16

Case Studies of Github java
projects that depend on maven
libraries

VISSOFT 2014

17

SUG (Software Universe Graph)

18

System Viewpoint

19

Dependents Diffusion Plot (DDP)

20

Library Viewpoint

4

8

12

16

2010-01 2010-07 2011-01 2011-07 2012-01
 Time

 C
um

ul
at

iv
e

S
um

 o
f S

ys
te

 p
er

 L
ib

ra
ry

 V
er

si
on

factor(V3)

2.2.3

3.3

3.3.1

factor(New)

adopter

idler

updater

21

Library Viewpoint

May indicate time to upgrade

Use-case Scenarios

Check out the use-case
scenario in the paper

 Towards the effective reuse of software libraries.
 System and Library Centric Views.

 4 case scenarios with real world examples.
 Regularity of Updates
 Structural Dependency changes
 Attractiveness of different Library Versions
 Update Opportunities Current State

ICPC 2015

23

ICPC Tool Demonstration: Best Tool Award

VerXCombo

Finding the best combination of dependencies
to update

24

Library Selection
o Autofill lookup interested

libraries

 Interactive Manipulation
o Mouse over highlighting
o a combination link.

Vertical Rearrangement
o Reorder Libraries for

direct comparison

Horizontal Rearrangement
o Reorder Library Version

to isolate interested
combinations

Sorting by Popular Usage
o Thickness indicates

popular versions. Most
popular on left hand side

Sorting by Version
o Latest Release will appear

on most right hand side

VerXCombo

Interactive Features

Use-case Scenarios

 Based on popularity and the latest releases, VerXCombo
allows users to find the ‘best fit’ combination of libraries

1. Introducing a new library
2. Updating existing libraries

VerXCombo

Check out the use-case
scenario in the paper

Back to the Motivation

27

 How can we leverage the wisdom of the crowd, to
systematically mine and extract the evolution of both
systems and library dependencies in these super-
repositories?

 We model an SUG as a graph of depends and update
edges.

 We show various visualizations of how the SUG can be
used to show:
 Opportunities to update
 Combinations of different libraries used by similar systems

 API Usage and Library Updates
 Library Recommendations
 Disruptive Factors [4]:

 Vulnerabilities
 Breakages and API Incompatibilities
 Competitors within the same domain
 Cost benefit analysis of migrations

28

The story continues…

[3] Raula Gaikovina Kula and Daniel M. German and Takashi Ishio and Katsuro
Inoue. Trusting a Library: A Study of the Latency to Adopt the Latest Maven
Release. 22nd IEEE International Conference on Software Analysis, Evolution, and
Reengineering, SANER 2015, Montreal, Canada, March 2-6, 2015,

29

	Modeling and Visualizing �Library Dependency Updates
	スライド番号 2
	Software Reuse , APIs and Library Dependencies
	Software Reuse , APIs and Library Dependencies
	Software Reuse , APIs and Library Dependencies
	Software Reuse , APIs and� Library Dependencies
	Software Systems and Library Dependencies
	Software Reuse , APIs and Library Dependencies
	Evolving Software Systems and their Library Dependencies
	スライド番号 10
	Rise of online library super-repositories
	Motivation
	Propose: Mining Library Usage Trends[1,2]
	Different Universes, similar super-repositories
	スライド番号 15
	Two different works based on the SUG
	VISSOFT 2014
	SUG (Software Universe Graph)
	System Viewpoint
	Dependents Diffusion Plot (DDP)
	Library Viewpoint
	Use-case Scenarios
	ICPC 2015
	Finding the best combination of dependencies to update
	Interactive Features
	Use-case Scenarios
	Back to the Motivation
	The story continues…
	スライド番号 29

