
Software Ingredients: Detection of Third-party Component
Reuse in Java Software Release

Takashi Ishio
Osaka University

Osaka, Japan
ishio@ist.osaka-u.ac.jp

Raula Gaikovina Kula
Osaka University

Osaka, Japan
raula-k@ist.osaka-u.ac.jp

Tetsuya Kanda
Osaka University

Osaka, Japan
t-kanda@ist.osaka-

u.ac.jp
Daniel M. German
University of Victoria
Victoria, BC, Canada

dmg@uvic.ca

Katsuro Inoue
Osaka University

Osaka, Japan
inoue@ist.osaka-u.ac.jp

ABSTRACT
A software product is often dependent on a large number
of third-party components. To assess potential risks, such
as security vulnerabilities and license violations, a list of
components and their versions in a product is important for
release engineers and security analysts. Since such a list is
not always available, a code comparison technique named
Software Bertillonage has been proposed to test whether a
product likely includes a copy of a particular component
or not. Although the technique can extract candidates of
reused components, a user still has to manually identify the
original components among the candidates. In this paper,
we propose a method to automatically select the most likely
origin of components reused in a product, based on an as-
sumption that a product tends to include an entire copy of
a component rather than a partial copy. More concretely,
given a Java product and a repository of jar files of exist-
ing components, our method selects jar files that can provide
Java classes to the product in a greedy manner. To compare
the method with the existing technique, we have conducted
an evaluation using randomly created jar files including up
to 1,000 components. The Software Bertillonage technique
reports many candidates; the precision and recall are 0.357
and 0.993, respectively. Our method reports a list of original
components whose precision and recall are 0.998 and 0.997.

Keywords
Software reuse, reverse engineering, origin analysis

1. INTRODUCTION
Software reuse is crucial for efficient software develop-

ment. A software project uses components developed out-
side of the project, subsequently produces software that is a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’16, May 14-15, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4186-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901739.2901773

potentially reusable component in other projects. Software
reuse activity is now commonplace in both open source soft-
ware community and industry. Heinemann et al. [19] re-
ported that black-box reuse is common among open source
Java projects. Bavota et al. [5] reported that although the
trend of growing projects in the Apache ecosystem is lin-
ear, the growth of component dependencies are exponential.
Rubin et al. [37] reported that industrial developers extract
reusable components from existing software products to de-
velop core assets for their new products. Mohagheghi et al.
[29] reported that reused components are more reliable than
non-reused code.

Reusing a component may increase a potential risk of vul-
nerabilities and license violations caused by the component
and its transitively dependent components. For example,
the Google Web Toolkit (GWT) project [18] includes various
components in its release so that it can be used without in-
stallation of other components. A single jar file gwt-dev.jar
in GWT 2.7.0 includes class files reused from three vulnera-
ble components: Apache Xalan 2.7.1, HttpClient 4.3.1, and
Commons-Collections 3.2.1. The vulnerabilities have a risk
to allow remote attackers to access external resources [32],
perform man-in-the-middle attack [33], and execute arbi-
trary code [2]. It is hard for users to identify such a potential
risk, because internal components are not directly visible to
them. Sonatype reported that many applications include
severe or critical flaws inherited from their components [7].

In order to assess a potential risk of components, release
engineers and user-side security analysts need a complete
list of components that are actually included in a product
release. However, such a list is not always available to them
outside of a development team. In the case of gwt-dev.jar,
its build file (build.xml) must be analyzed to identify its
internal components. The dependencies are unavailable on
the Maven Central Repository, because the jar file can be
reused without the dependent components.

To address the problem, an existing technique named Soft-
ware Bertillonage [8, 9] has been proposed to analyze a jar
file. A simple MD5 file hash comparison is unable to identify
a reused class file, because it cannot compare class files gen-
erated by different compilers. Davies et al. [9] reported that
48% of jar files in Debian GNU/Linux packages have no class
files that were identical to any class files in the Maven Cen-
tral Repository. Instead of a file hash, Software Bertillonage

introduced a class signature to compare two classes ignor-
ing their details. The approach enables to identify common
classes between two jar files. By comparing a product jar file
with each of existing components, the technique can identify
components whose classes are entirely/partially included in
a product. However, common classes between jar files does
not imply code reuse between the files. For example, if a
product includes an entire copy of Apache Commons com-
ponents, then the Software Bertillonage tool reports that the
product includes the components and also includes a partial
copy of GWT, because GWT includes the same classes. A
user still has to manually identify the original components
among the reported candidates.
In this paper, we propose a method to automatically select

a set of jar files that is the most likely origin of components
reused in a product. We identify existing components that
cover the contents of a target jar file as much as possible
in a greedy manner, assuming a product tends to include
an entire copy of a component rather than a partial copy.
The assumption is based on an observation that most of
developers copy a jar file as a black box [16, 19]. All the
classes in the components can be automatically repackaged
into a single runnable jar file using existing tools such as
Eclipse Runnable Jar File Exporter [13] and Apache Maven
Assembly Plugin [3].
We conducted an experiment to evaluate our approach

against Software Bertillionage, evaluating the ability to ac-
curately identify original components reused in a target jar
file. The experiment used artificially created jar files us-
ing a dataset named sourcerer-maven-aug12, which is a
snapshot of the Maven Central Repository. We randomly
selected up to 1,000 jar files in the dataset, put the contents
into a single jar file, and then detected the original jar files.
The precision and recall of Software Bertillonage are 0.357
and 0.993, respectively. Our method achieved much better
results, with an improved precision and recall of 0.998 and
0.997 for the dataset. The result shows that our method
successfully identifies the original components included in a
product.
We use two cases to highlight practical usefulness and im-

plications. We applied our method to actual jar files of Face-
book LinkBench and muCommander 0.9.0. The first case
represents a release engineering situation that compares the
dependencies managed by developers with components actu-
ally included in a product. The second case assesses a risk of
a product whose components are unrecorded by developers.
The contributions of the paper are summarized as follows.

• We define a method to detect multiple third-party com-
ponents in a jar file. Our method is efficient and de-
tects many components.

• Our experiment shows the accuracy of our approach
compared with Software Bertillonage. The accuracy
of the previous work has not been evaluated in [8, 9].
The evaluation is conducted using actual components
available in a public dataset.

• We reported the result of analysis on actual software
binaries. It shows the usefulness of our method.

Section 2 shows related work of our approach. The ap-
proach itself is detailed in Section 3. Section 4 presents the
evaluation of our approach using a dataset constructed from
the Maven repository. Section 5 presents the analysis of

actual binaries. Section 6 describes the threats to validity.
Section 7 describes the conclusion and future work.

2. RELATED WORK
We have categorized related work into three groups: Anal-

ysis of reuse activity, detection of software reuse, and sup-
port of software reuse. Our research is included in detection
of software reuse.

2.1 Analysis of Reuse Activity
Heinemann et al. [19] analyzed code reuse in open source

Java projects. They identified black-box reuse using a cor-
pus of 20 popular libraries; they extracted references to li-
brary classes in a target program as an instance of reuse.
Our method also uses a corpus of existing components, but
our method identifies classes copied to a target program.

Bavota et al. [5] reported that the number of inter-project
dependencies grows exponentially. The dataset is extracted
from configuration files for build tools such as Maven. While
the approach is likely precise in most cases, dependencies
declared in a configuration file may be different from actual
dependencies, as developers can keep a copy of source and
binary files in their project.

Teyton et al. [41] analyzed library migrations using a list
of packages for each library. The list associates a package
name to a library name. Although the list-based detection is
reasonable, it is not applicable to identify a version number.

Code clone detection has been used to analyze source
code reuse between projects. Kamiya et al. [23] proposed
CCFinder to detect similar code fragments between files.
German et al. [17] used CCFinder to detect code siblings
reused across projects. They identify the original project of
a code sibling by investigating the source code repositories of
the projects. Hemel et al. [21] analyzed vendor-specific ver-
sions of Linux kernel using their own clone detection tool.
The analysis shows that each vendor created a variant of
Linux kernel and customized many files in the variant.

2.2 Detection of Software Reuse
Davies et al. [8, 9] proposed Software Bertillonage to iden-

tify the origin of a jar file using classes and their methods in
the file. The method compares the contents of a jar file with
each of jar files in a repository, and then reports the most
similar one as the original. It enables to recover a full name
of a jar file (e.g. junit-3.8.1.jar) from a shortened name
(e.g. junit.jar). The method also defines metrics repre-
senting the degree of inclusion relationship between two jar
files so that a user can test whether a jar file includes a part
of another jar file or not. German et al. [16] demonstrated
the approach can detect OSS jar files included in proprietary
applications. Mojica et al. [30] used the same approach to
analyze code reuse among Android applications.

Di Penta et al. [10] used class names to identify software
license for a jar file, instead of a component name. Since a
jar file may be distributed without documents of software
license, the method extracts class names as keywords for
search engines. The method can recover software license if
the classes are included in a well-known library available on
the Internet.

Sæbjørnsen et al. [38] proposed a clone detection for bi-
nary code. Qiu et al. [35] proposed a code comparison
method for a binary form to identify library functions in-
cluded in an executable file. These techniques are applicable

to detect functions copied from library code in a target pro-
gram, by comparing all the versions of components with the
target program. Our method detects reuse in a component-
level rather than a function level.
Hemel et al. [20] proposed a binary code clone detection to

identify code reuse violating software license of a component.
The method compares the contents of binary files between
a target program and each of existing components. The
framework is the same as Software Bertillonage; it enables
a user to test whether a component is likely included in a
target program or not. While reused code fragments are
detected as code clones, code clones are not always reuse.
For example, if a target program A uses a library B that
is also used in another library C, the method reports two
code clones between A-B and between A-C. A user has to
manually investigate clones to determine whether they are
actual reuse or not.
Kawamitsu et al. [25] proposed a technique to identify

an original version of source code in a library’s source code
repository. To analyze a program, a user of the technique
must know what library is included in the program. Our
technique automatically extracts the information from a tar-
get program.
Steidl et al. [40] proposed to detect source code move,

copy, and merge in a source code repository. The approach
compares the full contents of files, while our approach inten-
tionally ignore details of binary files.
Kanda et al. [24] proposed a method to recover an evolu-

tion history of a product and its variants from their source
code archives without a version control. The approach also
compares the full contents of source files, using a heuristic
that developers tend to enhance a derived version and do
not often remove code from the derived version.
Chen et al. [6] proposed a technique to detect clones of

Android applications. The analysis computes similarity be-
tween control-flow graphs of methods, and recognize an An-
droid application as a clone of another application if the two
applications have a large number of similar methods. To
compare application-specific code separately from existing
libraries, the technique uses a white-list including package
names of popular libraries.
Luo et al. [28] proposed a code plagiarism detection ap-

plicable to obfuscated code. The detection method identifies
semantically equivalent basic blocks in two functions. Our
approach assumes that developers own their code and the
code of a target program is not obfuscated.
Sojer et al. [39] pointed out that ad-hoc reuse from the

Internet has a risk of a license violation. Inoue et al. [22]
proposed a tool named Ichi-tracker to identify the origin of
ad-hoc reuse. It searches clones of a source file across various
repositories on the Internet and visualizes the similarities.
Our method focuses on clone-and-own reuse of components
rather than ad-hoc reuse.

2.3 Support of Software Reuse
Detected instances of source code reuse can be seen as

clues to extract the common functionalities in software prod-
ucts. Bauer et al. [4] proposed to extract code clones across
products as a candidate of a new library. Duszynski [12] pro-
posed a code comparison tool to analyze source code com-
monalities from multiple similar product variants. Fischer
et al. [15] proposed to extract common components from
existing product variants and compose a new product.

Thung et al. [42] proposed a method to recommend li-
braries that are likely useful to developers, using item-set
mining for libraries. The approach also uses the Maven
repository as a source of libraries. Components detected by
our method can be used as input for the recommendation
system.

Dietrich et al. [11] analyzed binary compatibility between
versions of a library. As similar to [16], the analysis used a
binary-level content comparison to identify the origin of a
library jar file. The analysis focused on libraries used by a
program via method calls, rather than libraries whose copies
are included in the program.

Raemaeker et al. [36] analyzed the relationship between
version numbers and binary compatibility of a library. The
analysis compares identifiers between versions and shows
that identifiers in an old version are often unavailable in
a new version. The observation implies that comparison of
classes and methods is effective to identify a version of a
component.

Kula et al. [26] proposed a visualization to investigate
a history of component update in a project. Developers
can identify outdated components in their project, using
the history and statistics of dependencies extracted from
the Maven repository. While the visualization extracts de-
pendencies of a target project from a configuration file for
Maven (pom.xml), our method can provide supplementary
dependencies unrecorded in the file.

Yano et al. [43] proposed a visualization to investigate a
popular combination of library versions. For example, given
a pair Apache Commons HttpClient and Collections, the
visualization shows the most popular combination is Http-
Client 3.1 and Collections 3.2.1. Since such a popular com-
bination works properly, developers can reduce a risk of ver-
sion incompatibility. This visualization is also dependent
on dependencies recorded in pom.xml files. Our method can
provide dependencies in actual software releases for the vi-
sualization.

3. COMPONENT DETECTION
Our method detects components that are the most likely

reused in a target product jar file. The method assumes all
existing versions of components are accessible from a host-
ing repository. The hosting repository is a collection of jar
files. A jar file should at least contain one class to be con-
sidered a component. The Maven Central Repository is a
well-known component hosting repository; it has been used
in [8, 9]. Similarily, we employ a snapshot of the Maven
Central Repository named sourcerer-maven-aug12, that is
a part of UCI Source Code Data Sets [27].

Our method takes as input a target jar file t and a set
of jar files R in the repository. Our method selects jar files
from the repository such that each jar file provides class files
to t. Since a simple list of jar file names is not informative
for users to analyze actual reuse, we represent reused jar
files in t as a list of pairs (Ji, Ci); Ji is a set of jar files
including a set of classes Ci in the target t. Multiple jar files
are detected as the origin of reused code if they have the
same classes Ci.

Our method comprises two steps: Signature extraction
and signature-based comparison. To identify class files com-
mon to t and jar files in R, we use a class signature repre-
senting the contents of a single class. Hence, the first step
constructs a database of signatures for each jar file in the

Figure 1: An example input and output of our
method

repository R. The second step is a greedy algorithm that
repeatedly identifies the largest jar file that covers the con-
tents of t as much as possible using the database. Compared
with Software Bertillonage, our method newly introduces an
extension of class signature and the greedy algorithm.
Figure 1 illustrates an example input and output of our

method. Given the target.jar file, our method compares
the contents with jar files in the repository. Our method
reports that X-1.0.jar is the origin of three classes A, B,
and C, and Z-0.2.0.jar is the origin of two classes E and
F, because the target jar includes all the classes in them.
Although the class E can be seen as a copy from Y-0.1.jar,
our method selects only Z-0.2.0.jar because it covers more
classes.
Software Bertillonage does not provide such an automatic

analysis. That method defines a similarity metric between
jar files t and r, using a class signature to compare classes,
as follows.

sim(t, r) =
|Classes(t) ∩ Classes(r)|
|Classes(t) ∪ Classes(r)|

In the case of Figure 1, we can get the similarity metric
values as follows: sim(t, X-1.0) = 0.500, sim(t, X-1.1) =
0.429, sim(t, Y-0.1.1) = 0.167, and sim(t, Z-1.0) = 0.333.
Since X-1.0 is more similar to t than X-1.1, X-1.0 is more
likely a code origin of t than X-1.1. While X-1.1 can be
removed from the candidates, the similarity metric does
not show the relationship among the remaining candidates.
Hence, a user has to manually analyze the contents of three
jar files to identify the origin of classes.

3.1 Signature Extraction
The first step of our method translates a class file into a

signature for comparison. If a signature of a class c1 is the
same as one of another class c2, we regard the classes as the
same element when comparing a set of classes between jar

files.
A simple file hash such as MD5 and SHA-1 is inapplicable,

because generated class content can vary and is dependent
on compiler and configuration settings such as JDK version
number and inclusion of debug information.

A signature of a class c is a set of the following attributes.

• Class name of c. It is an empty string if c is an anony-
mous class.

• Name of the parent class of c.

• Name of the outer (enclosing) class of c if c is an inner
class.

• Interfaces implemented by c.

• Fields defined in c. Each field is represented by its
name and type. A declaration order is ignored.

• Methods defined in c. Each method is represented
by the following attributes. A declaration order is ig-
nored.

– Method name. Constructors and static initializ-
ers are represented by their internal names <init>
and <clinit>, respectively.

– Modifiers, e.g. public, private, protected, and
synchronized.

– The types of arguments and return value.

– A set of method call instructions in the method.
We use only method names, receiver types, and
argument types, ignoring their locations in the
method.

– A set of field access instructions in the method.
We use only field names, field types, and owner
classes of the fields, ignoring their locations in the
method.

A signature equals to another signature if and only if all their
attributes are the same. The definition of a class signature is
an extended version of [8, 9]; method calls and field access in
methods are added. We included the additional attributes
so that we can distinguish different versions of a component
as much as possible.

While a class signature is defined as a set of attributes,
our implementation extracts all the above attributes from a
class and concatenates them into a single string, and then
translates it into a single SHA-1 hash value. Hence, com-
parison of two classes is implemented by comparison of two
hash values.

It should be noted that class names in a class signature
are fully qualified names including their package names. Al-
though developers may clone source files from a library and
modify the package names, both our method and Software
Bertillonage do not analyze such a case.

A signature excludes subclasses and synthetic methods
and fields generated by compilers that are not included in
source code. They are recognized by the synthetic access
modifier in bytecode and a character “$” in their names.

All the jar files in a repository R are translated into a
signature database. A signature database is represented by
a simple hierarchical structure. The database contains a list
of jar file names. Each jar file name is associated with a list

Algorithm 1 Component Detection

1: Initialize A = Classes(t)
2: Classify jar files in R to groups and sort them by a de-

scending order of overlapN : Rs = 〈R1, R2, · · · 〉.
3: for i = 1 to |Rs| do
4: while Ri �= φ do
5: Select (J,C) such that

J ⊆ Ri ∧ ∀r ∈ J. A ∩ Classes(r) = C
∧∀r′ ∈ Ri \ J. A ∩ Classes(r′) �= C
∧ maxr∈Ri |A ∩ Classes(r)| = |C|

6: print (J,C) as a result if C �= φ.
7: Ri ← Ri \ J,A← A \ C
8: end while
9: end for

of classes. Each class is represented by a pair of its name
and signature hash value.
A signature extraction process can analyze jar files and

classes in parallel, since jar files are independent of one an-
other and a class signature is computed analyzing only one
class file at a time. We can incrementally analyze new jar
files in a component repository that grows day by day.

3.2 Signature-based Comparison
The second step of our method uses a database extracted

from a repository R to identify a subset of jar files in R that
cover classes in t. Algorithm 1 represents the entire process
of this step. In the algorithm, Classes(x) denotes a set of
classes in a jar file x.
The algorithm firstly extracts A, which is a set of classes

to be analyzed, from t. The process is the same as the
signature extraction step.
The line 2 in the algorithm determines an order of compar-

ison of jar files in R. We use the overlap coefficient between
class names in t and each r in R, defined as follows.

overlapN (t, r) =
|Names(t) ∩Names(r)|

|Names(r)|
where Names(x) is a set of class names in a jar file x.
We classify jar files in the repository into groups Rs =
〈R1, R2, · · · 〉, so that the groups satisfy a descending order
of overlapN values as follows.

∀r, s ∈ Ri. overlapN (t, r) = overlapN (t, s)

∀r ∈ Ri, s ∈ Rj . i < j ⇐⇒ overlapN (t, r) > overlapN (t, s)

Each Ri is a subset of jar files in R. We exclude jar files
whose overlapN value is zero from the analysis. On the
other hand, we use no threshold for filtering. We analyze all
the jar files that share at least one class name with t.
The descending order of the overlapN metric enables us

to check an entirely copied jar file earlier than a partially
copied jar file. If all the classes in r are copied to t, t must
include the class names (i.e. overlapN (t, r) = 1). We did

not use the Jaccard index |Names(t)∩Names(r)|
|Names(t)∪Names(r)| , because a

partially copied jar file may have a higher value.
The overlapN uses class names instead of class signatures.

When two jar files r1 and r2 are copied to t, the jar files have
overlapN (t, r1) = overlapN (t, r2) = 1 even if they include
different versions of the same classes.
The while loop in the lines 4 through 8 is the main part of

the algorithm. The line 5 compares a set of classes A with

jar files in Ri using class signature, and then select jar files J
providing the largest intersection C. The selected pair (J,C)
is reported to a user at the line 6. The line 7 removes the
selected classes C from A to ensure that the classes have the
only one code origin. The loop continues until all the jar files
in Ri are analyzed. If no jar files in Ri have a non-empty
intersection with A, a pair (J = Ri, C = φ) is extracted.
The pair makes Ri empty and terminates the while loop.
And then, the analysis moves to the next jar file set Ri+1.
The algorithm terminates after all the jar file sets have been
analyzed.

Let us illustrate how the algorithm works on the example
repository shown in Figure 1. The repository includes four
jar files as follows.

Classes(X-1.0) = {A, B, C}
Classes(X-1.1) = {A, C, D}

Classes(Y-0.1.1) = {E}
Classes(Z-0.2.0) = {E, F}

Our algorithm firstly computes overlapN values. Since the
target jar file includes three classes A, B, and C, the overlap
value overlapN (t, X-1.0) = 1. The target jar file also in-
cludes all the class names in Y-0.1.1 and Z-0.2.0. Hence,
the repository is split into two sets: R1 = {X-1.0, Y-0.1.1,
Z-0.2.0} and R2 = {X-1.1}. If Z-0.2.0 included another
version of class C, R1 still includes the jar file because the
overlapN value does not change. The overlapN value rep-
resents a situation that the jar file could be an entire copy
but a class is accidentally overwitten by another version of
the class. If Z-0.2.0 included another class H instead of C,
the jar file moves to R2 because it is regarded as a partial
copy.

The while loop in the algorithm analyzes R1 as follows.
At the beginning, a set of analyzed classes A contains all the
classes in the target jar file: A = {A, B, C, E, F, G}. The largest
intersection with R1 is C = {A, B, C} in X-1.0. Hence, a pair
({X-1.0}, {A, B, C}) is reported as a result. At the line 7, the
jar file and classes are removed from R1 and A respectively;
i.e. R1 = {Y-0.1.1, Z-0.2.0}, A = {E, F, G}. The second
iteration of the loop outputs ({Z-0.2.0}, {E, F}) and results
in R1 = {Y-0.1.1}, A = {G}. In the third iteration, A no
longer has an intersection with Y-0.1.1. The resultant pair
({Y-0.1.1}, φ) is ignored at the line 6. R1 becomes empty,
and then the algorithm proceeds to R2. Since X-1.1 has no
intersection with A, it is also ignored. As a result, two pairs
of jar files and classes are output by our method as follows.

J C

{ X-1.0.jar } { A, B, C }
{ Z-0.2.0.jar } { E, F }

The result shows that three classes are copied from X-1.0

and two classes are copied from Z-0.2.0. The result also
implies the remaining class G is likely unique to the target
jar file, because it is not found in any jar files in R.

The computational cost of the comparison step is depen-
dent on both the size of a target jar file t and a repository
R. The worst case is O(nk), where n is the total number
of class files in R, k is the number of jar files reused in t,
respectively. Computation of overlapN values takes O(n)
time, because it tests whether each class name in r ∈ R is
included in t or not, using a hash set of class names for t
(O(1) time for each test). Similarly, computation of inter-

section at the line 5 compares class signatures in O(n) time
for each iteration, using a hash set for class signatures. The
while loop is repeated k times until the k jar files in t are
identified. To reduce the cost, our implementation reuses
the already computed intersections in the loop; when A is
updated to A′ (A′ ← A \C), updated intersections for A′ is
obtained by A′ ∩ Classes(r) = (A ∩ Classes(r)) \ C.

4. EVALUATION
To evaluate our method, we try to answer the following

research questions:

RQ1. How accurate is the result reported by our method?

RQ2. Does our method finish the analysis in a practical
time?

Research Design. For RQ1, we compare our method
with Software Bertillionage. We use a golden dataset to
evaluate precision and recall of the methods. To cover vari-
ous combinations of existing components, we create our own
dataset. More concretely, we randomly select jar files in the
repository and copy the contents to a new jar file. Then we
apply the methods under comparison to the created jar file
and compare the reported results with the original files.
For RQ2, we evaluate practicality since our method is

more computationally expensive. We use the performance
data collected from RQ1 in relation to time and hardware
considerations.

4.1 Comparison with Software Bartillonage
As the baseline of accuracy, we use the similarity metric of

Software Bertillonage to list candidates of jar files included
in a target jar file. If a jar file r ∈ R satisfies sim(t, r) > 0,
r is selected as a candidate. If multiple versions of the same
component are involved in the list, we select only the most
similar version (if tied, select all of them) and exclude less
similar versions. In the case of Figure 1, the resultant list
of candidates is D = 〈{X-1.0}, {Y-0.1.1}, {Z-0.2.0}〉, as
illustrated in Section 3. We refer to this similarity-based
list as a “Bertillonage” list. We do not use a threshold for
filtering jar files so not to miss original files.
Our method added two elements to Software Bertillonage

approach: an extended class signature and a greedy algo-
rithm. To analyze how the elements contribute to the result,
we introduce two variants of our method.

Bert+Sig is a list of jar files created in the same way as
the Bertillonage list but using our class signature.

Bert+Greedy is a result of our greedy algorithm but uses
a class signature defined in [8, 9].

We refer to our method as “Full” to distinguish it from the
two variants.

4.2 Dataset Construction
We create a jar file from jar files in a repository R. We

use a snapshot of the Maven Central Repository named
sourcerer-maven-aug12 as our repository R. The reposi-
tory includes 172,232 jar files in the dataset, excluding source
code archives and corrupted files. The files include 23,336
artifact IDs in Maven.
To analyze how accuracy is affected by the number of jar

files included in a target jar file, we introduce a parameter

Algorithm 2 Goldset Construction

1: Initialize t as an empty file.
2: for i = 1 to N do
3: Randomly select a jar file ri ∈ R such that

Names(ri) �
⋃

1≤k≤i−1 Names(rk) and ri is a differ-

ent component from rk (1 ≤ k ≤ i− 1).
4: Copy class files in ri to t. Skip a class file if the class

is already included in t.
5: end for
6: Add t and G(t) = {r1, · · · , rN} to the golden dataset.

10−200 210−400 410−600 610−800 810−1000

0

50000

100000

150000

#C
la

ss
es

 in
 a

 ja
r

N

Figure 2: Distribution of the size of created jar files

N representing the number of original jar files. Given N ,
we create a jar file t through the steps in Algorithm 2. It
starts with an empty jar file. The line 3 randomly selects ri
that provides at least one new class of a new component to
t. Two jar files are regarded as different versions of the same
component if they have the same file path except for their
version number parts. The line 4 copies class files without
overwriting a class file already copied to t.

The selected jar files for t form a goldset for t: G(t) =
{r1, · · · , rN}. In addition to the jar files, we construct a
set of files V (t) such that each jar file v ∈ V (t) includes
the same set of files copied at Step 4. In other words,
jar files in V (t) are possible code origins that could pro-
vide their classes to t. Since a jar file in G(t) also satisfies
the condition, V (t) ⊇ G(t) holds. For example, suppose
commons-httpclient-3.1 is selected as ri and its 167 class
files are copied to t, Then, V (t) includes the file and another
jar file named org.apache.servicemix.bundles.commons-

httpclient-3.1_4, because the archive also contains the
same 167 class files. We identify such jar files by search-
ing file hash values in all the jar files in R.

We vary the size of a jar file N from 10 to 1,000 by 10.
For each N , we create 10 jar files. Hence, our dataset T
includes 1,000 target jar files.

As an overview of the created jar files, the numbers of
classes in the files are shown in Figure 2. The smallest jar
file contains 196 classes, the maximum one contains 159,104
classes. The median is 56,304. We believe N = 1, 000 and
the number of classes are sufficiently large to include the size
of a practical application; for example, Eclipse IDE for Java
Developers 4.4.1 comprises 519 jar files. For each selected
file, at least one class has been copied. The median and the
maximum number of copied classes per selected file are 15
and 36,189, respectively. 58.1% of selected jar files provided
classes that are unique to the jar files. On average, 4.6
jar files include the same file set. 3.4% of selected files are

Table 1: Accuracy of the methods under comparison
Method Precision Precisionjar Recall

Our method (Full) 0.998 0.803 0.997
Bert+Greedy 0.997 0.678 0.997
Bert+Sig 0.357 0.231 0.994
Bertillonage 0.357 0.207 0.993

partially copied, because their contents overlap with already
copied files. In those cases, 42.4% of class files in a selected
file are not copied on average.

4.3 Accuracy
We evaluate accuracy of our method by precision and re-

call. Given a jar file t, each of the methods under compari-
son reports a list of detected jar file sets D = 〈J1, · · · , J|D|〉.
Each file set Ji indicates that some classes are reused from
one of the jar files in it. For example, J = {r1, r2} represents
that “files are copied from either r1 or r2.” We classify a set
Ji to true positive if G(t) ∩ Ji �= φ. The set Ji is classified
to false positive if G(t)∩Ji = φ. Based on the classification,
we define the precision of a list D as follows.

Precision(t,D) =
|{Ji ∈ D|Ji ∩G(t) �= φ}|

|D|
A high precision indicates that a user can trust the reported
set.
Even though jar files in Ji have the same class signatures,

the classes may have different contents. For example, a
change of a boolean operator in a conditional predicate does
not affect a class signature but changes the binary. In such a
case, even if Ji includes a correct answer, a user might have
to identify one of them in the set. To analyze this effort,
we define another precision Precisionjar to represent how
many jar files in Ji have a copy of the actually copied files.

Precisionjar(t,D) =
|⋃Ji∈D Ji ∩ V (t)|
|⋃Ji∈D Ji|

If this precision is high, Ji includes less variants. A user can
easily obtain the original files.
Recall represents how many original jar files are detected,

while precision indicates how many reported files are correct.
If an element in the goldset is not involved in any Ji ∈ D,
it is a false negative. Hence, recall of a list D is defined as
follows.

Recall(t,D) =
|⋃Ji∈D Ji ∩G(t)|

|G(t)|
A high recall is important for users to investigate the result,
because the number of existing components is too large for
manual investigation.

4.4 Result
Table 1 summarizes the precisions and recall evaluated on

the whole detection result for the created dataset. While
we show the details later, all the metrics of our method are
higher than Software Bertillonage ones, and the differences
are statistically significant.
Figure 3 shows box plots indicating precision of the meth-

ods. The Full and Bert+Greedy versions achieved signifi-
cantly higher precision than Bertillonage. The mean pre-

Full Bert+Greedy Bert+Sig Bertillonage

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Figure 3: Distribution of Precision

10−200 210−400 410−600 610−800 810−1000

0

5

10

15

#F
al

se
 p

os
iti

ve
s

N

Figure 4: The number of false positives of the Full
version of our method

cision of our method is 0.998, while one of Bertillonage is
0.357. Kolmogorov-Smirnov test indicated that the four dis-
tributions are normal (all p values are less than 10−6). A
paired t-test shows that the mean difference 0.641 between
our method and Bertillonage is significant (p < 10−10).

The difference is caused by our greedy algorithm. Since a
component sometimes includes an internal copy of its depen-
dent library, a target file has a certain degree of similarity
to other components including the same library and the li-
brary itself. Our algorithm links a class to at most one set
of jar files, while a simple similarity-based list includes all
the candidates as-is.

Our class signature does not contribute to this precision.
Although a paired t-test shows the difference between the
Full and Bert+Greedy versions is statistically significant
(p < 10−10), the actual difference is very small (less than
0.1%).

The number of false positives of our method is very small
but correlated to the number of jar files in a target jar file
(N). The correlation coefficient between them is 0.670. Fig-
ure 4 shows the distribution of the numbers. Our method
generated the precise result (Precision(t) = 1) for 406 jar
files. False positives are often reported when a combination
of copied jar files is recognized as another jar file. For exam-
ple, classes included in grizzly-comet 2.1.6 and grizzly-

http-server-core 2.1.11 are detected as a copy of griz-
zly-comet-server 2.1.11. The falsely recognized jar file ac-
tually contains the exact copy of the class files. Similarly, a
version of org.apache.aries.jmx.core is recognized as the
same version of org.apache.aries.jmx. These are common
cases because a project often releases a small set of classes

Full Bert+Greedy Bert+Sig Bertillonage

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
(ja

r)

Figure 5: Precisionjar computed on all the reported
jar files

10−200 210−400 410−600 610−800 810−1000

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
(ja

r)

N

Figure 6: Precisionjar of the Full version of our
method for different N

as a core component and its superset as another component.
Figure 5 shows the distributions of Precisionjar. As in-

dicated in the figure, the Full version of our method is more
precise than the Bert+Greedy version. Kolmogorov-Smirnov
test indicated that the four distributions are normal (p =
0.019, 0.004, 0.001, and 0.003, respectively). A paired t-test
shows that the precision of the Full method is significantly
higher than Bert+Greedy (p < 10−14), and the mean differ-
ence is 0.126. Hence, our class signature contributes to iden-
tify original jar files more accurately, by reducing a chance
of an accidental match.
The boxplot also shows that our method may report a

large number of false positive jars. The false positives are
caused by a particular jar file. An example jar file causing
the worst Precisionjar in the figure is org.glassfish.hk2.
test-harness 1.6.10. The jar file and its consecutive ver-
sions (1.6.11 and 1.6.12) include the same six files. Given
a target file t includes a copy of the file, our method re-
ports that the same classes are included in 196 versions
of com.sun.enterprise.test-harness (e.g. 0.3.19–0.3.101
and 1.0.0-1.0.75) in addition to the original files. We re-
garded them as false positives, because they have different
file hash values from the copied class files. Our signature-
based comparison cannot distinguish them.
The ratio of false positive jars are not affected by the num-

ber of original jar files in a target file (N). Figure 6 shows
the distributions of the Precisionjar of our Full method for
different N ranges. The correlation coefficient between the
number of false positive jars and the number of jar files N
is -0.097. Hence, the false positive jars are not caused by a

Full Bert+Greedy Bert+Sig Bertillonage

0.90

0.92

0.94

0.96

0.98

1.00

R
ec

al
l

Figure 7: Distribution of Recall

10−200 210−400 410−600 610−800 810−1000

0

200

400

600

800

1000

N

Ti
m

e
(s

ec
.)

Figure 8: Time to analyze a jar file for different N

combination of jar files.
Figure 7 shows Recall of the methods. The mean recall of

our Full method is 0.997, while the Bertillonage is 0.993. All
the methods result in high recall, because we do not use a
threshold to excluding less similar jar files from the analysis.
The mean difference between our method and Bertillonage
is only 0.004, though a paired t-test shows that the differ-
ence is significant. Our method can be seen as an automatic
selection of jar files to improve precision, while slightly im-
proving recall.

The original jar files are missing in our result because
multiple original jar files are falsely recognized as a different
jar file. Hence, the number of false negatives is correlated
to the number of false positives. The correlation coefficient
is 0.635.

4.5 Performance
We used a workstation equipped with two six core pro-

cessors (Intel Xeon E5-2620 2.0GHz) and RAM 64GB. We
implemented the signature extraction step as a concurrent
process. It took 28.1 minutes to analyze 172,232 jar files in
the repository using 20 threads. The extracted class signa-
tures are compressed and stored in binary files. Their total
size is 1.0GiB. The size is much smaller than the original
repository data that occupies 77.8GiB.

Figure 8 plots the time cost of our method to analyze a
target jar file using the signature database. The time in-
cludes an entire execution of a tool: Reading the signature
data from files, extracting signatures from a target jar file,
comparing the signatures, and generating a report file. The
longest time spent for a target jar file is 16.6 minutes using
a single thread. The time cost is practical to verify compo-

Table 2: A part of the ouptut of our method applied
to FacebookLinkBench.jar

Jar file (#Classes) #Copied

jruby-complete-1.6.5 (7673), 7673
jruby-1.6.5 (7673)
hbase-0.94.3 (2269) 2269
guava-16.0.1 (1678) 1678
jmxutils-1.16 (1415) 1415
hadoop-core-0.20.2 (1376) 1376
org.mortbay.jetty.jsp-2.1.6.1.14 (585) 490
commons-collections-3.2.1 (458) 458
org.jbundle.util.osgi.wrapped. 436
org.apache.http.client-4.1.2 (436)
jackson-mapper-asl-1.8.8 (432), 432
jackson-mapper-lgpl-1.8.8 (432)
log4j-1.2.17 (314) 314
org.apache.bval.bundle-0.4 (220) 215
commons-httpclient-3.0.1 (148) 148
slf4j-log4j12-1.4.3 (6) 6
bval-bval-jsr303-0.5 (173) 5
slf4j-simple-1.7.0 (6) 3

nents actually included in every release candidate. We also
expect that the time is much shorter than manual analysis
to exclude false positives (60% on average) from Software
Bertillonage results.

5. APPLICATION OF COMPONENT DETEC-
TION

To demonstrate a usefulness of our method, we have ap-
plied our method to analyze two existing jar files. The first
case represents a release engineering situation that compares
the dependencies managed by developers with components
actually included in a product. The second case assesses
a risk of a product whose components are unrecorded by
developers.

5.1 Facebook LinkBench
Facebook Linkbench [14] is a benchmark program. It uses

Maven to download dependent components and create an
executable jar file. We analyzed FacebookLinkBench.jar

that was built using our workstation on December 2015.
Since the code has been released on April 2013, we have
added newer jar files in the Maven Central Repository to
our repository in prior to the analysis.
Our method reported 89 jar file sets as code origins for

FacebookLinkBench.jar. Table 2 shows a snippet of the
output. In the table, file names are shortened for readabil-
ity. Each file name is followed by a number indicating the
number of classes in the file. The second column #Copied
indicates the number of classes found in the target jar file.
For example, our method reported that 7673 classes in the
target jar files are copied from either jruby-complete-1.6.5
or jruby-1.6.5. The copy is likely an entire jar file, because
both jar files include 7673 classes. Similarly, 78 of 89 are
reported as entirely copied jar files.
The jar files jackson-mapper-asl and jackson-mapper-lgpl

include the same classes under difference license (ASL and

LGPL as indicated in their names). Our method cannot
distinguish one from the other.

Our method reported org.apache.bval.bundle-0.4 and bval-
bval-jsr303-0.5. They are different versions of relevant com-
ponents. Since the project website [1] explicitly declares
the bundle component includes bval-core and bval-jsr303,
bundle-0.4 is likely a false positive of either bundle-0.5 or
bval-core-0.5.

The pom.xml file of the project declares 10 dependent com-
ponents such as hadoop, hbase, log4j, and slf4j-simple. All
of them are identified by our method. An interesting obser-
vation is found in org/slf4j/impl package. The package in-
cludes nine classes copied from slf4j-log4j12 and slf4j-simple.
Each jar file includes six classes. However, they include dif-
ferent versions of the same classes: StaticLoggerBinder,
StaticMarkerBinder, and StaticMDCBinder. These classes
in slf4j-simple are not copied, because another definition of
the three classes are copied from slf4j-log4j12. The Stati-

cLoggerBinder class is used to define which logger classes
are used in a program. Since the target jar includes a copy
from slf4j-log4j12, the program always uses log4j. Another
logger class in slf4j-simple is never used, even though it is
explicitly declared as a dependency.

In addition to the declared dependencies, the output of our
method includes transitively dependent components. In Ta-
ble 2, a variant of org.apache.http.client 4.1.2 and commons-
httpclient 3.0.1 are included. The former one is a newer
version of the latter one, but already outdated. A security
vulnerability allows a man-in-the-middle attack [33]. An-
other component commons-collections-3.2.1 is also marked
as vulnerable today [2].

While our method identifies components directly included
in the target jar file, we can analyze the inside of the detected
components by temporarily removing the components from
the database. For example, our method identified a copy of
Joda-Time 1.6.2 in jruby-1.6.5.

The analysis of the LinkBench jar could be hard if we used
Software Bertillonage alone, because the similarity metric
reported that 610 components are either entirely or partially
included in the jar file. Nevertheless, Software Bertillonage
is also still useful, if a user is interested in a particular com-
ponent. For example, suppose a user would like to know if a
target jar file includes vulnerable versions of Apache Stan-
dard Taglib that allow remote attackers to execute arbitrary
code [34]. In such a case, the user can quickly scan the tar-
get jar file using the similarity metric. Indeed, the similarity
metric reported that Apache Standard Taglib 1.2.0, a vul-
nerable version, is likely included in the application jar file.
While the component name does not appear in the depen-
dencies declared by developers, our method automatically
identified jsp-2.1-6.1.14 as the origin of the class files in the
package org/apache/taglibs. The information gives a hint
for developers to update their dependencies.

5.2 muCommander 0.9.0
muCommander 0.9.0 is a file manager that can manipulate

both local and remote files. In the source code repository
[31], lib directory is unavailable in the revision tagged as
release_0_9_0. Since third-party components for 0.8.5 are
preserved in the revision release_0_8_5, we added the files
to the repository to analyze components in 0.9.0.

Our method reported 34 jar file sets for 0.9.0. Table 3
shows a part of the result. In the table, libraries in the lib

Table 3: A part of the ouptut of our method applied
to muCommander 0.9.0

Jar file (#Classes) #Copied

0.8.5/jna (148) 148
0.8.5/icu4j (54) 18
commons-httpclient-3.1-beta1 (166) 61
commons-httpclient-3.1 (167), 2
0.8.5/commons-httpclient (167)
0.8.5/jcifs (247) 29
0.8.5/j2ssh (294) 67
logback-classic-1.0.2 (155) 30
logback-core-1.0.2 (261) 48

directory of 0.8.5 are indicated by a prefix “0.8.5/”. Ac-
cording to the result, libraries used in 0.8.5 including JNA,
ICU4J, jCIFS, and J2SSH are not updated for 0.9.0. Our
method reported that commons-httpclient in the release is
likely 3.1-beta1, rather than 3.1. This is probably because
the copied files are modified from the original files in 3.1,
although the difference is unrecorded.
The analysis result does not include some libraries such

as commons-logging and J7Zip that are included in 0.8.5.
Hence, they are likely removed from the version. Logback
1.0.2 is a logging library that is likely introduced in this ver-
sion. However, the library names in README are incon-
sistent to the analysis result. The README still contains
J7Zip but nothing about Logback.
In the case of muCommander 0.9.0, there is no official

record of library versions. The project uses JDK 1.4; all the
classes in the jar file have different MD5 file hash values from
classes in the repository. Our signature-based comparison
successfully identified candidates of original jar files in such a
situation. The result indicates that the product uses several
old lbiraries but the actual state is not provided to users of
the product.

6. THREATS TO VALIDITY
Our method uses a signature-based comparison. The def-

inition of a class signature is an extended version of [8, 9];
method calls and field access in methods are added. Our sig-
nature definition assumed that compilers generate the same
numbers of method calls and field access from the same
source code. Although we believe existing compilers such
as Oracle JDK and Eclipse JDT satisfy the condition, it is
not ensured by Java language specification. For example, a
compiler may generate optimized code (e.g. loop unrolling)
including additional method calls. Hence, the method still
has a risk to miss existing components.
We have used a snapshot of the Maven repository as a

repository of existing components. Although the repository
covers various components, precision and recall are affected
by the jar files stored in the repository. It should be noted
that our method is not dependent on Maven. We have used
artifact names in the repository only for creating the goldset
for the experiment.
The experiment evaluates accuracy on an ideal repository

that includes all existing components. The effect of an un-
known component is dependent on its content. If all the
classes are unique to the component, it is simply unrecog-

nized. If a copy of a class is included in a jar file in the
repository, the jar file is reported as a false positive.

The goldset is artificially created by a random selection
of components. It does not take the popularity of compo-
nents into account. In addition, it may include an unrealistic
combination, e.g. incompatible components.

When creating the goldset for the experiment, we used
SHA-1 file hash to identify jar files containing a copy of
classes. A file hash value is dependent on a compiler and its
configuration in addition to source code. Hence, we could
miss class files compiled for a different JDK version. Since a
component having a different file hash is regarded as a false
positive, we might underestimate Precisionjar reported by
the methods under comparison.

The goldset files are created by copying entire files. A
jar file is partially copied only when the same classes are
already copied from another file. The process emulates a
simple black-box reuse style; Maven Assembly Plugin also
creates an all-in-one jar file in a similar way. While 3.4%
of selected files are partially copied in the experiment, the
ratio might be different from actual reuse activity.

7. CONCLUSION
Reuse of third party components is an important activity

in software development. On the other hand, developers and
users have to be aware of components and their versions in
products to analyze security issues, update the components,
and check a license. In this paper, we proposed a method to
automatically detect jar files whose class files are included
in a target program. Using a greedy algorithm, our method
reports a list of jar files. While our method may report
multiple jar files containing the same classes, 99.8% of the
reported sets include a correct file. In addition, 80.3% of the
jar files in the sets include the copied files.

We have applied our method to two applications: Face-
book LinkBench and muCommander. The method identi-
fied vulnerable components included in the products in both
files. It also identified a component that was improperly
copied to the LinkBench jar file and a component that is
not documented in muCommander. The reported lists of
components enable developers and users to assess potential
risks caused by the components in the applications.

Our implementation of the method is available online.1

In future work, we would like to extend our method to
identify renamed and/or customized components in a prod-
uct. Since our method uses identifier names, analysis of the
impact of code obfuscation is also important. Another di-
rection is an improvement of empirical studies on library mi-
grations and code reuse activities in practice. For example,
we can count the number of dependent components reused
in a binary, ignoring their internal components. This kind of
statistics might enable developers and managers to identify
popular and/or valuable components in their organization.

Acknowledgments
This work is supported by JSPS KAKENHI Grant Numbers
25220003, 26280021, and 15H02683. This work is also sup-
ported by Osaka University Program for Promoting Inter-
national Joint Research, “Software License Evolution Anal-
ysis.”

1https://github.com/takashi-ishio/JIngredients

8. REFERENCES
[1] Apache BVal Project. Project modules.

http://bval.apache.org/mvnsite/modules.html
(Accessed January 29, 2016).

[2] Apache Commons Collections. Arbitrary remote code
execution with InvokerTransformer, 2015. https:
//issues.apache.org/jira/browse/COLLECTIONS-580.

[3] Apache Maven Project. Apache maven assembly
plugin. http:
//maven.apache.org/plugins/maven-assembly-plugin/.

[4] V. Bauer and B. Hauptmann. Assessing Cross-Project
Clones for Reuse Optimization. In Proceedings of the
International Workshop on Software Clones, pages
60–61, 2013.

[5] G. Bavota, G. Canfora, M. D. Penta, R. Oliveto, and
S. Panichella. The Evolution of Project
Inter-dependencies in a Software Ecosystem: The Case
of Apache. In Proceedings of the 29th IEEE
International Conference on Software Maintenance,
pages 280–289, 2013.

[6] K. Chen, P. Liu, and Y. Zhang. Achieving Accuracy
and Scalability Simultaneously in Detecting
Application Clones on Android Markets. In
Proceedings of the 36th IEEE/ACM International
Conference on Software Engineering, 2014.

[7] L. Constantin. Developers often unwittingly use
components that contain flaws. ITWorld.com,
http://www.itworld.com/article/2936575/security/
software-applications-have-on-average-24-
vulnerabilities-inherited-from-buggy-components.html
[Posted June 16, 2015].

[8] J. Davies, D. M. German, M. W. Godfrey, and
A. Hindle. Software bertillonage: Finding the
provenance of an entity. In Proceedings of the 8th
Working Conference on Mining Software Repositories,
pages 183–192, 2011.

[9] J. Davies, D. M. German, M. W. Godfrey, and
A. Hindle. Software bertillonage: Determining the
provenance of software development artifacts.
Empirical Software Engineering, 18:1195–1237, 2013.

[10] M. Di Penta, D. M. German, and G. Antoniol.
Identifying licensing of jar archives using a code-search
approach. In Proceedings of the 7th Working
Conference on Mining Software Repositories, pages
151–160, 2010.

[11] J. Dietrich, K. Jezek, and P. Brada. Broken Promises:
An Empirical Study into Evolution Problems in Java
Programs Caused by Library Upgrades. In Proceedings
of the IEEE CSMR-WCRE 2014 Software Evolution
Week, pages 64–73, 2014.

[12] S. Duszynski, J. Knodel, and M. Becker. Analyzing
the source code of multiple software variants for reuse
potential. In Proceedings of the 18th IEEE Working
Conference on Reverse Engineering, pages 303–307,
2011.

[13] Eclipse Documentation. Runnable jar file exporter.
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.
eclipse.jdt.doc.user%2Ftasks%2Ftasks-37.htm.

[14] Facebook Engineering. Linkbench: A database
benchmark for the social graph, 2013. https:
//www.facebook.com/notes/facebook-engineering/
linkbench-a-database-benchmark-for-the-social-

graph/10151391496443920/.

[15] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and
A. Egyed. Enhancing clone-and-own with systematic
reuse for developing software variants. In Proceedings
of the 30th IEEE International Conference on
Software Maintenance and Evolution, pages 391–400,
2014.

[16] D. M. German and M. D. Penta. A Method for Open
Source License Compliance of Java Applications.
IEEE Software, 29(3):58–63, 2012.

[17] D. M. German, M. D. Penta, Y.-G. Guéhéneuc, and
G. Antoniol. Code siblings: Technical and legal
implications of copying code between applications. In
Proceedings of the 6th Working Conference on Mining
Software Repositories, pages 81–90, 2009.

[18] GWT Project. Getting started.
http://www.gwtproject.org/gettingstarted.html.

[19] L. Heinemann, F. Deissenboeck, M. Gleirscher,
B. Hummel, and M. Irlbeck. On the extent and nature
of software reuse in open source java projects. In
Proceedings of the 12th International Conference on
Software Reuse, volume 6727 of Lecture Notes in
Computer Science, pages 207–222, 2011.

[20] A. Hemel, K. T. Kalleberg, R. Vermaas, and
E. Dolstra. Finding software license violations through
binary code clone detection. In Proceedings of the 8th
Working Conference on Mining Software Repositories,
pages 63–72, 2011.

[21] A. Hemel and R. Koschke. Reverse Engineering
Variability in Source Code Using Clone Detection: A
Case Study for Linux Variants of Consumer Electronic
Devices. In Proceedings of the 19th IEEE Working
Conference on Reverse Engineering, pages 357–366,
2012.

[22] K. Inoue, Y. Sasaki, P. Xia, and Y. Manabe. Where
does this code come from and where does it go? –
integrated code history tracker for open source
systems –. In Proceedings of the 34th IEEE/ACM
International Conference on Software Engineering,
pages 331–341, 2012.

[23] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a
multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions
on Software Engineering, 28(7):654–670, 2002.

[24] T. Kanda, T. Ishio, and K. Inoue. Extraction of
product evolution tree from source code of product
variants. In Proceedings of the 17th International
Software Product Line Conference, pages 141–150,
Tokyo, Japan, 2013. ACM.

[25] N. Kawamitsu, T. Ishio, T. Kanda, R. G. Kula, C. De
Roover, and K. Inoue. Identifying source code reuse
across repositories using LCS-based source code
similarity. In Proceedings of the 14th International
Working Conference on Source Code Analysis and
Manipulation, pages 305–314, 2014.

[26] R. G. Kula, C. De Roover, D. German, T. Ishio, and
K. Inoue. Visualizing the evolution of systems and
their library dependencies. In Proceedings of the 2nd
IEEE Working Conference on Software Visualization,
pages 127–136, 2014.

[27] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi.
UCI source code data sets, 2010.

http://www.ics.uci.edu/˜lopes/datasets/.

[28] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu.
Semantics-based obfuscation-resilient binary code
similarity comparison with applications to software
plagiarism detection. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, pages 389–400, 2014.

[29] P. Mohagheghi, R. Conradi, O. Killi, and H. Schwarz.
An empirical study of software reuse vs. defect-density
and stability. In Proceedings of the 26th International
Conference on Software Engineering, pages 282–291,
May 2004.

[30] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst,
T. Berger, and A. Hassan. A large-scale empirical
study on software reuse in mobile apps. IEEE
Software, 31(2):78–86, 2014.

[31] muCommander Project. Subversion Repository of
muCommander.
https://svn.mucommander.com/mucommander/
(Accessed January 29, 2016).

[32] National Vulnerability Database. CVE-2014-0107,
2014. https://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2014-0107.

[33] National Vulnerability Database. CVE-2014-3577,
2014. https://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2014-3577.

[34] National Vulnerability Database. CVE-2015-0254,
2015. https://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2015-0254.

[35] J. Qiu, X. Su, and P. Ma. Library functions
identification in binary code by using graph
isomorphism testings. In Proceedings of the 22nd
IEEE International Conference on Software Analysis,
Evolution, and Reengineering, pages 261–270, 2015.

[36] S. Raemaekers, A. van Deursen, and J. Visser.
Semantic versioning versus breaking changes: A study
of the maven repository. In Proceedings of the 14th
IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 215–224, 2014.

[37] J. Rubin, K. Czarnecki, and M. Chechik. Managing
cloned variants: A framework and experience. In
Proceedings of the 17th International Software Product
Line Conference, pages 101–110, August 2013.

[38] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan,
and Z. Su. Detecting code clones in binary
executables. In Proceedings of the 18th ACM
International Symposium on Software Testing and
Analysis, pages 117–128. ACM, 2009.

[39] M. Sojer and J. Henkel. License risks from ad hoc
reuse of code from the internet. Communications of
the ACM, 54(12):74–81, 2011.

[40] D. Steidl, B. Hummel, and E. Juergens. Incremental
Origin Analysis of Source Code Files. In Proceedings
of the 11th Working Conference on Mining Software
Repositories, pages 42–51, 2014.

[41] C. Teyton, J.-R. Falleri, M. Palyart, and X. Blanc. A
study of library migrations in java. Journal of
Software: Evolution and Process, 26(11):1030–1052,
2014.

[42] F. Thung, D. Lo, and J. L. Lawall. Automated library
recommendation. In Proceedings of the 20th IEEE
Working Conference on Reverse Engineering, pages

182–191, 2013.

[43] Y. Yano, R. G. Kula, T. Ishio, and K. Inoue.
Verxcombo: An interactive data visualization of
popular library version combinations. In Proceedings
of the 23rd IEEE International Conference on
Program Comprehension, pages 291–294, 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

