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Abstract—In recent times, use of third-party libraries has be-
come prevalent practice in contemporary software development.
Much like other code components, unmaintained libraries are
a cause for concern, especially when it risks code degradation
over time. Therefore, awareness of when a library should be
updated is important. With the emergence of large libraries
hosting repositories such as Maven Central, we can leverage the
dynamics of these ecosystems to understand and estimate when a
library is due for an update. In this paper, based on the concepts
of software aging, we empirically explore library usage as a
means to describe its age. The study covers about 1,500 libraries
belonging to the Maven software ecosystem. Results show that
library usage changes are not random, with 81.7% of the popular
libraries fitting typical polynomial models. Further analysis show
that ecosystem factors such as emerging rivals has an effect on
aging characteristics. Our preliminary findings demonstrate that
awareness of library aging and its characteristics is a promising
step towards aiding client systems in the maintenance of their
libraries.

I. INTRODUCTION

In software development, a third-party library is a reusable

software component that provides a certain functionality for

client systems. With promises of quality implementations,

libraries offer an effective and efficient means to software

development [11]. Reuse of these popular libraries have lead

to the rise of large-scale library hosting sites, thus creating an

ecosystem between software that are either library providers

(systems) or library users (clients). For instance, in 2010,

Sonatype reported that the Maven Central [3], one of the

largest online ecosystem of Java OSS libraries contained over

260,000 maven libraries and served over 70 million downloads

every week [2]. By November 2016, this ecosystem had

multiplied almost five times over, with more than 1,680,822

maven libraries available for client usage1. Other notable

library ecosystems include the NPM [4] JavaScript package

ecosystem for node.js, RubyGems [5] for Ruby and CPAN

[1] for Perl packages.

Software reliability is widely regarded as the prediction

of whether a software system functions as expected without

failure. There are theories of system failure that are related to

aging components. Parna’s software aging theory [15] states

that as time passes, aged components are faced with a higher

likelihood to fail. Similarly, Eick’s code decay principle [10]

1statistics taken from https://search.maven.org/#stats on Nov, 2016

states that unless an ongoing process of maintenance is in

place, changes in external environments creates an:

‘unanimous feeling among developers of the soft-

ware that code degrades through time and mainte-

nance becomes increasingly difficult and expensive’

Mitigation of code decay, which prolongs the lifespan of a

software is regarded as code rejuvenation.

In this paper, inspired by reliability concepts of software

aging, we model library aging by monitoring client-usage of

a software library within its software ecosystem. Specifically,

we represent library aging characteristics such as library decay

or rejuvenation. Since library age depicts ecosystem changes,

it may prove useful in guiding client developers on whether

they should update, especially if a library is about to reach its

end–of–life.

In an exploratory study of over 4,500 client projects that

adopt and use over 1,500 different java library versions, we

first investigate whether this phenomena can be modeled as a

mathematical function. Analyzing library usage data collected

from clients, we identify typical polynomial mathematical

curve models (i.e., First-order model, Second-order model,

or Higher-order model) that ‘best fits’ library aging. Results

show that 93.87% of the tested library versions can fitted

to any of the models. Furthermore, we found that 81.7%

fitted the Higher-order model. To investigate usefulness of the

curves, we took a more qualitative analysis of Higher-order

model, by manual examination of the curve shape and aging

characteristics of two case studies. Interestingly, we found

empirical evidence that rivals do have an effect on the aging

of popular libraries.

II. BACKGROUND & DEFINITIONS

Software ecosystems are defined as ‘a collection of software

systems, which are developed and co-evolve in the same

environment’ [13]. In the context of library ecosystems, this

consists of a plethora of library units that share and com-

pete for clients that share a commonality, such as the same

technological platform. For instance, the Maven Central [3]

ecosystem host a multitude of library packages that can be

integrated into any java client system.

In this study, we are interested in the relationship between

a client system and its dependent libraries. Therefore, we use

the population count of library dependents (i.e., library usage)

for a certain library, to determine its age. We propose the
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Fig. 1. Library migration between library and systems. The orange arrow
represents a dependency between Systems A , B and Library L.

following aging process: (1) younger attractive libraries will

experience a growing number of clients that adopt the library.

Later, (2) the library reaches maturity with a maximum peak

of clients. Once the library reaches its peak and cannot attract

any more new users or clients abandoning the library, (3) it

falls into library decay. Finally, (4) a library is said to reach its

end of life when its not attracting any more clients or no more

clients remain. Since aging is temporal, from the universe of

known client systems we can determine the usage of a library,

which we denote as Library Usage (LU): is a population count

of client systems that use a certain library at a specific point

in time.

Figure 1 shows how LU changes through that adoption

and migration of library versions by clients in the ecosystem.

Suppose we represent Lv as a library and Cv as a client

system. In this example, we have a library L with two versions

(L1 and L2) and two clients: A (A1 and A2) and B (B1, B2

and B3). Library migration is shown at point x in time, where

the LU of L1 is two (system A and B); however at point y,

since B3 adopted L2, the LU of L1 is one (client A) while

the LU of L2 is now one (client B).

Library migration is sometimes caused when a better al-

ternative to the current library emerges in the ecosystem. In

this context, we define these competing libraries as Library

Rival: is a competing library that causes library migration

from other libraries. The most common rival to any library

version is the newly released version, especially if it fixes bugs

or includes needed features that the previous library version

lacks. In Figure 1, we observe that evidence that L2 is indeed

the rival of L1, thus causing future versions of client B to use

it instead of L1.

III. LIBRARY AGING BASED ON LU

In this paper, we propose that LU can be interpreted the

aging of a library over time. In Figure 2, we show that this

relationship between LU and time can be plotted visually as

a curve. We see that for the shown GUAVA14.0.1 library, this

relationship is represented with as a mathematical equation

or curve. From Figure 2, a curve may exhibit the following

distinguishable feature characteristics:

Peak LU

Current Usage

L
U

Time t (days)

Peak AgePeak Age
Current Age

Fig. 2. Modeling Library Aging as a mathematical curve equation.

Fig. 3. Shapes of the curves showing (i) a concave or (ii) a convex aging
curve

• Current Age - is measured by the time from first usage

by a client till its most recent last seen LU by a system.

(i.e., library age = 912 days).

• Current LU - is the LU count at the oldest age. (i.e., cur-

rent LU = 102 at day 912).

• Peak LU - is the point in which the maximum LU has

been reached. (i.e., peak usage =157 LU).

• Peak Age - is the number of days point in which the

Peak LU has been reached. (i.e., peak age was reached

in 164 days).

As shown in Figure 3, the LU can either increase (i.e., re-

juvenation) or decrease (i.e., decay) to form a upward or

downward curve, which is either concaving or convexing.

Hence, we define these curve shapes:

• Library Decay - starts once the LU peak has been

reached. Visually, decay which is evident by the decreas-

ing rate of LU over time with a concave aging curve.

(i.e., Figure 3 (i))

• Library Rejuvenation - is the time period in which the

rate of LU is steady or increases over time with a convex

aging curve. (i.e., Figure 3 (ii))

Mathematical models are commonplace in many fields of

biology, medicine, economics and the social sciences [8]. They

describe and predict the estimation of a quantitative measure

over time. In software engineering, different models have

been applied primarily in the context of software reliability

(e.g., [7], [16]). In this study, we use fundamental polynomial

equations are shown in Figure 4 and Table I for our curve

fitting. Thus, for the relationship between library usage LU
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(c) Higher-order model

Fig. 4. Library Aging for three libraries representing the proposed three models. In each plot, a dot is one system that uses it; and the full line is the model that
fits the curve best. Note that Figure 4(a) represents the First-order model (FINDBUGS-ANNOTATIONS2.0.1), Figure 4(b) the Second-order model (CGLIB3.0)and
Figure 4(c) illustrates the best-fits for Higher-order model (JUNIT4.10).

TABLE I
SUMMARY STATISTICS OF THE COLLECTED DATASET

Model Equation
First-order model LU = at+ b

Second-order model LU = at2 + b
Higher-order model LU = aty + b+ c

and time t, key characteristics of each model are described

below:

• First-order model. The first degree polynomial equation

is depicted in Figure 4(a) as having single linear line and

mathematically where variables a and b are constants with

no convex or concave curve. The linear relationship typ-

ically indicates that LU for a library is steady increasing

over time, with no signs of slowing down.

• Second-order model. The second degree polynomial

equation is depicted in Figure 4(b) as having a bell-

shaped curve and mathematically where variables a and

b are constants. This characteristic is typical of libraries

dropped immediately, due to an exposed vulnerability.

• Higher-order model . The third and higher degree

polynomial equation is depicted in Figure 4(c) as having

multiple inflections points in its curve and is expressed

mathematically where variables a, b and c are constants

and y = [3, 4]. Higher-order model have multiple inflec-

tion points of decay or rejuvenation in the aging curve.

IV. EMPIRICAL EVALUATION

A. (RQ1) Do popular libraries share common aging char-

acteristics of their usage? If so, what are some of these

distinctive characteristics?

1) Research Method: Our research method comprises of

three steps. In the first step, we need to collect empirical data

that represents library usage for a particular software ecosys-

tem. Table II shows a summary of collected Open Source

TABLE II
SUMMARY STATISTICS OF THE COLLECTED DATASET

Dataset statistics
projects creation dates 2004-Oct to 2009-Jan
projects last update 2015-Jan onwards

# unique systems (projects) 48,495 (4,659)
total size of projects 630 GB

# commits related to pom.xml 4,892,770
# library migrations 852,322
# library versions curves 9,197

TABLE III
BEST FITTING RESULTS FOR THE 1,503 POPULAR LIBRARY VERSIONS.

INDECISIVE IS WHEN ALL THREE MODELS SCORE THE SAME AIC.

Model # Fitted % of Studied Libraries
First-order model 40 2.66%
Second-order model 143 9.51%
Higher-order model 1228 81.70%

Indecisive 63 4.19%
No Fit 29 1.93%

Total 1,503 100%

Source (OSS) client projects used libraries from the Maven

ecosystem. To ensure validity and quality of the collected

data, we (i) selected projects showed activity (commits to

the project) from January 2015 onwards and (ii) removed

projects that had less than 1,000 commits to its codebase.

Similar to our prior work [12], we used our PomWalker2)

tool and jgit3 to extract a history of library dependency

changes. As a result, we were left with 852,322 dependency

facts between the system and a maven library. Additionally,

we set a minimum threshold of 8 LU with a lifespan of

at least more than a day. For the second step, we then run

experiments by which the library aging data is fitted against

the proposed models. We employ the widely-used Akaike

2https://github.com/raux/PomWalker
3https://eclipse.org/jgit/

409



TABLE IV
SUMMARY STATISTICS OF LIBRARY AGING CHARACTERISTICS FOR THE 1,474 FITTED LIBRARY VERSIONS. HIGHLIGHTED VALUES SHOWS THAT THE

CHARACTERISTICS WERE DEEMED STATISTICALLY SIGNIFICANT (TUKEY HSD TEST).

Fitting Model Min. 1st Qu. x̄ = median µ = mean 3rd Qu. Max.
Current Age (# days) First-order model 1.00 149.50 756.00 838.00 1,361.00 3,106.00

Second-order model 1.00 239.00 520.00 712.90 983.00 2,812.00
Higher-order model 1.00 181.00 500.50 753.80 1,138.00 3745.00

First-order model 8.00 487.50 980.00 1003.00 1482.00 3151.00
Peak Age (# days) Second-order model 15.00 487.00 837.00 1052.00 1482.00 3053.00

Higher-order model 8.00 544.00 967.50 1112.00 1528.00 3745.00

First-order model 8.00 8.00 10.00 10.78 11.25 20.00
Peak LU (LU) Second-order model 8.00 10.00 12.00 14.85 17.00 63.00

Higher-order model 8.00 10.00 14.00 27.69 24.00 779.00

First-order model 1.00 8.00 9.50 9.68 11.00 20.00
Current LU (LU) Second-order model 1.00 8.00 10.00 13.13 15.00 63.00

Higher-order model 1.00 8.00 12.00 25.01 22.00 746.00

TABLE V
TOP 10 HIGHER-ORDER MODEL LIBRARIES BY PEAK LU.

ID Library Version Peak LU Current LU Peak Age Current Age # Rivals
(LU) (LU) (#days) (#days) (succeeding releases)

L1 junit 4.8.2 373 340 959 1809 8 (ver.4.9∼4.12)
L2 commons-collections 3.2.1 268 266 2508 2570 2 (ver.3.2.2 & ver.4.0)

Information Criterion (AIC) [6] to evaluate the goodness of

fit of each model. Specifically, the model with the lowest AIC

score is deemed the best fit. This criterion provides us with a

measure of the relative quality of the models that accounts for

the trade-off between their goodness of fit and their complexity

(see [14] for a thorough treatise of model fitting). For the

curve-fitting, we use the R4 statistical environment to produce

each library model. We rely on R’s (grofit)5 package, which

implements the AIC score, to fit against First-order model,

Second-order model and Higher-order model. Finally, in the

third step, we examine our proposed feature characteristics.

Specifically, we compare the Current Age, Peak Age, Peak

LU and Current LU characteristics of the different models. To

this end, we use the Tukey HSD [14] test to find significance

differences (p > 0.05) between the libraries that fitted each

model.

2) Findings: Table III lists the percentages of library aging

that are best-fit by each model. The most important finding

is that 93.87% of the 1,503 eligible library versions are best-

fitted by one of the models (i.e.,1.93% of libraries did not fit

any model, while 4.19% as indecisive). A practical example of

a no fit was libraries that had a constant LU, thus reflecting a

straight line. The result shows that library aging is not random,

but can be modeled. Furthermore, looking at the Table III, we

observe that 81.7% of the library versions fitted the Higher-

order model. Based on the nature of Higher-order model, we

can assume that most library versions show multiple inflection

points of either decay or rejuvenation during its lifespan.

Table IV shows the statistics of library characteristics that

4http://cran.r-project.org/
5https://cran.r-project.org/web/packages/grofit/grofit.pdf. grofit relies on

glm https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html to fit a
function

are specific to the fitted library versions. As highlighted in

the Table, using the Tukey HSD test, we found significant

differences for Peak LU (p=0.008) and Current LU (p=0.005)

between the Second-order model and Higher-order model.

Hence, the results indicates that most rejuvenated and popular

libraries (i.e.,indicated by high Peak and Current LU) fit the

Higher-order model. Importantly, it shows that many libraries

do not fit the Second-order model, not immediately dropped.

Hence, we answer RQ1:

We found 81.7% of the popular libraries (i.e., with high

Peak LU and Peak Age) best fitted the Higher-order model.

B. (RQ2) What is the effect of ecosystem factors such as

library rivals to popular library aging characteristics?

Results from RQ1 indicate that library versions tend to fit

the Higher-order model, especially towards the more popular

libraries. Hence our motivation for RQ2, is to take a more

qualitative approach to manually examine the visual aspects

of the library curve with the effect of ecosystem factors such

as rivals.

1) Research Method: In order to address RQ2, we ran-

domly select two popular libraries that best fitted the Higher-

order model in RQ1. Our research method has two steps to

understand the usefulness of our curve characteristics. In the

first step, we visually examine the library aging curves to

draw some interesting observations. Such observations include

identifying the Peak LU and determining if the shape of the

curve. In the second step, we identify rival library versions.

2) Findings: Figure 5 and Table V shows the two selected

libraries and their rivals. In the analysis we make two main

observations. First, in Figure 5(a), we observe that L1 is still a

library that has reached Peak LU. Visually, we identify that the
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Fig. 5. Library Aging for the selected three popular libraries. In each plot, a
dot is one system that uses it; and the full line (red) is the fitted Higher-order
model.

library has a concave aging curve. This characteristic suggests

that since the library has reached Peak LU, it is now in library

decay. Manually inspecting the release dates of the rivals, we

find that the cause of the decay may be attributed to a rival

rival junit4.9, which was released at the same time (i.e., 1000

days (2.7 years)). However, although the library is decaying,

there is no significant reason for library migration. In fact,

since reaching its Peak LU, LU has only dropped to 53. We

conjecture that due to the nature of junit as a testing library,

developers may not consider upgrading to rival libraries as a

priority. However, we can recommend that new systems should

consider other rival libraries.

Second, Figure 5(b), we observe L2 as having a concave

aging curve. The curve suggests that L2 took a longer time to

reach its Peak LU and the absence of rivals during this period.

Currently, its Peak Age is at 2,500 (i.e., 6 years). Coincidently,

at this same time, its rival of the next version (commons −
collections4.0) was released, possibly explaining the Peak LU.

It is interesting to note that also the next rival (commons −
collections3.2.2) was later released in 2015, to accommodate

existing users of the older version 3 systems users. This is

because commons− collections4.0 is a major upgrade to the

new JDK from 4 to 5. In this case study, we also recommend

new users to consider other rival libraries as this library has

reached its peak, but due to the long convex age curve, we

can see that it was a very popular and reliable library, with

users hardly moving away from this library to other rivals in

the ecosystem. Hence, we answer RQ2:

Emergence or absence of rival libraries in the ecosystem

have an effect on library decay or rejuvenation, especially

causing a library to reach its Peak LU.

V. CHALLENGES AND FUTURE WORK

In this paper, we modeling library usage as aging curves,

using them as a means to guide client developers on whether a

library version should be either adopted or migrated away. In

this study, we found that that 81.7% of 1,503 popular libraries

fit a curve model. Furthermore, using two case studies, we

manually were able to explain the curve characteristics to

ecosystem factors such as library rivals.

Although results show promise, many challenges exist.

In the study, we only considered rivals as the superseding

library versions. There may be unrelated rival libraries in the

ecosystem that will age a library. As stated by Bavota et al. [9],

other global factors such as security vulnerabilities or a change

in the environment platform may affect the aging of a library.

We consider this as future work. Currently, the curves are

only historic monitoring of client usage reporting the current

state. As the mathematical functions have predictive properties,

future work includes further investigation of prediction about

the potential lifespan a library. Also, the current experiment is

only performed within the Maven JVM ecosystem. It would be

interesting to extend the research to different ecosystems such

as the JavaScript npm, RubyGems and CRAN R ecosystems

to investigate this phenomena.
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