
ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Information and Software Technology 0 0 0 (2016) 1–21

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Search-based software library recommendation using multi-objective

optimization

Ali Ouni a , b , ∗, Raula Gaikovina Kula a , Marouane Kessentini c , Takashi Ishio a ,
Daniel M. German

d , Katsuro Inoue

a

a Department of Computer Science, IST, Osaka University, Osaka, Japan
b Department of Computer Science and Software Engineering, UAE University, UAE
c Department of Computer and Information Science, University of Michigan, MI, USA
d Department of Computer Science, University of Victoria, Victoria, Canada

a r t i c l e i n f o

Article history:

Received 2 December 2015

Revised 28 October 2016

Accepted 22 November 2016

Available online xxx

Keywords:

Search-based software engineering

Software library

Software reuse

Multi-objective optimization

a b s t r a c t

Context : Software library reuse has significantly increased the productivity of software developers, re-

duced time-to-market and improved software quality and reusability. However, with the growing num-

ber of reusable software libraries in code repositories, finding and adopting a relevant software library

becomes a fastidious and complex task for developers.

Objective : In this paper, we propose a novel approach called LibFinder to prevent missed reuse opportuni-

ties during software maintenance and evolution. The goal is to provide a decision support for developers

to easily find “useful” third-party libraries to the implementation of their software systems.

Method : To this end, we used the non-dominated sorting genetic algorithm (NSGA-II), a multi-objective

search-based algorithm, to find a trade-off between three objectives : 1) maximizing co-usage between

a candidate library and the actual libraries used by a given system, 2) maximizing the semantic simi-

larity between a candidate library and the source code of the system, and 3) minimizing the number of

recommended libraries.

Results : We evaluated our approach on 6083 different libraries from Maven Central super repository that

were used by 32,760 client systems obtained from Github super repository. Our results show that our

approach outperforms three other existing search techniques and a state-of-the art approach, not based

on heuristic search, and succeeds in recommending useful libraries at an accuracy score of 92%, preci-

sion of 51% and recall of 68%, while finding the best trade-off between the three considered objectives.

Furthermore, we evaluate the usefulness of our approach in practice through an empirical study on two

industrial Java systems with developers. Results show that the top 10 recommended libraries was rated

by the original developers with an average of 3.25 out of 5.

Conclusion : This study suggests that (1) library usage history collected from different client systems and

(2) library semantics/content embodied in library identifiers should be balanced together for an efficient

library recommendation technique.

© 2016 Elsevier B.V. All rights reserved.

1

t

q

r

s

d

a

[

l

a

c

h

0

. Introduction

Modern software systems build on a significant number of

hird-party software libraries to deliver feature-rich and high-

uality software. Several studies have shown that software library

euse promotes efficient and effective software development. Con-

equently, library reuse leads to a significant increase in the pro-
∗ Corresponding author.

E-mail address: ouniaali@gmail.com (A. Ouni).

c

c

ttp://dx.doi.org/10.1016/j.infsof.2016.11.007

950-5849/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
uctivity, reduction in time-to-market, improvement in the over-

ll software quality, as well as reducing the inherent testing costs

1,2] . Reusing mature software modules can benefit from the col-

ective experience of previous users of the module, as many bugs

s well as deficiencies in the documentation have already been dis-

overed [3,4] .

Indeed, it is recognized that replacing legacy code with quality

omponents and libraries typically reduces the amount of source

ode that must be maintained [5] . The benefits of replacing legacy
recommendation using multi-objective optimization, Information

1.007

http://dx.doi.org/10.1016/j.infsof.2016.11.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:ouniaali@gmail.com
http://dx.doi.org/10.1016/j.infsof.2016.11.007
http://dx.doi.org/10.1016/j.infsof.2016.11.007

2 A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

s

l

n

u

s

b

b

l

a

f

o

f

p

c

s

s

9

w

a

e

b

o

l

t

S

t

L

t

v

S

2

l
code by external quality software components was best articulated

by Seacord et al. [5] : “replacing functional components may also pro-

vide additional capabilities and improve on such attributes of sys-

tem quality as robustness or performance ”. In fact, replacing legacy

code by third-party libraries has recently attracted much attention

in both academia and industry. One example is the refactoring of

“synchronized” blocks in Java by replacing them with the utility

library java.util.concurrent [6,7] .

Today, software systems utilize online code repositories such as

Maven Central repository 1 to access to a host of reusable Open

Source Software (OSS) libraries. Indeed, reusable software libraries

are often reused multiple times and are therefore proven solutions

that can provide better quality characteristics compared to newly

developed code [8] . Recent empirical studies have found that 93.3%

of modern OSS projects use third-party libraries, with an average

of 28 libraries per project [9] . On the other hand, recent work in-

dicate that developers are still often reinvent the wheel and spend

effort and time, on re-implementing functionality, that could be

saved by reusing mature and well-tested libraries [10,11] .

We conjure two key reasons for this occurrence. First, due to

the magnitude of available libraries we consider that, most of the

time, developers are unaware or overwhelmed by related libraries.

Online sources 2 report that available libraries are growing at an ex-

ponential rate. Hence, searching relevant software libraries can be

a fastidious task for software developers, which would have an im-

pact their productivity. Second, in addition to different reasons of

distrust [12] , developers are wary of the inherent costs and risks

of library incompatibilities [13] associated with integrating new

and unknown libraries into their existing systems. With the motto

‘ if not broke don’t fix ’, systems as a consequence risk outdated li-

braries.

To help developers, most of existing library recommendation

approaches are based on commonly used together library meth-

ods, e.g., API usage patterns, at the method level of granularity

[14–18] . The most related work of recommendation at the library

level of granularity is by Thung et al. [9] . The authors use collab-

orative filtering and association rule mining on historic software

artifacts to determine commonly used libraries without consider-

ing the library content. However, a library usage history-based ap-

proach would not be able to recommend libraries to projects that

only use a small number of libraries or do not use any libraries

at all. Thus, the content of a library is an extremely important as-

set that should be more informative and explicit for an effective

library recommendation method. This approach deal with library

recommendation as a single objective problem based on usage his-

tory. We believe that library recommendation is rather a complex

decision making problem where several considerations should be

balanced. These complex multi-objective decision problems with

competing and conflicting constraints are well suited to Search

Based Software Engineering (SBSE) [19,20] .

To address the library recommendation problem, we introduce

a novel approach called LibFinder based on the following two

heuristics: a candidate library L can be useful for a given system

S if (i) L has been commonly used with one or more libraries

adopted by S , and (ii) L uses identical or similar identifiers, i.e.,

belongs to the same application domain, as S . To this end, we used

the history of library usage as a ‘wisdom of the crowd’ and se-

mantic similarity embodied in library identifiers mined from large

code repositories from the internet. Our multi-objective formula-

tion aims at finding optimal solutions providing the best trade-off

between the three following objectives: 1) maximize co-usage be-

tween a candidate library and the actual libraries used by a given
1 http://search.maven.org .
2 http://www.modulecounts.com , mvnrepository.com .

h

o

Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
ystem, 2) maximize the semantic similarity between a candidate

ibrary’s code and the system’s code, and 3) minimize the total

umber of recommended libraries. To this end, we used the pop-

lar multi-objective search-based algorithm the non-dominated

orting genetic algorithm (NSGA-II) [21] to find the best trade-off

etween the three objectives. The complexity of the addressed li-

rary recommendation problem is combinatorial since our formu-

ation consists of assigning libraries to different code fragments

nd the search is guided based on the above dependent evaluation

unctions.

To evaluate the efficiency of our approach, we used the history

f 32,760 software projects mined from Github, that were clients

or 6083 Maven libraries. The obtained results show that our ap-

roach is efficient in recommending relevant software libraries. We

ompare our approach with random search and two other popular

earch-based algorithms as well as a state-of-the-art approach. The

tatistical analysis shows better performance of our approach with

2% of accuracy, 51% of precision and 68% of recall. Furthermore,

e evaluate the usefulness of our approach in practice through

n empirical study on two industrial Java systems with develop-

rs. Results show that the top 10 recommended libraries was rated

y the original developers of both systems with an average of 3.25

ut of 5.

The main contributions of this paper can be summarized as fol-

ows:

1. We propose a new search-based approach called LibFinder , to

detect and recommend third-party libraries that may be rele-

vant to software systems that have already been implemented,

and that it is intended for maintenance and evolution. To the

best of our knowledge, this is the first attempt to use SBSE to

address the library recommendation problem.

2. We collect a rich dataset by (i) mining the usage history, and

(ii) extracting the identifiers of a large set of popular libraries

from Maven Central Repository. The dataset is publicly available

to encourage future research in the field of library recommen-

dation

3 .

3. We present an empirical evaluation of the performance of our

approach using a 10-fold cross validation, along with statisti-

cal analysis of the obtained results. The obtained results show

that our approach outperforms random search and two other

search techniques at a confidence level of 95% and outperforms

a state-of-the-art library recommendation approach [9] with an

accuracy score of 92%, precision score of 51% and recall score

of 68% while finding the best trade-off between the considered

objectives. We present the results of a second empirical study

to evaluate our approach in two industrial systems in real world

setting where the recommended libraries were rated 3.25 out

of 5 on average.

The rest of the paper is organized as follows. Section 2 presents

he necessary background and a motivating example.

ection 3 presents the basic concepts of our approach. Section 4 in-

roduces our search-based approach for library recommendation

ibFinder . Section 5 describes our empirical study and reports

he obtained results, while Section 6 presents the threats to

alidity of the study. Section 7 presents the related work. Finally,

ection 8 concludes and presents our future research directions.

. Background and motivating example

In this section, we first describe the necessary background re-

ated to the proposed approach. We then present an example to

elp readers to better understand the motivation for library rec-

mmendation.
3 http://sel.ist.osaka-u.ac.jp/ ∼ali/libRecommendation/ .

recommendation using multi-objective optimization, Information

1.007

http://search.maven.org
http://www.modulecounts.com
http://mvnrepository.com
http://sel.ist.osaka-u.ac.jp/~ali/libRecommendation/
http://dx.doi.org/10.1016/j.infsof.2016.11.007

A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21 3

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

2

r

M

t

e

i

t

t

l

i

fi

c

t

e

l

o

s

i

d

m

a

p

2

o

l

p

p

o

s

t

h

n

t

t

s

c

fi

d

i

r

m

r

t

r

s

t

t

Algorithm 1 High level pseudo code for NSGA-II.

1: Create an initial population P 0
2: Create an offspring population Q 0

3: t = 0

4: while stopping criteria not reached do

5: R t = P t ∪ Q t

6: F = fast-non-dominated-sort (R t)

7: P t+1 = ∅ and i = 1

8: while | P t+1 | + | F i | � N do

9: Apply crowding-distance-assignment(F i)

10: P t+1 = P t+1 ∪ F i
11: i = i + 1

12: end while

13: Sort(F i , ≺ n)

14: P t+1 = P t+1 ∪ F i [N− | P t+1 |]
15: Q t+1 = create-new-pop(P t+1)

16: t = t+1

17: end while

2

g

j

fi

p

t

T

m

i

o

t

u

s

f

s

e

u

u

a

d

d

t

x

(

t

t

o

1

s

S

o

c

t

s

d

c

(

s

o
.1. Search based software engineering (SBSE) and mining software

epositories (MSR)

Our approach is largely inspired by contributions in SBSE and

SR. SBSE studies the application of meta-heuristic optimization

echniques to software engineering problems [22] . Once a software

ngineering task is framed as a search problem, by formulating it

n terms of solution representation, objective function, and solu-

ion change operators, there are a multitude of search algorithms

hat can be applied to solve that problem. SBSE aims at exploring

arge search spaces of possible solutions for a particular problem

n order to discover near optimal solutions.

On the other hand, the Mining Software Repositories (MSR)

eld analyzes the rich data available in software repositories to un-

over interesting and actionable information about software sys-

ems and projects. MSR transforms software repositories to gain

mpirical understanding of software development. This can be

everaged by software practitioners to estimate and manage vari-

us aspects of their projects [23,24] .

In recent years, both fields are widely applied to solve several

oftware maintenance and evolution problems including refactor-

ng, testing, modularization, planning, and so on [22–24] . However,

espite the innate link between both fields, SBSE and MSR com-

unities are still not unified. Indeed, library recommendation is

 complex task, and one of the non-obvious software engineering

roblems that can benefit from both SBSE and MSR techniques.

.2. Recommendation systems

Recommendation systems support users and developers of vari-

us computer and software systems to overcome information over-

oad, perform information discovery tasks and approximate com-

utation, among others [25] . With the increasing size and com-

lexity of software systems and software engineering data, rec-

mmendation systems play an important role in providing a deci-

ion support for software engineers. Indeed, recommendation sys-

ems have recently become popular in software engineering and

ave attracted a wide variety of application scenarios from busi-

ess process modeling to source code maintenance and manipula-

ion [9,26,27] . Recommendation systems use a number of different

echnologies [28,29] , and can be classified into two broad classes.

• Content-based systems: These systems focus on properties of

items. Similarity of items is determined by measuring the sim-

ilarity in their properties and features.

• Collaborative-filtering systems: These systems focus on the re-

lationship between users and items based on the usage his-

tory. Similarity of items is determined by the similarity of

the utilization/ratings of those items by the users who have

used/rated both items.

Each class has its own advantages and disadvantages. For in-

tance, content-based approaches provide user independence, in

ontrast to collaborative filtering that needs other users’ history to

nd the similarity between them and then give the recommen-

ations. Content-based methods only need to analyze users and

tems features. Moreover, collaborative filtering methods provide

ecommendations for a user based on some unknown users who

ight have the same taste, while content-based methods provide

ecommendations based on what item’s features the users like. On

he other hand, unlike collaborative filtering, new items can be

ecommended by a content-based method before being used by a

ubstantial number of users. Thus, both classes can be combined

ogether in order to provide more effective recommendation sys-

ems.
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
.3. Multi-objective search-based algorithms

Multi-objective problems contain several objectives, and the

oal is to find solutions that are able to optimally satisfy each ob-

ective simultaneously. However, in real world problems, it is dif-

cult (or even impossible) to find a solution that is concurrently

erfect for each objective for a problem with two or more objec-

ives due to conflicts that always exist among problem objectives.

hus, certain expenses and trade-offs always exist between the

ultiple objectives of a problem [30] . Many real-world problems

nvolve simultaneous optimization of several incommensurable and

ften competing objectives. Often, there is no single optimal solu-

ion, but rather a set of alternative solutions. One of the most pop-

lar multi-objective search-based algorithms is the non-dominated

orting genetic algorithm (NSGA-II) [21] that has shown high per-

ormance in solving several software engineering problems [22] .

A high-level view of NSGA-II is depicted in Algorithm 1 . NSGA-II

tarts by randomly creating an initial population P 0 of individuals

ncoded using a specific representation (line 1). Then, a child pop-

lation Q 0 is generated from the population of parents P 0 (line 2)

sing genetic operators (crossover and mutation). Both populations

re merged into an initial population R 0 of size N (line 5). Fast-non-

ominated-sort [21] is the technique used by NSGA-II to classify in-

ividual solutions into different dominance levels (line 6). Indeed,

he concept of non-dominance consists of comparing each solution

 with every other solution in the population until it is dominated

or not) by one of them. According to Pareto optimality: “A solu-

ion x 1 is said to dominate another solution x 2 , if x 1 is no worse

han x 2 in all objectives and x 1 is strictly better than x 2 in at least

ne objective”. Formally, if we consider a set of objectives f i , i ∈
..n, to maximize, a solution x 1 dominates x 2 :

iff ∀ i, f i (x 2) ≤ f i (x 1) and ∃ j | f j (x 2) < f j (x 1)

The whole population that contains N individuals (solutions) is

orted using the dominance principle into several fronts (line 6).

olutions on the first Pareto-front F 0 get assigned dominance level

f 0 Then, after taking these solutions out, fast-non-dominated-sort

alculates the Pareto-front F 1 of the remaining population; solu-

ions on this second front get assigned dominance level of 1, and

o on. The dominance level becomes the basis of selection of in-

ividual solutions for the next generation. Fronts are added suc-

essively until the parent population P t+1 is filled with N solutions

line 8). When NSGA-II has to cut off a front F i and select a sub-

et of individual solutions with the same dominance level, it relies

n the crowding distance [21] to make the selection (line 9). This
recommendation using multi-objective optimization, Information

1.007

http://dx.doi.org/10.1016/j.infsof.2016.11.007

4 A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Fig. 1. Code snippets of date edit panel from JVacation .

l

l

b

m

r

o

l

m

i

3

l

l

3

t

p

l

h

a

e

t

parameter is used to promote diversity within the population. This

front F i to be split, is sorted in descending order (line 13), and the

first (N- | P t+1 |) elements of F i are chosen (line 14). Then a new

population Q t+1 is created using selection, crossover and mutation

(line 15). This process will be repeated until reaching the last iter-

ation according to stop criteria (line 4).

For library recommendation, Pareto optimality means that we

do not recommended to the developer a single solution. Instead,

we want to provide a decision support tool, by showing a variety

of solutions, allowing the developer to see a space of trade-offs

between the considered objectives.

2.4. Motivating example

To illustrate the need for an approach to recommending use-

ful libraries, let us consider the example of JVacation 4 , an

open-source stand alone travel-booking-client for travel-agencies.

JVacation is implemented in java and its current version adopts

only one third party library, mysql-connector-java 5 . It is

clear that this software system does not effectively take advantage

of reusing functionality provided by existing OSS libraries; instead,

developers are trying to reinvent the wheel.

Indeed, several library reuse opportunities are missed. For in-

stance, JVacation is implementing from scratch several func-

tionalities such as entering/editing dates and integrating a date

edit panel manually into their GUI as illustrated in the code frag-

ment sketched in Fig. 1 .

While using the standard APIs java.util.Calendar with

javax.swing.JPanel provided by JDK is helpful, other ex-

isting libraries such as JCalendar 6 can be more relevant as

it is more specialized for GUI-based software systems. The li-

brary JCalender provides an IDateEditor for direct date edit-

ing, and a button implementing JDateChooser for opening a

JCalendar for graphically selecting date, as well as other cal-

ender services that can be useful for this travel-booking software

system.

One can notice that JCalendar share several identifiers/terms

with JVacation including Calendar, Date, Panel, Edit, Day, Month,

Year , and so on. This is an indication that they implement simi-
4 http://sourceforge.net/projects/jvacation .
5 http://dev.mysql.com/downloads/connector/j/ .
6 http://toedter.com/jcalendar/ .

Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
ar functionalities, and therefore JCalendar can be a candidate

ibrary that might be relevant for JVacation .
In such situations, recommending libraries based only on the li-

rary usage history, such as in [9] , would not be enough. In fact,

ore informative knowledge about the library content is highly

equired for effective recommendations. On the other hand, using

nly library usage history might give no chance for new emerging

ibraries to be recommended and adopted.

The above observations tell us that effective libraries recom-

endation should make the content of library more explicit and

nformative as well as libraries usage history.

. Basic concepts and terminology

This section defines the basic concepts and terminology under-

ying the proposed approach in this paper: library usage, co-usage,

inked-usage, and semantic similarity.

.1. System and library dependencies

We are concerned with mining large code repositories to ex-

ract the ‘ wisdom from the crowd ’. Specifically in regards to the de-

endence of third-party libraries in software systems.

Suppose l ∈ R , where l is a library that belongs to a set of super

ibrary repositories R . Examples of popular super repositories that

ost such libraries include Maven 7 and Nuget 8 . In this study, we

re particularly interested in the frequency count of a set of differ-

nt systems S that use a library l . At this stage we do not consider

he granularity of library versions. We define the following terms:

• Usage . Usage refers to the frequency count of systems that have

used a library l . For a specific system S i , S i → l shows that the

system S i uses a library l . Formally, let p the total number of

available systems, for l ∈ R , we define:

usage (l) =

p ∑

i =1

[S i → l] (1)

• Co-usage . The co-usage refers to the frequency count of a pair

of libraries used together in one system. Take l 1 and l 2 as two
7 http://search.maven.org .
8 https://www.nuget.org .

recommendation using multi-objective optimization, Information

1.007

http://sourceforge.net/projects/jvacation
http://dev.mysql.com/downloads/connector/j/
http://toedter.com/jcalendar/
http://search.maven.org
https://www.nuget.org
http://dx.doi.org/10.1016/j.infsof.2016.11.007

A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21 5

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

3

u

i

p

s

t

e

s

t

n

i

4

t

4

s

v

t

p

r

b

i

b

t

m

s

m

a

e

f

a

t

o

a

m

n

f

p

4

o

W

f

t

o

c

t

i

F

s

s

t

t

v

s

t

b

q

a

s

d

fi

a

e

p

s

9 https://github.com/raux/PomWalker .
10 https://github.com/codegist/crest .
11 http://asm.ow2.org .
12 http://javaparser.github.io/javaparser/ .
13 http://www.textfixer.com/resources/common- english- words.txt .
libraries, then the co-usage is:

co-usage (l 1 , l 2) =

p ∑

i =1

[S i → l 1 ∧ S i → l 2] (2)

• Linked-usage . The linked-usage metric is a simple average of

co-usage score in respect to the usage of different libraries l 1
and l 2 . Formally:

linked-usage (l 1 , l 2) =

1

2

×
(

co-usage (l 1 , l 2)

usage (l 1)
+

co-usage (l 1 , l 2)

usage (l 2)

)

(3)

The linked-usage is used as a normalized measure of the co-

usage between two libraries.

.2. Semantic similarity

Inspired by information retrieval (IR) technique, our approach

ses semantic similarity as a primary mechanism of capturing sim-

lar concepts between a given software system’s code and a third-

arty library. Our assumption is that the identifiers/vocabulary of a

oftware element are borrowed from its domain terminology, and

hus identifiers can be used as an indicator of source code relat-

dness. This implies that two software elements could be in the

ame application domain, i.e., implement similar functionality, if

hey use similar vocabulary [31] . One of the widely used tech-

iques in IR to calculate semantic similarity between documents

s cosine similarity .

• Cosine similarity . To capture the semantic relatedness between

two bags of words A and B , the cosine similarity is defined

as the cosine of the angle between both vectors representing

A and B in a vector space using tf-idf (term frequency-inverse

document frequency) model. We interpret term sets as vectors

in the n-dimensional vector space, such that each dimension

corresponds to the weight of the term (tf-idf) and thus n is the

overall number of terms. Formally, the semantic similarity (Sim)

between A and B corresponds to the cosine similarity (CS) of

their two weighted vectors � A and

�
 B given by Eq. (4)

Sim (A, B) = CS(� A , � B) =

�
 A · � B

‖

�
 A ‖ × ‖

�
 B ‖

=

∑ N
i =1 w a i × w b i √ ∑ N

i =1 w a 2
i
×

√ ∑ N
i =1 w

2
b i

(4)

where w a i and w b i
are respectively the tf-idf weights of the

terms a i and b i in the bags of words A and B , respectively.

. Search-based software library recommendation

This section describes our approach that uses SBSE techniques

o find and recommend useful third-party software libraries.

.1. Framework of the approach

The proposed approach, LibFinder , is expected to be used with

ystems that are already implemented. The goal is to keep the de-

elopers updated with potentially useful libraries during the main-

enance and evolution of their systems, especially with the ex-

onentially growing number of software libraries in open-source

epositories. LibFinder , is based on two main assumptions for a li-

rary could be potentially useful for a given software project (i)

f it has been commonly used by the crowd with one or more li-

raries that the project is currently using, and (ii) if it uses iden-

ical or similar identifiers, i.e., belongs to the same application do-

ain and thereby implements similar functionalities.
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
In order to realize an approach that meets the requirements

tated above, we combine SBSE with MSR techniques. Instead of

anually deriving a set of useful library for a software system with

 variety of application domains, dedicated search algorithms are

mployed based on a given set of objectives and constraints. In

act, SBSE techniques allow us to address multi-objective problems

s they aim to find the Pareto-optimal set of solutions, as opposed

o trying to obtain a single optimal solution. For the library rec-

mmendation problem, this would mean that we are interested in

 set of solutions where all objectives are compensated and opti-

ized instead of being combined into a single metric, which may

ot achieve optimality [30] .

The overall framework of LibFinder is depicted in Fig. 2 . Our

ramework consists of two important steps: (1) data extraction and

rocessing, and (2) data exploration and search process.

.1.1. Step1: data extraction and processing

This step consists of collecting the necessary data for our rec-

mmendation system including systems and library dependencies.

e first collected a large set of Java projects and software libraries

rom GitHub and Maven, respectively (c.f., Section 5.2.1).

System and library dependency. To mine the current usage of

hese libraries for our linked-usage metrics, our approach is based

n pom.xml files that define explicitly all the project dependen-

ies with external libraries. To this end, we developed a specific

ool (PomWalker 9) to automatically extract these dependency

nformation from all versions of POM files in a project repository.

ig. 3 shows an xml snippet of the POM file from the CRest 10

ystem under the CodeGist project repository. The snippet

hows the details including the groupId, artefactId, version , etc. of

he system as well as the information about all external libraries

he system depends on including the library groupId, artefactId and

ersion .

Identifier-based semantic similarity . To calculate the semantic

imilarity, we extracted all identifiers for both libraries and sys-

ems. For library identifier extraction, as we deal with jar files, i.e.,

inary code, we used the asm 11 library to compile and resolve fully

ualified identifier names. A library is regarded as a set of pack-

ge, class and method names defined in the library. In the case of

ystem identifier extraction, as we deal with systems source code

irectly, we used the JavaParser 12 library to facilitate identi-

ers extraction for AST generation without compilation. Note that

ll identifiers related to import and invoke external libraries were

xcluded during the system’s identifiers extraction process.

After identifiers extraction, we performed a lexical analysis to

re-process all the extracted identifiers. Our lexical analysis con-

ists of the four following steps:

1. Tokenization . All extracted identifiers are tokenized using a

camel case splitter where each identifier is broken down into

tokens/terms based on commonly used coding standards.

2. Filtering . We use a stop word list to cut-off and filter out all

common English words 13 (e.g., and, the, to) and reserved words

(e.g., static, string, class) from the extracted tokens. Typically,

these words are irrelevant to the code concept. Such words

carry a very low information value and can affect the seman-

tic similarity process negatively as they have no direct relation

to the application domain [32] .

3. Lemmatization . This is a morphological process that transforms

each word to its basic form, also called lemma. This process
recommendation using multi-objective optimization, Information

1.007

https://github.com/raux/PomWalker
https://github.com/codegist/crest
http://asm.ow2.org
http://javaparser.github.io/javaparser/
http://www.textfixer.com/resources/common-english-words.txt
http://dx.doi.org/10.1016/j.infsof.2016.11.007

6 A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Fig. 2. Our search-based library recommendation framework LibFinder .

n

p

l

s

e

c

c

n

n

a

4

s

h

e

S

g

(

t

4

o

N

u

o

u

t

c

t

l

m
aims at reducing a word to its basic form in order to group to-

gether the different inflected forms of a basic word so they can

be analyzed as a same word. Hence, different forms of words

that may have similar meanings are grouped together and han-

dled as identical word. For example, the verb ‘to walk’ may ap-

pear as ‘walk’, ‘walked’, ‘walks’, ‘walking’. The base form, ‘walk’

is then the lemma of all these words. To do so, we use Stan-

ford’s CoreNLP 14 to find the base forms of all extracted words.

4. Vocabulary expansion . To enhance the effectiveness of the se-

mantic similarity calculation, our approach utilizes WordNet 15 ,

a widely used lexical database that groups words into sets of

cognitive synonyms (synsets), each representing a distinct con-

cept. We use WordNet to enrich and add more informative vo-

cabulary to the extracted bag of words for each library and sys-

tem. For instance, the word customer might be used with dif-

ferent synonyms (e.g., client, purchaser , etc.), but pertaining to a

common domain concepts.

4.1.2. Step2: data exploration and search process

The collected data from Maven and Github repositories along

with all the processed identifiers represents a very large dataset.

To facilitate exploring these data, we stored them within a single

local data model, so that accessing them becomes easier and faster.

Fig. 4 depicts the used data model. A repository consists of a set of

systems. Each system depends on set of libraries that are defined

through a pom file. Each system and each library in the dataset

has its vocabulary which consists of a set of terms. A term can

have a lemma and a set of synonyms. Formally, let S = { s 1 , s 2 , ...s n }
denote the set of n systems and L = { l 1 , l 2 , ...l m

} denote the set of

m libraries. Let R ⊂ S × L denote relation that is defined in the pair

of one system and one library. The relation R assumes that s i R l j
is valid if the system s i depends on the library l j . The relation l j R

s i means the library l j is used by the system s i . The inverse of the

relation R is denoted by R

−1 and l j R

−1 s i is the same as s i R l j . Let

S 1 a subset of S let R (S 1) denote the set of those libraries that are

dependent on all systems in S 1 . Similarly, a subset R −1 (L 1) denotes

the set of systems that use all the libraries in L 1 .
14 nlp.stanford.edu/software/corenlp.shtml .
15 wordnet.princeton.edu .

t

t

m

m

Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
To explore our data model, efficient search techniques are

eeded. Instead of manually searching for common clients of a

articular library and compare the used vocabulary in a particu-

ar scenario, dedicated search algorithms can be employed to do

o based on a given set of objectives and constraints. One way to

fficiently explore this huge search space (collected libraries, their

lient systems, and the extracted vocabulary, etc.), is to apply dedi-

ated SBSE techniques. Hence, SBSE has proven to be efficient tech-

ique in solving several software engineering problems where the

umber of potential solutions is very large and even infinite [22] .

The next section describes in more details how SBSE techniques

re adopted for this problem.

.2. NSGA-II adaptation

Complex decision problems with multiple variables and large

earch spaces, similarly to this, are well-matched to SBSE, which

as proven good performance to provide decision support in sev-

ral software engineering problems [22] . Our approach adopts

BSE [19] , as it provides best practice to formulate software en-

ineering problems in terms of (i) computational search algorithm,

 ii) solution representation, (iii) fitness function, (iv) change opera-

ors, and so on. In the following we describe our SBSE formulation.

.2.1. Search algorithm

As a search method, we employed a widely used multi-

bjective evolutionary algorithm (MOEA) namely NSGA-II [21] .

SGA-II tries to ensure diversity to avoid the situation where pop-

lations have been filled only with dominating solutions (because

f the elitism mechanism, i.e., best solutions are preserved).

Identifying a Pareto front is useful as the software engineer can

se the frontier to make a well-informed decision that balances

he trade-offs between the different objectives. In our context, one

ould select recommended libraries achieving the highest seman-

ic similarity, i.e., implementing similar functionality, the highest

inked-usage, the lowest recommendation set size, or a compro-

ise among these objectives. Using Pareto optimality, we can plot

he set of solutions found to be non-dominating. In the case where

here are three objectives, such as ours, this leads to a three di-

ensional Pareto surface where the developer can go through and

ake his decision (c.f., Section 5.4).
recommendation using multi-objective optimization, Information

1.007

http://nlp.stanford.edu/software/corenlp.shtml
http://wordnet.princeton.edu
http://dx.doi.org/10.1016/j.infsof.2016.11.007

A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21 7

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Fig. 3. A POM snippet from the CRest system describing how Maven manage library dependencies.

4

a

b

t

o

s

p

n

w

b

n

s

m

b

b

o

c

b

i

p

o

t

.2.2. Solution representation

A solution in general consists of a number of (decision) vari-

bles that are optimized by the respective SBSE algorithm, a num-

er of constraints that need to be fulfilled in order for the solution

o be valid, and a number of objective values, one for each of the

bjective dimensions evaluated by the defined fitness function.

Candidate solutions for our problem are encoded as chromo-

omes of length n , where each gene represents a candidate third-

arty library. The length n of a chromosome corresponds to the

umber of classes in the input software system for which we

ant to recommend relevant libraries. Note that each class could

e assigned either a candidate library or a “NONE” element, i.e.,

o library is recommended for this specific class. Fig. 5 repre-

ents an example of a chromosome that consists of eight recom-

ended libraries. The figure can be interpreted as follows: the li-

rary httpclient is recommended for the class C1 , the library

cel is recommended for the classes C2 and C3 , log4j is rec-

Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
mmended for the class C4 , and guava is recommended for the

lasses C5 , C6 , C7 and C8 .
Additionally, a solution candidate may be subjected to a num-

er of constraints in order for the solution to be valid. Depend-

ng on the algorithm, invalid solutions may be filtered out com-

letely or may receive a low ranking in relation to the magnitude

f the constraint violation. In our approach, each candidate solu-

ion should fulfill the two following constraints:

1. A candidate library for a class should be different from the

ones already used by that class. To check this constraint, we

are based on the GroupId (i.e., domain name), without consid-

ering the library version. Note that an already used library by

a system could be recommended for new classes that are not

using it.

2. A candidate solution should not contain similar libraries with

different GroupId , e.g., log4j and commons-logging . To

check this constraint, we are based on a library-to-library se-
recommendation using multi-objective optimization, Information

1.007

http://dx.doi.org/10.1016/j.infsof.2016.11.007

8 A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Fig. 4. The data model of the collected dataset.

Fig. 5. Chromosome representation for a candidate solution.

t

m

mantic similarity. Indeed, having similar libraries in a recom-

mendation set does not add value from the developers’ per-

spective as the recommendations will seem redundant and it

takes longer for developers to explore [25] . Moreover, based

on recent studies [33] , some libraries are potentially copies of

other libraries, which might lead to undesirable redundancies,

security vulnerabilities, and license violations. This constraint

assumes that two libraries are similar if the Jaccard similarity

between their identifiers is equals or higher than 0.8. Thus, if

a class uses log4j , this constraint will prevent LibFinder from

recommending commons-logging .

Ranking. The recommended libraries are then ranked according

to their frequency count in the chromosome. The more the number

of classes for which a library is recommended, the more the library

is useful for the system. For instance, for the chromosome depicted

in Fig. 5 , libraries can be ranked as follows: (1) guava , (2) bcel ,
(3) httpclient and log4j .

4.2.3. Objective functions

The quality of each candidate solution is defined by a fitness

function that evaluates multiple objective and constraint dimen-

sions. Each objective dimension refers to a specific value that

should be either minimized or maximized for a solution to be con-

sidered “better” than another solution. In our approach, we opti-

mize the following three objectives:

1. Maximize library linked-usage (LU): Let L a candidate solution,

i.e., chromosome, that consists of a set of libraries L = { l 1 , ..., l n }
for a given system S that currently uses a set of libraries L S =
{ l s 1 , ..., l s m } . The linked usage is calculated as follows:

LU(L) =

n ∑

i =1

m ∑

j=1

linked-usage (l s j , l i) ×
1

m

× 1

n

(5)

where the function linked-usage (l s j , l i) is given by Eq. (3) .
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
2. Maximize semantic similarity (SS): Let L a candidate solution

that consists of a set of libraries L = { l 1 , ..., l n } for a given sys-

tem S that contains n classes where S = { c 1 , ..., c n } . SS is calcu-

lated as follows:

SS(L) =

n ∑

i =1

Sim (c i , l i) ×
1

n

(6)

where the function Sim (c i , l i) calculates semantic similarity be-

tween a class c i and a library l i as described in Eq. (4) , of course

after identifiers tokenization, filtering, lemmatization and vo-

cabulary expansion (c.f., Section 4.1.1).

3. Minimize the recommendation set size (RSS): This objective

function aims at reducing the number of recommended li-

braries. Although the number of libraries in our solution repre-

sentation is propositional to the number of classes in a system,

we aim at reducing the number of different libraries in our rec-

ommendation set. This objective function is motivated by two

reasons. First, we start from the assumption that, typically, de-

velopers are unlikely to go through a large recommendation set.

Second, adopting a large set of libraries is a costly and error-

prone task as it requires an extensive effort from the developer.

Indeed, our goal is to get the most from a small set of rele-

vant library recommendations. Formally, let L a candidate solu-

tion that consists of a set of libraries L = { l 1 , ..., l n } , then RSS is

given by the following function:

RSS(L) =

n ∑

i =1

Unique (l i) (7)

where the function Unique (l i) returns 1 if the library l i is dis-

tinct from the previous i − 1 libraries in L , 0 otherwise.

The search process is then guided by these three objective func-

ions where LU and SS are to maximize, while RSS is to be mini-

ized.
recommendation using multi-objective optimization, Information

1.007

http://dx.doi.org/10.1016/j.infsof.2016.11.007

A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21 9

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Fig. 6. Crossover operator.

Fig. 7. Mutation operator.

4

t

l

d

d

t

i

c

s

t

t

v

F

c

a

c

t

u

(

o

i

5

s

a

o

o

5

5

u

g

d

5

i

S

i

G

s

fi

w

a

a

a

d

b

b

o

b

r

J

d

t

f

s
.2.4. Genetic operators

Population-based search algorithms deploy crossover and muta-

ion operators to improve the fitness of the solutions in the popu-

ation in each iteration (the initial population is completely ran-

om). Change operators such as crossover and mutation aim to

rive the search towards near-optimal solutions.

The crossover operator is responsible for creating new solu-

ions based on already existing ones, e.g., re-combining solutions

nto ones. In our adaptation, we use a single, random cut-point

rossover to construct offspring solutions. It starts by selecting and

plitting at random two-parent solutions. Then crossover creates

wo child solutions by putting, for the first child, the first part of

he first parent with the second part of the second parent, and vice

ersa for the second child. An example of crossover is depicted in

ig. 6 .

The mutation operator is used to introduce slight, random

hanges into candidate solutions. This guides the algorithm into

reas of the search space that would not be reachable through re-

ombination alone and avoids the convergence of the population

owards a few elite solutions. With library recommendation, we

se a mutation operator that picks at random one or more genes

i.e., libraries) from their chromosome and replaces them by other

nes from our set of libraries extracted from Maven Central Repos-

tory (including the “NONE” element) as shown is Fig. 7 .

. Evaluation

This section first presents experiment design including: (1) re-

earch questions required to be addressed, (2) evaluation methods

nd metrics, and (3) the datasets used in our experiments. More-

ver, we also describe the inferential statistical methods used for

ur experiments and the algorithms parameters tuning and setting.

.1. Research questions

We design our experiments to address five research questions:

• RQ1 (Sanity check): How does the proposed approach per-

forms, in exploring the search space, compared to random

search and other existing search algorithms?

• RQ2 (Accuracy): How accurate is our proposed approach in rec-

ommending libraries to client software systems?

• RQ3 (Impact of library usage history and semantic similar-

ity): What is the contribution of each of library usage history

and semantic similarity heuristics on the overall performance

of LibFinder ?
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
• RQ4 (State-of-the-art comparison): How does LibFinder com-

paring to existing library recommendation approaches, LibRec

[9] ?

• RQ5 (Usefulness): Is LibFinder useful for software developers in

a real-world setting?

.2. Experimental design

We evaluate our approach from two perspectives. First, we eval-

ate our approach from SBSE perspective by following Harman’s

uidelines [19] . Then, we evaluate our approach from recommen-

ation system perspective [25] .

.2.1. Dataset

To evaluate the feasibility of our approach on real world scenar-

os, we carried out an empirical study on real-world Open Source

oftware (OSS) projects. As we described in Section 4.1.1 , our study

s based on dataset collected from two popular code repositories

ithub and Maven. Since github is host to varying projects, to en-

ure validity of quality github projects, we performed the following

ltering on the dataset:

• Size . We only included java projects that had more than 10 0 0

commits.

• Forks . We only include projects that are unique and not forks of

other projects.

• Maven dependent project . Our projects only include projects that

employ the maven build process (use pom.xml configuration

file).

Each github repository may contain multiple projects, each

hich may comprise of several systems. Each of these systems

re dependent on a set of maven libraries, that are defined in

 pom.xml file within the project.

For client libraries, we selected the latest release of the library

t that period of time. In the beginning we started with 40,936

ependent libraries. However, to remove noise, we filtered out li-

raries having less than 50 identifiers. This removed specialized li-

raries that we assume will not be a useful recommendation for

ther systems. Our dataset resulted in 6083 different maven li-

raries extracted from unique 32,760 client systems (from 4305

epositories) from Github.

The dataset is a snapshot of the projects procured as of 15th

anuary 2015. As described in Table 1 and 2 , our dataset is very

iversified as it includes a multitude of libraries and software sys-

ems from different application domains and different sizes. We

ound in our dataset, that the average number of used libraries per

ystem is 10.56 while having an average number of 4729 identifiers
recommendation using multi-objective optimization, Information

1.007

http://dx.doi.org/10.1016/j.infsof.2016.11.007

10 A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Table 1

Github dataset used in the experiment.

Dataset

Snapshot date 15th January 2015

of github repositories 4305

of github systems 32 ,760

of unique dependent libraries 6083

Table 2

Statistics of the maven library dataset size used in the experiment.

Min Mean Median Max

of dependent libraries per system 3.00 6.00 10.56 292.00

of maven identifiers per library 51.0 731.0 4729.0 74,080.0

Table 3

Contingency table that accumulates the numbers of true/false

positive/negative recommendations.

Dropped Non-dropped Total

Recommended TP FP TP + FP

Non-recommended FN TN FN + TN

Total TP + FN FP + TN N

i

t

u

r

d

m

i

r

c

w

q

S

s

s

∈

F

c

w

l

per library. Our dataset is available for future replications and to

encourage future research in the field of automated library recom-

mendation (http://sel.ist.osaka-u.ac.jp/ ∼ali/libRecommendation/).

5.2.2. Evaluation method and metrics

To evaluate our approach, we have performed a ten-fold cross

validation on our dataset. The basic idea is to randomly split the

data into ten equal-sized parts. Each fold consists of a training data

(nine parts) and a test data (the remaining part), then train the

recommendation system on the training data and evaluate the rec-

ommendations using the test data. Note that only client systems

are split into ten parts of size 3276 each.

To answer RQ1 , we compare our NSGA-II formulation against

random search (RS) [34] from two perspectives (1) search algo-

rithm performance, and (2) recommendation system performance,

i.e., the performance in solving the problem in hands. The goal is to

make sure that there is a need for an intelligent method to explore

our search space. Indeed, it is important to compare our search

technique to random search, that is if an intelligent search method

fails to outperform random search, then the proposed formulation

is not adequate [19] . In addition, to justify the adoption of NSGA-II,

we compared our approach against two other popular search algo-

rithms namely MOEA/D [35] and IBEA [36] . RQ1 is a sanity check

and standard ’baseline’ question asked in any attempt at an SBSE

formulation [19] .

For the search algorithm performance, we provide a quantita-

tive assessment of the performance of each search algorithm in

terms of search space exploration. Unlike mono-objective search

algorithms, multi-objective evolutionary algorithms return as out-

put a set of non-dominated (also called Pareto optimal) solutions

obtained so far during the search process. To this end, we em-

ploy three common performance indicators for evaluating multi-

objective optimization algorithms, namely Hypervolume, Spread and

Generational Distance [37] .

• Hypervolume (HV) : calculates the proportion of the volume cov-

ered by the non-dominated solution set returned by the algo-

rithm. A higher HV value means better performance, as it in-

dicates solutions closer to the optimal Pareto front. The most

interesting features of this indicator are its Pareto dominance

compliance and its ability to capture both convergence and di-

versity [30,37] .

• Spread (�) : measures the distribution of solutions into a given

front. The idea behind the spread indicator is to evaluate diver-

sity among non-dominated solutions. An ideal distribution has

zero value for this metric when the solutions are uniformly dis-

tributed. An algorithm that achieves a smaller value for Spread

can get a better diverse set of non-dominated solutions [37] .

• Generational distance (GD) : computes the average distance be-

tween the set of solutions, S , from the algorithm measured and

the reference front RF (also called reference set). The distance
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
between S and RF in an n objective space is computed as the

average n-dimensional Euclidean distance between each point

in S and its nearest neighbouring point in RF . GD is a value

representing how “far” S is from RS (an error measure) [38] .

The reference front refers to the set of non-dominated solutions

found by the union of all algorithms compared [39]

For further details about the formulation of these performance

ndicators, interested readers could refer to [30,37] and [38] . Al-

hough Hypervolume, Spread and Generational distance are widely

sed performance indicators when comparing multi-objective algo-

ithms, they ensure the effectiveness of LibFinder as a recommen-

ation system by providing a reasonably diversified set of recom-

endations.

For the performance in solving the problem in hands, i.e., find-

ng relevant library recommendations, we used the top- k accu-

acy, precision and recall on historical datasets. These metrics are

ommonly used for evaluating recommendation systems in soft-

are engineering [14,25,40] . Library ranking is based on the fre-

uency count a library in the recommendation list as described in

ection 4.2.2 . We conduct a 10-fold cross validation by randomly

plitting our datasets D (c.f. Section 5.2.1) into 10 equal parts of

ize n each. For each fold, we run our approach using a part P x
 D , while training from the 9 other parts P T where P T = D \ { P x } .
or each system S i ∈ P x , we randomly drop half of the set of its

urrently used libraries L . Let L d ⊂ L the subset of dropped libraries

here | L d | = � | L | 2 � . LibFinder will then try to retrieve the dropped

ibraries in its recommendation set.

• Top-k accuracy of our recommendation for a part P x is calcu-

lated as follows.

Top −k accuracy (P x) =

n −1 ∑

i =0

isF ound(S i , l ∈ L d)

| P x | × 100% (8)

where the function isFound (S i , l ∈ L d) returns 1 if at least one

dropped library l ∈ L d is part of the returned recommendation

set, and returns 0 otherwise. For instance, a top-10 accuracy

value of 75% indicates that for 75% of the systems, at least one

correct dropped library was returned in the top 10 results.

The overall accuracy of our approach corresponds to the aver-

age accuracy of the 10 folds.

• Top-k precision is calculated from the number of libraries that

are either dropped or non-dropped contained in the recom-

mendation set or not. The ground truth is the set of dropped

libraries. All possible scores can be arranged in a contingency

table (also called the confusion matrix) (see Table 3). Once these

scores are defined, precision can be calculated. Precision corre-

sponds to true positive accuracy and is calculated as the ratio of

recommended libraries that are dropped over the total number

of recommended libraries as described in Eq. (9) .

Top −k precision =

T P

T P + F P
(9)

• Top-k recall is calculated similarly to precision from the con-

tingency table (Table 3 . Recall in corresponds to true positive

rate and is calculated as the ratio of recommended libraries that
recommendation using multi-objective optimization, Information

1.007

http://sel.ist.osaka-u.ac.jp/~ali/libRecommendation/
http://dx.doi.org/10.1016/j.infsof.2016.11.007

A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21 11

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Table 4

Studied industrial systems.

System Release #Classes #Libraries KLOC

JDI-Ford v5.8 638 11 247

DROI-Ford v6.4 786 19 264

f

o

t

t

m

a

c

p

i

t

t

i

w

t

e

i

d

R

o

a

fi

b

c

o

s

a

s

S

r

e

t

r

w

p

p

t

p

d

a

t

m

n

w

c

s

t

v

J

s

i

f

a

b

h

o

a

o

r

W

u

1

F

l

u

m

V

w

t

c

F

v

p

s

J

r

t

p

t

W

o

p

s

a

T

s

a

a

l

i

f

d

a

i

e

f

5

p

l

t

s

T

f

b

n

o

s
are dropped over the total number of dropped libraries as de-

scribed in Eq. (10) .

Top −k recall =

T P

T P + F N

(10)

We thus used accuracy, precision and recall to compare the per-

ormance of NSGA-II against IBEA, MOEA/D and RS with top-10 rec-

mmendations.

To answer RQ2 , we evaluated LibFinder using our three evalua-

ion measure defined above, accuracy, precision and recall. To bet-

er investigate the behavior of LibFinder , we conduct the experi-

ent with different k values 1, 2, 4, 6, 8 and 10.

To answer RQ3 , we assess the effect of our two heuristics for

 library to be useful of a client application if (i) if it has been

ommonly used by the crowd with one or more libraries that the

roject is currently using, and (ii) it uses similar identifiers, i.e.,

mplements similar functionalities. We thus investigate the poten-

ial of combining both heuristics formulated respectively through

he objective functions libraries linked-usage and semantic similar-

ty. To this end, we assess the accuracy, precision and recall results

hile excluding 1) LU objective function, and 2) SS objective func-

ion from LibFinder . If our approach is demonstrated to outperform

ach individual heuristic, then we can claim that our formulation

s appropriate. To this end, we used NSGA-II with same adaptation

escribed in Section 4.2 to investigate each combination LU with

SS and SS with RSS objectives functions.

To answer RQ4 , we compare our approach with a recent state-

f-art approach called LibRec [9] . LibRec is library recommendation

pproach that combines association rule mining and collaborative

ltering. The association rule mining component recommends li-

raries based on library usage history. The collaborative filtering

omponent recommends libraries based on those that are used by

ther similar projects. However, the library content is not con-

idered. To the best of our knowledge, this is the only existing

pproach for library recommendation. To conduct a comparative

tudy, we replicated the LibRec on the same collected dataset (c.f.,

ection 5.2.1) using the same metrics top- k accuracy, precision and

ecall .

To answer RQ5 , we conducted a qualitative evaluation to better

valuate LibFinder with developers in practice. Indeed, it is impor-

ant to qualitatively evaluate the relevance and usefulness of the

ecommended libraries from developer’s perspective. To this end,

e performed a qualitative evaluation with two large industrial

rojects provided by our industrial partner, the Ford Motor Com-

any as described in Table 4 . The first project is a marketing re-

urn on investment tool, called MROI , used by the marketing de-

artment of Ford to predict the sales of cars based on the demand,

ealers’ information, advertisements, etc. The tool can collect, an-

lyze and synthesize a variety of data types and sources related

o customers and dealers. It was implemented over a period of

ore than eight years and frequently changed to add and remove

ew/redundant features. The second project is a Java-based soft-

are system, namely JDI , that helps the Ford Motor Company to

reate the best schedule of orders from the dealers based on thou-

ands of business constraints. This system is also used by Ford Mo-

or Company to improve their vehicles sales by selecting the right

ehicle configuration to match the expectations of their customers.

DI is highly structured and software developers have developed

everal versions of it at Ford over the past 10 years. Due to the
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
mportance of the application and the high number of updates per-

ormed on both systems, it is critical to ensure that they reuse and

dopt high quality software libraries so to reduce the time required

y developers to introduce new features in the future and maintain

igh quality software.

Our experiment is based on a survey to collect the feedback

f Ford developers about LibFinder ’s recommendations. One of the

dvantages of this industrial validation is the participation of the

riginal/current developers of a system in the evaluation of the

ecommended libraries. The experiment is conducted as follows.

e executed LibFinder on each of JDI-Ford and DROI-Ford
sing our library dataset (cf. Section 5.2.1) and selected the top

0 recommended libraries. Thereafter, the software engineers from

ord were asked to manually evaluate each of the recommended

ibraries by answering the following question:

Is the recommended library useful for the implementation of your

system?

For each library, the participants were asked to assign a score

sing a five-point Likert scale [41] to express their level of agree-

ent: 1: Not useful at all ; 2: some what useful ; 3: Useful ; and 4:

ery useful ; and 5: Extremely useful . Furthermore, the developers

here asked to comment on their ratings by an additional (op-

ional) question “If so, are you willing to adopt this library in your

ode? ”

Subjects. Our study involved 8 industrial developers from the

ord Motor Company. Prior the study, the participants were in-

ited to fill a pre-questionnaire about their experience, with Java

rogramming, software library reuse and their experience with the

ubject systems. The eight subjects claimed they are familiar with

ava programming, software maintenance activities with an expe-

ience ranging from 8 to 17 years. All claimed to frequently using

hird-party software libraries in their projects. The eight partici-

ants were selected based on having similar development skills,

heir motivations to participate in the survey and their availability.

e organized the participants into two equal groups, each consists

f four developers. The first group contains developers who are

art of the development team of JDI , while the second group con-

ists of developers who are current developers of the DROI system,

nd three of them are already part of the original developers’ team.

he first group evaluated the recommendations for JDI , while the

econd group assessed the DROI system. The survey is completed

nonymously thus ensuring the participants confidentiality.

In a first meeting with the participants, we explained the over-

ll purpose of the study, without giving any details, concerning the

ibraries and the method used for the recommendation. Follow-

ng, we gave to each participant a document that contained the

ollowing information (a) each recommended libraries, (b) a brief

escription of the main features of the library and its website url

nd Maven link, and (c) the list of classes for which the library

s recommended. In a second meeting with each of the develop-

rs, we collected the documents and we analyzed the developers’

eedback.

.2.3. Inferential statistical test methods used

Due to the stochastic nature of the used algorithms, they may

roduce slightly different results when applied to the same prob-

em instance over different runs. To cope with this stochastic na-

ure, the use of a rigorous statistical testing is essential to provide

upport to the conclusions derived from analyzing such data [42] .

o this end, we used the Wilcoxon Signed Rank test in a pairwise

ashion [43] in order to detect significant performance differences

etween the algorithms under comparison. The Wilcoxon test does

ot require that the data sets follow a normal distribution since it

perates on values ranks instead of operating on the values them-

elves. We set the confidence limit, α, at 0.05. In these settings,
recommendation using multi-objective optimization, Information

1.007

http://dx.doi.org/10.1016/j.infsof.2016.11.007

12 A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

e

f

p

m

t

N

a

r

t

r

m

v

a

l

l

T

u

o

a

n

s

“

t

t

i

s

s

t

o

r

o

c

t

c

m

t

o

c

t

(

t

t

t

e

T

a

a

6

d

i

t

g

i

t

l

f

h

R

i

L
each experiment is repeated 30 times, for each algorithm and for

each fold. The obtained results are subsequently statistically ana-

lyzed with the aim to compare our NSGA-II approach to MOEA/D,

IBEA, as well as random search (RS).

While Wilcoxon Signed Rank test allows verifying whether the

results are statistically different or not, it does not give any idea

about the difference magnitude. To this end, we assess the effect

size based on Cohen’s d [43] . The effect size is considered: (1)

small if 0.2 ≤ d < 0.5, (2) medium if 0.5 ≤ d < 0.8, or (3) high

if d ≥ 0.8.

5.2.4. Parameter tuning and setting

An important aspect for metaheuristic search algorithms lies in

the parameters tuning and selection, which is necessary to ensure

not only fair comparison, but also for potential replication. The

initial population/solution of NSGA-II, MOEA/D, IBEA, and RS are

completely random. The stopping criterion is when the maximum

number of fitness evaluations, set to 350,0 0 0, is reached. After sev-

eral trial runs of the simulation, the parameter values of the four

algorithms are fixed to 100 solutions per population and 3500 iter-

ations. There are no general rules to determine these parameters,

and thus, we set the combination of parameter values by trial-and-

error method, which is commonly used in the SBSE community

[44,45] .

For the variation operators, we set crossover probability at 0.9

and a mutation one at 0.4. We used a high mutation rate since

we are employing an elitist schema with diverse library contents

and co-usage. In fact, as noted by Cohen [43] , elitism may encour-

age premature convergence to occur, e.g., reaching the last itera-

tion with solutions having high LU and SS , but belongs to only

one application domain. For instance, returning all recommended

libraries related to xml parsers, which seems redundant and do

not add value from the users perspectives. In order to avoid such

a problem, in each generation, we emphasize the diversity of the

population by means of the high mutation rate.

Note that, while for RQ1, we compare our resulted Pareto solu-

tions of each algorithm, for RQs 2–5, we need only one solution for

our automated evaluation. As NSGA-II returns a set of optimal so-

lutions instead of single one, the developer can choose one of them

according to his preference; however at least for our evaluation as

we seek a fair comparison, we need to automatically pick up one

single solution from the Pareto front and then compare it with Li-

bRec. To address this issue, we proposed a technique that aims at

automatically selecting the nearest solution to a ‘reference’ point

from the Pareto front that represents the desired values of the ob-

jective function. Ideally, this reference point has the optimum val-

ues of each objective function, i.e., a score of 1 for the linked-usage

(LU), 1 for the semantic similarity (SS), and 1 for the recommen-

dation set size (RSS), after normalization within the interval [0,1]

(c.f. Fig. 12). Our recommended solution, RecSol , corresponds to the

nearest point p i from the Pareto front PF to the ‘reference’ point in

terms of Euclidean distance. RecSol is calculated as follows:

RecSol = min ∀ p i ∈ PF

√

(1 − LU(p i)) 2 + (1 − SS(p i)) 2 + (1 − RSS(p i)) 2

(11)

5.3. Results

In this section, we present the results of our empirical evalu-

ation with respect to our research questions RQs 1–4 set out in

Section 5.1 .

Results for RQ1. For RQ1, we compared NSGA-II against RS,

MOEA/D, and IBEA, using the same objective functions, solution

representation, and change operators. We describe the obtained re-

sults in terms of Hypervolume (HV), Spread (�), Generational Dis-

tance (GD), Accuracy@10, Precision@10 and Recall@10.
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
Fig. 8 and Table 5 present the results of the significance and

ffect size tests through 30 independent runs (3 runs for each

old) of each search algorithm. The higher the HV, accuracy@10,

recision@10, recall@10, and the lower the � and GD values, the

ore likely the recommendation results are better. We observe

hat RS results are generally poor, whereas MOEA/D, IBEA and

SGA-II obtain higher results. This provides evidence that there is

 need for an intelligent search technique to provide better library

ecommendation results. Furthermore, for all six quality indica-

ors (HV, �, GD, accuracy, precision and recall), the Wilcoxon test

esults showed that NSGA-II achieves significantly better perfor-

ance than MOEA/D, IBEA and RS with high effect size. This pro-

ides evidence that NSGA-II is effective in finding a well-converged

nd diversified set of Pareto-optimal solutions, i.e., recommended

ibraries. For the �, it is also desired that a multi-objective evo-

utionary algorithm maintains a good spread of returned solutions.

his gives more options to the developer on which library can be

seful for his code. The Wilcoxon test results showed that for 17

ut of 18 experiments (6 performance indicators, and 3 pairs of

lgorithms), the quality indicators achieved by NSGA-II were sig-

ificantly better than those of random search with a Cohen effect

ize “high”. Only for the Spread indicator, a Cohen effect size of

meduim” is achieved against MOEA/D.

As part of our sanity check, we also studied the extent to which

he linked usage (LU) and semantic similarity objective (SS) func-

ions are conflicting. Indeed, if the two objectives are not conflict-

ng, i.e., correlated, then the problem should be formulated as a

ingle objective optimization problem. Fig. 9 presents the results of

tudying the conflict relation between our LU and SS objectives. To

his end, we execute a mono-objective GA maximizing one of the

bjectives and we study the behavior of the second objective by

ecording its values over 100 independent runs. From Fig. 9 a, we

bserve that the maximization of LU objective function does not

ause any maximization or minimization of the SS objective func-

ion as their correlation is less than −0.21. Similar phenomenon

ould be seen in Fig. 9 b where a genetic algorithm was used to

aximize the SS objective function while recording the behavior of

he LU values. The observed correlation was less than 0.18. Based

n this finding, we conjuncture that both LU and SS objectives are

onflicting.

To sum up, we conclude that there is a compelling evidence

hat our multi-objective formulation using NSGA-II is adequate

this answers RQ1).

Results for RQ2. Table 6 reports the top-1, top-2, top-4, top-6,

op-8 and top-10 accuracy, recall and precision results for each of

he ten folds obtained over 30 runs of LibFinder using NSGA-II.

For the top- k accuracy, we observe that LibFinder achieves the

op-10 accuracy with 91.8% on average over the ten folds. The low-

st top-10 accuracy score is 91.26% while the best one is 92.45%.

his provides evidence that the accuracy of our approach is rel-

tively stable over the ten folds for 30 independent runs. The

verage lowest accuracy score was in the top-1 with a score of

3.34%. This indicates that the chance to have at least one of the

ropped libraries in the first rank is 0.63. Furthermore, we found

n most cases where our approach fails in finding at least one of

he dropped libraries that it relies on libraries from the same cate-

ory, i.e., application domain. For instance, instead of recommend-

ng/retrieving the dropped library commons-logging , most of

he cases our recommendation set includes the competitor logging

ibrary log4j . This may due to the popularity of log4j mani-

ested by its growing usage score commons-logging and log4j
ave respectively 3587 and 6254 usage scores in Maven Central

epository, as of November 24th, 2015. in Maven while having sim-

lar identifiers.

For precision and recall, LibFinder achieves also good results.

ibFinder achieves the top-10 precision of 51.06% on average over
recommendation using multi-objective optimization, Information

1.007

http://dx.doi.org/10.1016/j.infsof.2016.11.007

A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21 13

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Fig. 8. Boxplots for the Hypervolume, Spread, Generational distance, accuracy@10, precision@10 and recall@10 performance indicators for NSGA-II, IBEA, MOEA/D and RS.

Table 5

Statistical significance p-value (α = 0 , 05) and effect size comparison results of NSGA-II against

MOEA/D, IBEA and RS for the hypervolume, spread and generational distance, accuracy@10, preci-

sion@10 and recall@10.

Metric Stat. NSGA-II vs MOEA/D NSGA-II vs IBEA NSGA-II vs RS

Hypervolume p -value 7.27e −10 8.071e −10 7.68e −10

effect size high high high

Spread p -value 1.239e −06 4.933e −08 7.656e −10

effect size medium high high

Genergational Distance p -value 9.313e −10 9.313e −10 9.313e −10

effect size high high high

Accuracy@10 p -value 6.918e −06 5.145e −06 1.863e −09

effect size high high high

Precision@10 p -value 9.22e −06 2.716e −05 1.863e −09

effect size high high high

Recall@10 p -value 1.419e −06 1.563e −05 1.863e −09

effect size high high high

t

t

a

r

l

i

t

t

p

r

s
he ten folds. The highest precision score was achieved by the

op-1 with a precision of 61.34%. From the recall side, LibFinder

chieves better results with a top-10 recall of 68,13% and a top-1

ecall of 47.94%. However, still precision and recall scores relatively

ower than the accuracy. In fact, an important point to highlight

s that these two metrics implies that recommended libraries that
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
he system has not used (i.e., not in the dropped set) are unin-

eresting or useless. This assumption is not always appropriate in

ractice. That is, a system might not use a specific library for many

easons mainly when (i) the system’s developers are not aware by

uch a library especially with the exponentially growing number of
recommendation using multi-objective optimization, Information

1.007

http://dx.doi.org/10.1016/j.infsof.2016.11.007

14 A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Fig. 9. Relation study between the Linked Usage (LU) and Semantic Similarity (SS) objective functions.

Table 6

Obtained top- k accuracy, Precision and Recall median results for of the 10-fold cross-validation obtained through 30 independent runs of NSGA-II.

Fold Accuracy@k Precision@k Recall@k

top-1 top-2 top-4 top-6 top-8 top-10 top-1 top-2 top-4 top-6 top-8 top-10 top-1 top-2 top-4 top-6 top-8 top-10

1 62 ,52 69 ,69 81 ,17 87 ,56 90 ,16 92 ,45 62 ,52 58 ,23 58 ,16 56 ,33 53 ,63 51 ,87 48 ,16 57 ,47 56 ,02 61 ,58 63 ,01 67 ,16

2 63 ,19 70 ,98 82 ,36 86 ,15 89 ,16 91 ,45 59 ,19 58 ,26 56 ,29 55 ,03 53 ,18 50 ,98 49 ,03 56 ,87 55 ,16 60 ,33 62 ,47 69 ,56

3 62 ,15 69 ,02 80 ,21 87 ,24 90 ,45 91 ,46 62 ,15 60 ,48 58 ,36 56 ,17 52 ,33 49 ,87 48 ,44 55 ,13 56 ,31 61 ,04 63 ,09 68 ,36

4 60 ,43 70 ,78 81 ,06 88 ,62 91 ,03 92 ,13 60 ,43 59 ,15 57 ,33 56 ,04 53 ,1 51 ,22 48 ,17 54 ,18 56 ,09 60 ,63 62 ,18 67 ,12

5 63 ,25 70 ,21 81 ,71 88 ,36 90 ,43 92 ,36 59 ,25 58 ,03 58 ,04 56 ,14 53 ,36 50 ,13 49 ,11 53 ,24 55 ,89 59 ,49 61 ,34 68 ,03

6 65 ,47 69 ,8 81 ,53 87 ,56 90 ,56 91 ,26 62 ,47 61 ,62 57 ,98 55 ,32 53 ,24 51 ,86 47 ,64 54 ,48 56 ,55 60 ,44 62 ,07 68 ,17

7 63 ,41 68 ,48 82 ,09 87 ,28 89 ,98 91 ,36 60 ,41 59 ,22 58 ,68 56 ,87 52 ,11 49 ,89 48 ,21 51 ,17 55 ,92 61 ,3 62 ,29 68 ,43

8 64 ,87 70 ,47 81 ,39 87 ,14 90 ,26 91 ,89 62 ,87 60 ,39 59 ,74 57 ,33 53 ,49 51 ,76 47 ,29 51 ,89 56 ,67 60 ,39 64 ,33 67 ,89

9 62 ,45 70 ,33 81 ,69 88 ,47 91 ,03 92 ,02 62 ,45 59 ,11 57 ,71 56 ,09 52 ,78 51 ,44 46 ,33 52 ,03 56 ,58 59 ,11 63 ,08 68 ,11

10 65 ,66 69 ,15 80 ,36 88 ,36 91 ,27 92 ,16 61 ,66 59 ,17 58 ,6 56 ,54 52 ,07 51 ,6 47 ,04 54 ,86 55 ,77 60 ,03 61 ,37 68 ,51

Average 63 ,34 69 ,89 81 ,35 87 ,67 90 ,43 91 ,85 61 ,34 59 ,36 58 ,08 56 ,186 52 ,929 51 ,06 47 ,94 54 ,13 56 ,09 60 ,43 62 ,52 68 ,13

Table 7

Effect of each individual heuristic on the accuracy, precision and recall results with top-10 rank.

t

o

b

a

L

1

f

r

a

w

t

b

w

b

r

o

a

i

b

m

s

r
available libraries in code repositories, or (ii) due to some resource

constraints, e.g., budget limitations or deadline pressure.

To conclude, the obtained accuracy, precision and recall results

indicate that leveraging a history of library usage from large source

code repositories, with semantic similarity embodied in library

identifiers can accurately recommend useful software libraries for

client software systems.

Results for RQ3. Table 7 reports the median accuracy, precision

and recall values of each of linked-usage and semantic similarity

heuristics with top-10 recommendations. The aim is to investigate

the effectiveness of our two heuristics that are formulated through

LU and SS objective functions and how well they work separately.

As shown in the table, the linked-usage reaches an accuracy score

of 63.1%, whereas the semantic similarity reaches 61.26%. How-

ever, using each heuristic separately is still far from the accuracy

score of LibFinder (92%). Similarly, our approach reaches a precision

score of 51% while having only 38% and 41% for each individual

heuristic, linked usage and semantic similarity respectively. Recall

is also following the same trend as the accuracy by a score of 68%

for LibFinder while only 34% and 37% are achieved by linked us-

age and semantic similarity respectively. This finding suggests that

both linked-usage and context similarity should be balanced to-

gether for an effective library recommendation.
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
Results for RQ4. Table 8 presents the results of top-1,

op-2, top-4, top-8 and top-10 accuracy, precision and recall

f our approach, LibFinder , and a state-of-the-art approach Li-

Rec,Thung2013librec. LibFinder achieves much better results for

ll 18 experiments (3 metrics and 6 top- k values). For instance,

ibFinder achieves the top-10 with an accuracy of 92% and the top-

 with an accuracy of 63% while LibRec achieves only 73% and 12%

or top-10 and top-1 respectively. Similarly for the precision and

ecall scores, LinFinder achieves the top-10 with 51% of precision

nd 68% of recall while only 23% of precision and 46% of recall

as achieved by LibRec . This indicates that leveraging only a his-

ory of library usage is not enough for recommending relevant li-

raries. Thus a content-based recommendation should be balanced

ith usage history for better recommendations. In fact, a history-

ased approach (e.g., collaborative filtering method and association

ule mining methods) provides recommendations for a user based

n some unknown users who might have the same taste, while

 content-based method provide recommendations based on what

tem’s features the users need. Furthermore, unlike pure history-

ased approaches such as LibRec , new libraries can be recom-

ended by a content-based method before being used by a sub-

tantial number of software projects. Indeed, LibRef is not able to

ecommend libraries to projects that only use a small number of li-
recommendation using multi-objective optimization, Information

1.007

http://dx.doi.org/10.1016/j.infsof.2016.11.007

A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21 15

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Table 8

Comparison results of our approach LibFinder against LibRec in terms of accuracy, precision and

recall scores.

Fig. 10. Average developers ratings for the 10 recommended libraries by LibFinder for the system JDI-Ford.

b

i

s

m

o

t

f

f

s

e

t

t

r

d

l

a

n

e

A

r

a

t

t

D

r

f

m

b

o

c

a

c

i

t

w

t

t

w

b

b

s

n

8

m

T

t

a

t

r

f

r
raries or do not use any libraries at all. Thus, we believe that find-

ng a trade-off between usage history and content-based method,

uch as LibFinder is a suitable way in formulation library recom-

endation problem.

Results for RQ5. Fig. 10 reports the developer’s rating results

f the recommended libraries for the system JDI-Ford . For the

en recommended libraries, the developers ratings were ranging

rom 2.25 to 4.25. The highly rated library was Quartz , a richly-

eatured, enterprise-category library, that solves complex and small

chedules, and get an average rating of 4.25 from the 4 develop-

rs. Features in Quartz include JTA clustering and transaction, real

ime management and monitoring. The four developers claimed

hat Quartz is a relevant library that could be useful for their cur-

ent implementation, especially for creating and scheduling the or-

ers with their dealers. On the other hand, while opencsv , a simple

ibrary for reading and writing CSV, was ranked lowest (an aver-

ge of 2.25) as it was only recommended for few classes that are

ot related to core functionalities in JDI-Ford . Indeed, develop-

rs found it not as useful comparing to their current in-house code.

nother recommended library was Joda-time which also get a high

ating of 3.75 as it provides a quality replacement for the Java date

nd time classes with more useful and efficient features, relieving

he developers from the burden of implementing date related fea-

ures from scratch or based on the basic features provided by Java

evelopment Kit (JDK).

Similarly, most recommended libraries for DROI-Ford get high

atings as sketched in Fig. 11 . The library mahout-math , a high per-
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
ormance scientific and technical computing data structures and

ethods library, gets the highest rating reaching 3.75 on average

y the four developers. Same rating was obtained for Guava , a suite

f core and expanded libraries that include utility classes, google’s

ollections, io classes, and much much more useful utilities, get

 high ranking of 3.75. However, slf4j , which a simple logging fa-

ade library which serves as a simple facade or abstraction for var-

ous logging frameworks, get the lowest score of 1.5 for this sys-

em. Overall, the eight developers who participated in the survey

as generally satisfied with most recommended libraries based on

heir average score and their feedback. In both systems, we have

wo cases, opencsv for JDI-Ford and slf4j for DROI-Ford for

hich some of the developers was not satisfied and rated them

y a score 1 (Not useful at all).

To better investigate the usefulness of the recommended li-

raries, we asked the eight developers if they are willing to con-

ider adopting the libraries that they judged as ‘useful’ in the

ext releases of their system. Most of the developers (5 out of

) expressed a high interest to adopt at least 4 libraries including

ahout-math, quartz, guava , and pdfbox , for the coming releases.

heir main reservations about such adoption are 1) the quality of

he system after using the library and how to make sure that such

 library will improve their code quality and 2) the time required

o understand the entire library. Indeed, while Joda-time was highly

ated, the developers did not express a high interest to adopt it

or the short term as it might require additional effort s to incorpo-

ate several changes with several classes in the code. However, one
recommendation using multi-objective optimization, Information

1.007

http://dx.doi.org/10.1016/j.infsof.2016.11.007

16 A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Fig. 11. Average developers ratings for the 10 recommended libraries by LibFinder for the system DROI-Ford.

p

fl

c

w

b

g
l

t

J

S

i

m

I

t

p

T

s

a

a

5

c

i

v

a

t

d

T

A

b

o

o

a

s

p

o
of the developers claimed that they can keep their current code,

but use Joda-time for the new features and changes in the next re-

leases. Most of developers from both JDI-Ford and DROI-Ford
claimed that this is a valuable reuse opportunity that they missed

in the initial design of their system.

Another situation highlighted in some comments was that most

classes for which Joda-time and opencsv was recommended have

very low change frequency during the last two years. Thus, devel-

opers would adopt libraries for more frequently changed and active

classes in the project. This gives us interesting insights to incor-

porate the change frequency of classes in LibFinder to improve its

recommendation usefulness in practice.

5.4. Discussions

In this section, we further discuss related aspects to our ap-

proach including library selection in terms of trade-off, .

5.4.1. Library selection

To help developers on selecting a library from the set of rec-

ommendations, LibFinder provides a user friendly manner to se-

lect recommended libraries through 3D visualizations of the Pareto

front, as shown in Fig. 12 . This visualization shows the trade offs

between the three objectives linked-usage, semantic similarity, and

the recommendation set size. Each point in the Pareto surface in

Fig. 12 b represents a recommended solution, each solution com-

prises a set of libraries that will be sorted according to the fre-

quency of each library in the solution (c.f., Section 4.2.2).

The distributions of these recommended solutions on the Pareto

from gives more insights. Hence, if a developer is interested in new

emerging libraries that implement similar functionality to his sys-

tem, then he should focus his attention on the back corner of the

Pareto surface, i.e., high semantic similarity score. For the devel-

oper who seeks to reduce the library integration costs and incom-

patibility risks, he needs rather to focus on the top corner of the

Pareto surface as it recommends libraries that are commonly used

with his current system’s libraries, i.e., high linked-usage score. If

the developer seeks to check a small set of recommended libraries,

the he should focus on the left side of the Pareto surface, or the

right side for a variety of recommended libraries, i.e., high RSS

score, otherwise. If the developer seeks a kind of trade-off between

all objectives, he should then focus his attention on the middle
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
art of the Pareto surface. Hence, as the three objectives are con-

icting, maximizing semantic similarity could be possible but with

ost of scarifying by some linked-usage.

For instance, following our motivating example JVacation
hich is using only the mysql-connector-java li-

rary, the recommended solutions comprises { JCalendar,
lazedlists, mail, cxf-api, jetty-http, berke-
eydb, javaosc-core, webapp-runner }. Most of

hem are likely to be useful for JVacation . For instance,

Calendar is likely to be good candidate as described in

ection 2.4 . Glazedlists is an event-driven lists for dynam-

cally filtered and sorted tables. It is typically co-used with

ysql-connector-java to process the results of SQL queries.

n addition, mail can be useful for JVacation to directly con-

act customers, send invoices and so on. Berkeley is a high

erformance, transactional storage engine for Java applications.

his makes sense as JVacation is a database related software

ystem. Other recommendations such as cxf-api , jetty-http
nd webapp-runner are more related to web servers, building

nd developing services.

.4.2. Developer insights on third-party library recommendation

The decision to keep in house code or reuse third-party libraries

ould be a delicate decision to be made by the developer in her

ndividual context. It is important to get some insights from a de-

eloper’s perspective on the situations where it is useful to adopt

 recommended third-party library. To this end, we conducted a

hink-aloud survey with 17 developers from Ford including the 8

evelopers who participated in our experiment conducted in RQ5.

he participants were first asked to answer the following question:

When do you think it is appropriate to apply a recommended

third-party library to your code?

Fig. 13 shows the different answers collected from the survey.

 total of 5 out of 17 developers (29%) answered that they would

e interested in adopting a recommended library as replacement

f buggy code. Four developers answered that if the overall quality

f the system will be improved when the recommended library is

dopted, then it is worth. Similarly, a total of four developers an-

wered that they are willing to adopt a recommended library if it

rovides additional features that are useful for the implementation

f their system, especially if their current solution is not extendible
recommendation using multi-objective optimization, Information

1.007

http://dx.doi.org/10.1016/j.infsof.2016.11.007

A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21 17

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Fig. 12. Example of Pareto optimal solutions obtained by LibFinder for JVacation.

Fig. 13. Answers to the question: when do you think it is appropriate to apply a recommended third-party library to your code?

e

t

p

r

a

l

s

i

i

i

t

q

t

h

m

d

c

t

Fig. 14. Developers answers for the three questions Q1, Q2 and Q3.

b

m

a

a
nough. Furthermore, three out of the 17 developers answered that

hey would adopt a library if it will support software migration to

rovide portable and reusable code. Some other answers were also

elated to the library popularity and its API stability/quality. Over-

ll, all developers expressed a hight interest to adopt third-party

ibraries in their code for different motivations and reasons as de-

cribed in Fig. 13 . This justifies the exponentially increasing trend

n adopting third-party software libraries from open source repos-

tories.

These results have actionable insights. For example, it would be

nteresting to consider a profile-based library recommendation sys-

em to focus the recommendations on buggy classes, or smelly/low

uality classes, or on some packages related to particular features

hat the developer is interested in.

Moreover, as a second part of the survey, we wanted to assess

ow realistic is our problem formulation for the library recom-

endation, i.e., do the three defined objective functions match the

evelopers high-level expectations. Our second part of the survey

onsists of three questions about the meaningfulness of our objec-

ive functions. It consists of the three following questions:

• Q1. When searching for a relevant library, do you prefer to se-

lect/find libraries that are related/commonly used with your

current adopted libraries?

• Q2. When searching for a relevant library, do you prefer to se-

lect/find libraries that belong to the same application domain

as your implemented features, e.g., have textual similarity?
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
• Q3. When searching for a relevant library, do you look for a

minimum number of libraries to adapt such as libraries relevant

for multiple tasks/features to integrate?

Participants were asked to answer each of the three questions

y following a five-point Likert scale to express their level of agree-

ent: 1: Strongly disagree , 2: Disagree , 3: Neutral , 4: Agree , 5: Fully

gree .

Fig. 14 reports the obtained results from the survey. On aver-

ge, a score of 4.17, 4.52, and 4.11 were obtained for Q1, Q2 and
recommendation using multi-objective optimization, Information

1.007

http://dx.doi.org/10.1016/j.infsof.2016.11.007

18 A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

Fig. 15. Scalability of LibFinder with respect to the systems size.

Table 9

Standard deviation of the obtained accuracy@k, preci-

sion@k and recall@k results over the 10 folds.

Top-k Standard deviation

Accuracy@k Precision@k Recall@k

Top-1 1 .537 1 .329 0 .83

Top-2 0 .771 1 .088 1 .982

Top-4 0 .651 0 .859 0 .433

Top-6 0 .738 0 .635 0 .727

Top-8 0 .579 0 .545 0 .851

Top-10 0 .415 0 .768 0 .660

s

2

a

t

1

w

t

i

J

s

t

o

t

s

a

c

s

c

a

a

L

fl

b

o

k

n

16 http://jvmmonitor.org/ , version 3.8.1
Q3, respectively. As shown in the figure, the ratings distribution is

within the range 3–5 with a median of 4 for Q1 and Q3, and 5

for Q3. Indeed, since library recommendation is a subjective deci-

sion process, it is normal that not all the developers have the same

opinion. Thus, it is important to study the level of agreement be-

tween developers. To address this issue, we evaluated the level of

agreement using Fleiss’s Kappa coefficient κ [46] , which measures

to what extent the developers agree when answering to the three

questions about each of our defined objectives. The Kappa coef-

ficient assessments is 0.63, which is characterized as “substantial

agreement ” by Landis and Koch [47] . This obtained score makes us

more confident that our defined objectives for library recommen-

dation makes sense from software developer’s perspective. How-

ever, this finding does not necessary mean that these three objec-

tives are the only objectives that should be considered for library

recommendation. Indeed, some of the developers suggested to in-

volve library popularity and quality in the recommendation pro-

cess. As part of our future work, we plan to personalize LibFinder

with the defined objectives based on the developer’s profile/pref-

erences and make it a more interactive process to learn from the

developer decision in which situations he accept or reject a recom-

mended library.

It is worth notice that LibFinder allows the developers to give

more importance to one objective over the other objectives using

the pareto visualization as described in Section 5.4.1 . This visual-

ization supports to the developers to select their libraries based

on their preferences between all objectives. Furthermore, LibFinder

allows to easily remove or add new objectives to guide the search

space based on the developer requirements/preferences.

5.4.3. LibFinder scalability

It is important to assess the scalability of our approach, as

scalability is widely considered as one of the key issues for soft-

ware engineering research and development [48] . Indeed, there

is a pressing need for scalable solutions to Software Engineering

problems. To evaluate the scalability of the performance of our

approach for systems of increasing size, we report the results of

LibFinder per system size in terms of number of classes. The scal-

ability assessment of LibFinder is only concerned with the explo-

ration and search process (Step 1 in Fig. 2 is not taken into account

for the scalability). The results of the experiment are depicted in

Fig. 15 . We noticed that when the size of the system increase, the

CPU time is still relatively stable as it ranges from 24 s to 35 s for
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
ystems with less than 200 classes up to systems with more than

600 classes, receptively. We also noticed that accuracy, precision

nd recall are not significantly affected by the systems’ size as it

ends to be stable with a standard deviation score of 1.15, 073 and

.23 respectively.

In fact, we expected that the CPU time will slightly increase

hen the system size increase as the solution size depends on

he number of classes in the system (c.f., Section 4.2.2 . To further

nvestigate this behavior we use the JVM Monitor 16 profiler for

ava for tracking which operations are the most expensive. The re-

ults obtained from this profiling show that over 46% of the execu-

ion time is spent on finding new candidate libraries by evaluating

ur two constraints: (i) recommended libraries should be different

han the ones used by the system, and (ii) recommended libraries

hould not be similar as described in Section 4.2.2 . These oper-

tions are executed when constructing initial solutions or during

rossover and mutation operators. Consequently, execution time is

lightly increased with larger solutions that require in turn more

onstraints to be checked. Overall, we can say that LibFinder is scal-

ble with respect to system size since it provides high precision

nd recall values, and reasonable execution time.

Another important point to highlight is about to stability of

ibFinder over different folds. Stable results over different folds re-

ect the suitability of both the data and the exploration technique

ased on NSGA-II. To this end, we studied the standard deviation

f the obtained accuracy, precision and recall for the different top-

 results. The result for this experiment is shown in Table 9 . We

otice that the highest standard deviation of the accuracy score
recommendation using multi-objective optimization, Information

1.007

http://jvmmonitor.org/
http://dx.doi.org/10.1016/j.infsof.2016.11.007

A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21 19

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

w

w

n

1

s

d

6

s

l

a

p

t

d

s

m

t

a

s

b

i

r

t

m

t

l

s

m

e

o

f

b

b

s

a

a

l

i

l

a

c

o

s

t

fi

t

i

p

c

i

c

j

c

t

p

s

0

J

fi

c

M

n

h

t

d

i

e

7

w

d

o

a

f

i

i

m

u

o

m

q

p

h

w

b

t

b

a

s

w

s

L

b

a

p

i

u

m

A

s

s

c

t

t

v

u

j

c

T

c

s

p

o
as 1.53 with the accuracy@1, while the lowest score was 0.41

ith the accuracy@10. Similarly precision and recall scores does

ot vary significantly as their standard deviation was lower than

.32 and 1.98 respectively. This indicates that LibFinder is relatively

table over different systems as they was randomly split over the

ifferent folds.

. Threats to validity

Several factors can bias the validity of empirical studies. In this

ubsection, we elaborate on several factors that may threat the va-

idity of our results.

Internal threats can be related to the stochastic nature of search

lgorithms employed [42] . To mitigate this, we conducted non-

arametric statistical testing. We used the Wilcoxon Signed Rank

est [43] over 30 independent runs with a 95% (α < 0.05) confi-

ence level to test if significant differences exist between the mea-

urements for different treatments along with Cohen effect size for

easuring the difference magnitude. This test makes no assump-

ion on the data distribution and is suitable for ordinal data. We

re, thus, confident that the observed statistical relationships are

ignificant. Other threats to internal validity refers to experimenter

ias. Most of our experimental process is automated and random-

zed. Thus we believe there is little experimenter bias.

Construct threats to validity may arise from our evaluation met-

ics accuracy@k, precision@k and recall@k to measure the effec-

iveness of our approach. Although these metrics are well known

easure that are widely used in evaluating recommendation sys-

ems is software engineering [14,25,49] , we believe that there is a

ittle bias towards using these measures. That is, a common as-

umption when evaluating recommendation systems using such

etrics is that items that the user has not selected are uninter-

sting, or useless, to other users [25] . Hence, in the library rec-

mmendation problem, a system might not adopt a specific library

or many reasons mainly if the system’s developers are not aware

y such a library especially with the exponentially growing num-

er of available libraries in code repositories, or due to other con-

traints such as budget limitations or deadline pressure, etc. We

re thus planning to further evaluate LibFinder with developers in

n industrial setting. Another potential threat to validity can be re-

ated to extracted identifiers. In fact, identifiers in a system may be

nfluenced by class names and method names from its dependent

ibrary. Usually library import statements involve identifiers (pack-

ge/class names) from the original library, and similarly for method

alls which involve method names from the library. The presence

f library identifiers in the projects code might bias our semantic

imilarity measure to retrieve the removed library. In other words,

he library dependency is removed, but some of the library identi-

ers are still in the projects code. To mitigate this potential threat

o validity, we excluded all identifiers related to library import and

nvoke from the projects code.

Moreover, another possible threat could be related to the de-

endencies extraction from pom files. Having a dependency de-

lared in the pom.xml does not necessary grantee that the project

s actually using it (i.e., invoking it). To address this issue, we

ompiled and inspected a random set of over 300 projects using

cabi-aether 17 library and JavaCompiler (ver.1.6) eclipse

ompiler 18 to automatically log all loaded classes. In our effort, less

han 4% of library dependencies are not used by their projects. The

ercentage is insignificant and we believe it does not affect the re-

ults of dependency analysis.
17 Aether adapter for maven plugins, http://aether.jcabi.com/index.html , accessed

8-09-2016.
18 Javacompiler tool, http://docs.oracle.com/javase/7/docs/api/javax/tools/

avaCompiler.CompilationTask.html , accessed 08-09-2016.

t

s

t

p

Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
External threats to validity refers to the generalizability of our

ndings. We considered a large set of open-source Java projects

ollection from Github that use libraries from Maven. Although

aven is a large and popular tool for the development commu-

ity, in practice only a subset of developers are based in Maven to

elp manage their build process. To mitigate this threat, we have

ested LibFinder with 32,760 projects with different sizes and from

ifferent application domains. We are also planning to conduct an

ndustrial evaluation of our recommendation system to assess its

ffect on code quality as well as developers productivity.

. Related work

In recent years, there has been much interest in academia as

ell as in industry on providing tools to help developers on un-

erstanding and using library APIs. Most of the related work relies

n library method recommendation and API usage patterns.

Library method recommendation. Heinemann et al. [15] proposed

n approach for recommending library methods using data mining

or learning term-method associations based on identifiers similar-

ty, similarly to our approach. Rascal [50] uses collaborative filter-

ng to suggest API methods based on a set of already employed

ethods within a class. Similarly, Javawock,tsunoda2005javawock

ses same technique to recommend API classes instead of meth-

ds. Thung et al. [14,16] have proposed a technique for recom-

ending API methods based on textual description of feature re-

uests and method history usage. While most of existing ap-

roaches suppose that developer has already find his library and

e needs support on how to use it, our approach recommends

hole library. LibRec [9] is the approach most related to ours. Li-

Rec uses association rule mining and collaborative filtering on his-

oric software artefacts to determine commonly used together li-

raries. The main limitation of LibRec is that a library is regarded as

 black box where recommendations are based on how other client

ystems previously use it. Consequently, the proposed approach

as not able to recommend libraries to projects that only use a

mall number of libraries or do not use any libraries at all. Unlike

ibRec , our approach opts a content-based recommendation com-

ined with library usage history. As shown in our empirical evalu-

tion, effective library recommendation should be driven, most im-

ortantly, by the content of the library. Furthermore, our approach

s based on a larger dataset of 32,760 client systems, while LibRec

ses only 500.

API usage patterns. Several approaches have been proposed to

ine API usage patterns to help developers on using their library

PIs. Most of them propose temporal [17] , unordered [51,52] and

equential [53,54] usage patterns, based on clients usage. For in-

tance, MAPO [53] mines API usage patterns from existing source

ode. The patterns are given by methods that are frequently called

ogether and that follow certain sequential rules. We believe that

hese approaches would be complementary to ours, as they pro-

ide support on how to use the recommended libraries.

Use of code identifiers. Source code vocabulary has been widely

sed in several purposes in software engineering [15,16,55–60] . Ba-

racharya et al. [61] used structural semantic indexing (SSI) to asso-

iate words to source code entities based on API usage similarities.

heir goal is to improve the retrieval of API usage examples from

ode repositories. Mudablue [62] is a tool that categorizes software

ystems based on their code identifiers. Ouni et al. [31,63] pro-

osed a vocabulary-based approach to recommend refactoring in

rder to preserving the semantic coherence of the code based on

he semantic information embodied in code identifiers.

Combining SBSE and MSR. Software practitioners and re-

earchers are recognizing the benefits of SBSE and MSR techniques

o support the maintenance and evolution of software systems, im-

rove software design/reuse, and empirically validate novel ideas
recommendation using multi-objective optimization, Information

1.007

http://aether.jcabi.com/index.html
http://docs.oracle.com/javase/7/docs/api/javax/tools/JavaCompiler.CompilationTask.html
http://dx.doi.org/10.1016/j.infsof.2016.11.007

20 A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

n

w

a

R

t

e

i

t

s

v

t

a

i

t

t

t

w

t

v

i

v

s

A

T

S

l

N

l

R

and techniques [22–24] . In fact, there is recently an increase in

the interactions between these two fields. Harman et al. [64] used

Genetic Improvement for Adaptive Software Engineering where

genetic programming is used as a means of program improve-

ment based on a dataset of code fragments collected from soft-

ware repositories. The research area has come to be known as

‘genetic improvement’. You et al. [65] have proposed an SBSE ap-

proach to optimize non-functional properties of a system such as

JIT compilation, and hardware dependent algorithm using libraries.

In the area of bug prediction, Canfora et al. [66] used a multi-

objective optimization approach, named MODEP, to train from 10

datasets from the PRedictOrModels In Software Engineering Soft-

ware (PROMISE) repository. The proposed approach allows soft-

ware engineers to choose predictors achieving a specific compro-

mise between the number of likely defect-prone classes or the

number of defects that the analysis would likely discover, and lines

of code to be analysed/tested. Minku et al. [67] formulated the

problem of software effort estimation as a multiobjective learning

problem to understand the trade-off among different performance

measures. The conducted study was based on five data sets from

the PROMISE repository.

Another software engineering problem where SBSE has been

used to mine software repositories is software product lines (SPL)

recommendation and configuration focusing on feature model se-

lection [68,69] . A Software Product Line represents a set of soft-

ware products that share features in order to satisfy a specific mar-

ket segment where a feature represents a functionality that is vis-

ible for the user. Sayyad et al. [70] studied the use of search-based

algorithms for SPL feature selection as a multi-objective problem.

They make explicit the link between search based software en-

gineering for requirements selection and search based optimiza-

tion of choices pertaining to feature models. Guo et al. [71,72] in-

troduced a genetic algorithm to find SPL feature sets while con-

sidering the cost and value objective (value-per-unit-cost). Muller

[73] also formulated the choice of products to be built from an SPL

as a cost-value trade off, using the simulated annealing algorithm

to find suggested choices of features that would form products

that balance these trade offs. They focus on differing customer seg-

ments (stakeholder groups), observing that not all such groups can

necessary be satisfied by the products offered (due to budgetary

constraints). Cruz et al. [74] use a hybrid approach, which com-

bines fuzzy inference systems and the well-known multi-objective

genetic algorithm, NSGA-II,to help decision makers manage prod-

uct lines by generating portfolios of products. These portfolios are

based on user segments and the development cost of SPL products.

Indeed, we expect more adoption and unification of both SBSE

and MSR techniques to solve several other software engineering

problems in the future.

8. Conclusion and future work

In this paper, we have introduced LibFinder , a novel approach

for third-party library recommendation. LibFinder unifies SBSE and

MSR techniques, by exploring a large dataset collected from library

usage history and identifiers mined from code in large repositories.

The goal is to prevent missed reuse opportunities during software

maintenance and evolution, by attracting the attention of develop-

ers to potentially useful third-party libraries to their software sys-

tems. We empirically evaluated our approach, we mined the usage

history of 6083 libraries and 32,760 client systems from Maven and

Github repositories, respectively. The obtained results show that

our approach is efficient in recommending useful libraries com-

paring to random search and two other popular search algorithms

with more than 92% of accuracy, 51% of precision and 68% of re-

call with top-10 recommendations. Furthermore, we have shown

that LibFinder is significantly better than a state-of-the-art tech-
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
ique which is based on the usage history libraries. Furthermore,

e evaluated the usefulness of our approach in practice through

n empirical study on two industrial Java systems with developers.

esults show that the top 10 recommended libraries was rated by

he original developers with an average of 3.25 out of 5.

As part of our future work, we plan to conduct an industrial

valuation of LibFinder with developers to better understand the

mpact of adopting external libraries on the quality of their sys-

ems as well as their productivity. We also plan to consider more

oftware artifacts from other popular code repositories to better

alidate and generalize our results. More importantly, we will ex-

end LibFinder by formulating the library recommendation problem

s an interactive optimization problem to integrate the developer

n the loop when recommending libraries. Another interesting ex-

ension of LibFinder can be to consider the change history of a sys-

em, so that library recommendation can be addressed to classes

hat are actively changed and maintained by developers. Moreover,

e are planning to integrate LibFinder as an Eclipse plugin and try

o provide ‘on-the-fly’ recommendations in such a way that the de-

eloper will be automatically notified by relevant libraries while he

s writing his code. Yet another direction is to consider the library

ersion and the internal quality of the recommended library to en-

ure high quality software systems.

cknowledgment

The authors would like to thank all the particpants of our study.

his work was supported by Japan Society for the Promotion of

cience, Grant-in-Aid for Scientific Research (S) Collecting, Ana-

yzing, and Evaluating Software Assets for Effective Reuse (Grant

umber JP25220 0 03), and by the Ford-University of Michigan al-

iance Program.

eferences

[1] C.W. Krueger , Software reuse, ACM Comput. Surv. (CSUR) 24 (2) (1992)

131–183 .
[2] W.C. Lim , Effects of reuse on quality, productivity, and economics, IEEE Softw.

11 (5) (1994) 23–30 .

[3] E.-A. Karlsson (Ed.), Software Reuse: A Holistic Approach, John Wiley & Sons,
Inc., New York, NY, USA, 1995 .

[4] W.C. Lim , Effects of reuse on quality, productivity, and economics, IEEE Softw.
11 (5) (1994) 23–30 .

[5] R.C. Seacord , D. Plakosh , G.A. Lewis , Modernizing Legacy Systems: Software
Technologies, Engineering Process and Business Practices, Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2003 .

[6] M. Schäfer , M. Sridharan , J. Dolby , F. Tip , Refactoring java programs for flexi-
ble locking, in: Proceedings of the 33rd International Conference on Software

Engineering (ICSE), 2011, pp. 71–80 .
[7] K. Ishizaki , S. Daijavad , T. Nakatani , Refactoring java programs using concurrent

libraries, in: Workshop on Parallel and Distributed Systems: Testing, Analysis,
and Debugging (PADTAD), 2011, pp. 35–44 .

[8] B.W. Boehm , Software Engineering Economics, 1st, Prentice Hall PTR, Upper

Saddle River, NJ, USA, 1981 .
[9] F. Thung , D. Lo , J. Lawall , Automated library recommendation, in: 20th Working

Conference on Reverse Engineering (WCRE), 2013, pp. 182–191 .
[10] D. Kawrykow , M.P. Robillard , Improving api usage through automatic detection

of redundant code, in: IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), IEEE Computer Society, 2009, pp. 111–122 .

[11] E. Juergens , F. Deissenboeck , B. Hummel , Code similarities beyond copy &

paste, in: 14th European Conference on Software Maintenance and Reengineer-
ing (CSMR), 2010, pp. 78–87 .

[12] R.G. Kula , D.M. German , T. Ishio , K. Inoue , Trusting a library: a study of the
latency to adopt the latest maven release, in: 22nd IEEE International Con-

ference on Software Analysis, Evolution, and Reengineering (SANER), 2015,
pp. 520–524 .

[13] S. Raemaekers , A.V. Deursen , J. Visser , Semantic versioning versus breaking
changes : A study of the maven repositor, 2014 .

[14] F. Thung , S. Wang , D. Lo , J. Lawall , Automatic recommendation of api methods

from feature requests, in: IEEE/ACM 28th International Conference on Auto-
mated Software Engineering (ASE), 2013, pp. 290–300 .

[15] L. Heinemann , V. Bauer , M. Herrmannsdoerfer , B. Hummel , Identifier-based
context-dependent api method recommendation, in: 16th European Confer-

ence on Software Maintenance and Reengineering (CSMR), 2012, pp. 31–40 .
recommendation using multi-objective optimization, Information

1.007

http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0015
http://dx.doi.org/10.1016/j.infsof.2016.11.007

A. Ouni et al. / Information and Software Technology 0 0 0 (2016) 1–21 21

ARTICLE IN PRESS

JID: INFSOF [m5G; December 2, 2016;19:13]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[16] W.-K. Chan , H. Cheng , D. Lo , Searching connected api subgraph via text
phrases, in: ACM SIGSOFT 20th International Symposium on the Foundations

of Software Engineering (FSE), 2012, p. 10 .
[17] G. Uddin , B. Dagenais , M.P. Robillard , Temporal analysis of api usage con-

cepts, in: 34th International Conference on Software Engineering (ICSE), 2012,
pp. 804–814 .

[18] M. Tsunoda , T. Kakimoto , N. Ohsugi , A. Monden , K.-i. Matsumoto , Javawock: a
java class recommender system based on collaborative filtering, in: 17th In-

ternational Conference on Software Engineering and Knowledge Engineering

(SEKE), 2005, pp. 4 91–4 97 .
[19] M. Harman , B.F. Jones , Search-based software engineering, Inf. Softw. Technol.

43 (14) (2001) 833–839 .
20] F. Ferrucci , M. Harman , J. Ren , F. Sarro , Not going to take this anymore:

multi-objective overtime planning for software engineering projects, in: In-
ternational Conference on Software Engineering (ICSE), IEEE Press, 2013,

pp. 462–471 .

[21] K. Deb , A. Pratap , S. Agarwal , T. Meyarivan , A fast and elitist multiobjective
genetic algorithm: Nsga-ii, IEEE Trans. Evolut. Comput. 6 (2) (2002) 182–197 .

22] M. Harman , S.A. Mansouri , Y. Zhang , Search-based software engineering:
trends, techniques and applications, ACM Comput. Surv. (CSUR) 45 (1) (2012)

11 .
23] A.E. Hassan , The road ahead for mining software repositories, in: Frontiers of

Software Maintenance (FoSM), IEEE, 2008, pp. 48–57 .

[24] H. Kagdi , M.L. Collard , J.I. Maletic , A survey and taxonomy of approaches for
mining software repositories in the context of software evolution, J. Softw.

Maintenance Evolut.: Res. Pract. 19 (2) (2007) 77–131 .
25] I. Avazpour , T. Pitakrat , L. Grunske , J. Grundy , Dimensions and metrics for eval-

uating recommendation systems, in: Recommendation Systems in Software
Engineering, Springer, 2014, pp. 245–273 .

26] A. Ouni , A Mono-and Multi-objective Approach for Recommending Software

Refactoring, Ph.D. thesis, University of Montreal, 2014 .
[27] T. Patanamon , T. Chakkrit , G.K. Raula , Y. Norihiro , I. Hajimu , M. Ken-ichi , Who

should review my code? a file location-based code-reviewer recommendation
approach for modern code review, in: 22nd IEEE International Conference on

Software Analysis, Evolution, and Reengineering (SANER), 2015 .
28] G. Adomavicius , A. Tuzhilin , Toward the next generation of recommender sys-

tems: a survey of the state-of-the-art and possible extensions, IEEE Trans.

Knowl. Data Eng. 17 (6) (2005) 734–749 .
29] F. Ricci , L. Rokach , B. Shapira , Introduction to Recommender Systems Hand-

book, Springer, 2011 .
30] K. Deb , Multi-objective optimization using evolutionary algorithms, 16, John

Wiley & Sons, 2001 .
[31] A. Ouni , M. Kessentini , H. Sahraoui , M.S. Hamdi , Search-based refactoring: To-

wards semantics preservation, in: 28th IEEE International Conference on Soft-

ware Maintenance (ICSM), 2012, pp. 347–356 .
32] C.D. Manning , P. Raghavan , H. Schütze , et al. , Introduction to information re-

trieval, 1, Cambridge university press Cambridge, 2008 .
[33] T. Ishio , R.G. Kula , T. Kanda , D.M. German , K. Inoue , Software ingredients: de-

tection of third-party component reuse in java software release, in: IEEE Work-
ing Conference on Mining Software Repositories (MSR), 2016, p. toappear .

34] D.C. Karnopp , Random search techniques for optimization problems, Automat-
ica 1 (2) (1963) 111–121 .

[35] H. Li , Q. Zhang , Multiobjective optimization problems with complicated pareto

sets, moea/d and nsga-ii, IEEE Trans. Evolut. Comput. 13 (2) (2009) 284–302 .
36] E. Zitzler , S. Künzli , Indicator-based selection in multiobjective search, in: Par-

allel Problem Solving from Nature-PPSN VIII, Springer, 2004, pp. 832–842 .
[37] E. Zitzler , L. Thiele , M. Laumanns , C.M. Fonseca , V.G. Da Fonseca , Performance

assessment of multiobjective optimizers: an analysis and review, IEEE Trans.
Evolut. Comput. 7 (2) (2003) 117–132 .

38] D. Van Veldhuizen , G.B. Lamont , et al. , On measuring multiobjective evolution-

ary algorithm performance, in: Congress on Evolutionary Computation (CEC),
1, 20 0 0, pp. 204–211 .

39] C.M. Fonseca , J.D. Knowles , L. Thiele , E. Zitzler , A tutorial on the performance
assessment of stochastic multiobjective optimizers, in: International Confer-

ence on Evolutionary Multi-Criterion Optimization (EMO), 216, 2005, p. 240 .
40] D. Jannach , M. Zanker , A. Felfernig , G. Friedrich , Recommender Systems: An

Introduction, Cambridge University Press, 2010 .

[41] P.M. Chisnall , Questionnaire design, interviewing and attitude measurement, J.
Mark. Res. Soc. 35 (4) (1993) 392–393 .

42] A. Arcuri , L. Briand , A practical guide for using statistical tests to assess ran-
domized algorithms in software engineering, in: 33rd International Conference

on Software Engineering (ICSE), IEEE, 2011, pp. 1–10 .
43] J. Cohen , Statistical Power Analysis for the Behavioral Sciences, Academic press,

1988 .

44] A. Arcuri , G. Fraser , On parameter tuning in search based software engineering,
in: Search Based Software Engineering, Springer, 2011, pp. 33–47 .

45] A.E. Eiben , S.K. Smit , Parameter tuning for configuring and analyzing evolu-
tionary algorithms, Swarm and Evolut. Comput. 1 (1) (2011) 19–31 .

46] J.L. Fleiss , Measuring nominal scale agreement among many raters., Psychol.
Bull. 76 (5) (1971) 378 .
Please cite this article as: A. Ouni et al., Search-based software library

and Software Technology (2016), http://dx.doi.org/10.1016/j.infsof.2016.1
[47] J.R. Landis , G.G. Koch , The measurement of observer agreement for categorical
data, Biometrics (1977) 159–174 .

48] I. Sommerville , Software Engineering, 6, Pearson Education Ltd, 2001 .
49] X. Wang , L. Zhang , T. Xie , J. Anvik , J. Sun , An approach to detecting duplicate

bug reports using natural language and execution information, in: 30th Inter-
national Conference on Software Engineering (ICSE), ACM, 2008, pp. 461–470 .

50] F. Mccarey , M.Ó. Cinnéide , N. Kushmerick , Rascal: a recommender agent for
agile reuse, Artif. Intell. Rev. 24 (3-4) (2005) 253–276 .

[51] S. Mohamed Aymen , B. Omar , A. Hani , S. Houari , Mining multi-level api us-

age patterns, in: International Conference on Software Analysis, Evolution, and
Reengineering (SANER), 2015, pp. 23–32 .

52] Z. Li , Y. Zhou , Pr-miner: automatically extracting implicit programming rules
and detecting violations in large software code, in: ACM SIGSOFT Software En-

gineering Notes, 30, ACM, 2005, pp. 306–315 .
53] H. Zhong , T. Xie , L. Zhang , J. Pei , H. Mei , Mapo: Mining and recommending

api usage patterns, in: S. Drossopoulou (Ed.), European Conference on Objec-

t-Oriented Programming (ECOOP), Lecture Notes in Computer Science, 5653,
Springer Berlin Heidelberg, 2009, pp. 318–343 .

54] J. Wang , Y. Dang , H. Zhang , K. Chen , T. Xie , D. Zhang , Mining succinct and high-
-coverage api usage patterns from source code, in: IEEE Working Conference

on Mining Software Repositories (MSR), 2013, pp. 319–328 .
55] C. McMillan , M. Grechanik , D. Poshyvanyk , Detecting similar software applica-

tions, in: 34th International Conference on Software Engineering (ICSE), 2012,

pp. 364–374 .
56] A. Hindle , E.T. Barr , Z. Su , M. Gabel , P. Devanbu , On the naturalness of soft-

ware, in: 34th International Conference on Software Engineering (ICSE), 2012,
pp. 837–847 .

[57] L. Inozemtseva , S. Subramanian , R. Holmes , Integrating software project re-
sources using source code identifiers, in: 36th International Conference on

Software Engineering (ICSE), 2014, pp. 400–403 .

58] D. Lawrie , C. Morrell , H. Feild , D. Binkley , What’s in a name? A study of iden-
tifiers, in: Proceedings of the 14th International Conference on Program Com-

prehension (ICPC), 2006, pp. 3–12 .
59] A. Ouni , R.K. Gaikovina , K. Inoue , Search-based peer reviewers recommenda-

tion in modern code review, in: IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2016 .

60] A. Ouni , Z. Salem , K. Inoue , M. Soui , SIM: an automated approach to im-

prove web service interface modularization, in: IEEE International Conference
on Web Services (ICWS), 2016, pp. 91–98 .

[61] S.K. Bajracharya , J. Ossher , C.V. Lopes , Leveraging usage similarity for effective
retrieval of examples in code repositories, in: ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering (FSE), 2010, pp. 157–166 .
62] S. Kawaguchi , P.K. Garg , M. Matsushita , K. Inoue , Mudablue: an automatic cat-

egorization system for open source repositories, J. Syst. Softw. 79 (7) (2006)

939–953 .
63] A. Ouni , M. Kessentini , H. Sahraoui , K. Inoue , K. Deb , Multi-criteria code refac-

toring using search-based software engineering: an industrial case study, ACM
Trans. Softw. Eng. Methodol. 25 (3) (2016) 23:1–23:53 .

64] M. Harman , Y. Jia , W.B. Langdon , J. Petke , I.H. Moghadam , S. Yoo , F. Wu , Ge-
netic improvement for adaptive software engineering (keynote), in: 9th Inter-

national Symposium on Software Engineering for Adaptive and Self-Managing
Systems, in: SEAMS 2014, 2014, pp. 1–4 .

65] S. Yoo, Amortised Optimisation of Non-functional Properties in Production En-

vironments, pp. 31–46.
66] G. Canfora , A.D. Lucia , M.D. Penta , R. Oliveto , A. Panichella , S. Panichella , Defect

prediction as a multiobjective optimization problem, Softw. Test., Verif. Reliab.
25 (4) (2015) 426–459 .

[67] L.L. Minku , X. Yao , Software effort estimation as a multiobjective learning
problem, ACM Trans. Softw. Eng. Methodol. 22 (4) (2013) 35:1–35:32 .

68] M. Harman , Y. Jia , J. Krinke , W.B. Langdon , J. Petke , Y. Zhang , Search based

software engineering for software product line engineering: a survey and di-
rections for future work, in: 18th International Software Product Line Confer-

ence-Volume 1, 2014, pp. 5–18 .
69] R.E. Lopez-Herrejon , L. Linsbauer , A. Egyed , A systematic mapping study of

search-based software engineering for software product lines, Inf. Softw. Tech-
nol. 61 (2015) 33–51 .

[70] A.S. Sayyad , T. Menzies , H. Ammar , On the value of user preferences in

search-based software engineering: a case study in software product lines, in:
International Conference on Software Engineering (ICSE), 2013, pp. 492–501 .

[71] J. Guo , J. White , G. Wang , J. Li , Y. Wang , A genetic algorithm for optimized
feature selection with resource constraints in software product lines, J. Syst.

Softw. 84 (12) (2011) 2208–2221 .
[72] J. Li , X. Liu , Y. Wang , J. Guo , Formalizing feature selection problem in software

product lines using 0-1 programming, in: Practical Applications of Intelligent

Systems, Springer, 2011, pp. 459–465 .
[73] J. Muller , Value-based portfolio optimization for software product lines, in:

15th International Software Product Line Conference (SPLC), 2011, pp. 15–24 .
[74] J. Cruz , P.S. Neto , R. Britto , R. Rabelo , W. Ayala , T. Soares , M. Mota , Toward a

hybrid approach to generate software product line portfolios, in: IEEE Congress
on Evolutionary Computation, 2013, pp. 2229–2236 .
recommendation using multi-objective optimization, Information

1.007

http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0054
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0054
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0054
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0054
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0054
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0054
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0054
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0056
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0056
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0056
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0056
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0056
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0056
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0057
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0057
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0057
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0057
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0059
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0059
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0059
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0059
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0060
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0060
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0060
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0060
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0060
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0061
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0061
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0061
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0061
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0065
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0065
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0065
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0065
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0065
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0065
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0065
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0066
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0066
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0066
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0067
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0067
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0067
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0067
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0067
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0067
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0067
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0068
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0068
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0068
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0068
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0069
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0069
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0069
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0069
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0070
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0070
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0070
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0070
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0070
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0070
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0071
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0071
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0071
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0071
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0071
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0072
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0072
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0073
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0073
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0073
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0073
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0073
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0073
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0073
http://refhub.elsevier.com/S0950-5849(16)30365-2/sbref0073
http://dx.doi.org/10.1016/j.infsof.2016.11.007

	Search-based software library recommendation using multi-objective optimization
	1 Introduction
	2 Background and motivating example
	2.1 Search based software engineering (SBSE) and mining software repositories (MSR)
	2.2 Recommendation systems
	2.3 Multi-objective search-based algorithms
	2.4 Motivating example

	3 Basic concepts and terminology
	3.1 System and library dependencies
	3.2 Semantic similarity

	4 Search-based software library recommendation
	4.1 Framework of the approach
	4.1.1 Step1: data extraction and processing
	4.1.2 Step2: data exploration and search process

	4.2 NSGA-II adaptation
	4.2.1 Search algorithm
	4.2.2 Solution representation
	4.2.3 Objective functions
	4.2.4 Genetic operators

	5 Evaluation
	5.1 Research questions
	5.2 Experimental design
	5.2.1 Dataset
	5.2.2 Evaluation method and metrics
	5.2.3 Inferential statistical test methods used
	5.2.4 Parameter tuning and setting

	5.3 Results
	5.4 Discussions
	5.4.1 Library selection
	5.4.2 Developer insights on third-party library recommendation
	5.4.3 LibFinder scalability

	6 Threats to validity
	7 Related work
	8 Conclusion and future work
	 Acknowledgment
	 References

