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Abstract—We propose, in this paper, a lightweight refactor-
ing recommendation tool, namely c-JRefRec, to identify Move
Method refactoring opportunities based on four heuristics using
static and semantic program analysis. Our tool aims at identiying
refactoring opportunities before a code change is committed to
the codebase based on current code changes whenever the devel-
oper saves/compiles his code. We evaluate the efficiency of our
approach in detecting Feature Envy smells and recommending
Move Method refactorings to fix them on three Java open-source
systems and 30 code changes. Results show that our approach
achieves an average precision of 0.48 and 0.73 of recall and
outperforms a state-of-the-art approach namely JDeodorant.

I. INTRODUCTION

Source code of large systems evolves through a process of

continuous changes to enhance existing features or add new

ones, correct anomalies in design, or fix bugs, etc. [1]. During

this process, developers may accidentally or unintentionally

implement methods in inappropriate classes, leading to unde-

sirable instances of code smells known as Feature Envy [2].

Feature Envy is one of the classic and most occurring code

smells as pointed out by many studies [3], and thus needs to

be prevented/fixed as early as possible.

To fix Feature Envy code smell, one of the useful refactor-

ings is Move Method [2]. A Move Method could be applied

to move a method from its original class to the class that it

envies. Various refactoring recommendation approaches have

been proposed in the literature [4], [5], [6], [7], [8], [9], [10] to

help developers to avoid a time-consuming, unrepeatable and

non-scalable refactoring process, when performed manually.

However, most existing refactoring approaches aim at rec-

ommending refactoring operations that improve quality met-

rics such as coupling and cohesion, while ignoring the seman-

tic coherence of the program. For example, a refactoring rec-

ommendation could move a method calculateSalary()
from a class Employee to a class Car because it reduces the

overall coupling in the system. However, implemting a method

calculateSalary() in the class Car does not make

sense semantically. Furthermore, existing approaches tend to

recommend ‘global’ refactoring solutions to be applied to the

entire system [4], [11]. These recommended refactorings often

involve classes in the system that are changed rarely during the

system’s maintenance and evolution and/or classes on which

a developer has no or little knowledge. As a consequence, the

developer’s decision to inspect the recommended refactorings

tends to be fastidious, time-consuming and error-prone [4].
To address these issues, we introduce in this paper, a

novel refactoring approach to detect Feature Envy code smell

instances and then identify Move Method refactorings to fix

them. Our approach is based on currently commited changes

and named c-JRefRec (change-based refactoring recommenda-

tion). Our approach defines a set of heuristics using structural

and semantic dependencies to detect refactoring opportunities,

through static program analysis.
We evaluate the efficiency of c-JRefRec on three non

trivial open-source Java systems. Our experiments consist of

a random set of 10 commits extracted from the commit log

of each studied system. For each commit, we evaluate the

efficiency of c-JRefRec in terms of precision and recall from

a set of known Feature Envy instances that are synthesized

manually. The obtained results show that our approach is able

to detect Feature Envy code smells with an average of 0.48 of

precision and 0.73 of recall, and able to identify appropriate

Move Method refactorings with an average of 0.42 of precision

and 0.68 of recall. We also compared our results against a

state-of-the-art technique namely JDeodorant [12], [9].

II. RELATED WORK

A. Definitions
Feature Envy is a classic smell that represents a sign of

violating the principle of grouping behavior with related data

and occurs when a method is “more interested in a class other
than the one it actually is in” [2]. More specifically, it is found

when a method heavily uses attributes and data from one or

more external classes, directly or via accessor operations. Fur-

thermore, in accessing external data, the method is intensively

using data from at least one external capsule.
Refactoring, which is defined as “the process of changing

the internal structure of existing code without changing the
observable behavior” [2], is a useful and essential technique

for fixing code smells.
B. Identification of Refactoring Opportunities

In recent years, many techniques have been proposed to deal

with refactoring recommendation problem, and much efforts

have been dedicated to Move Method refactorings.
Tsantalis et al. [12], [9] proposed a refacftoring tool called

JDeodorant to identify and fix Feature Envy code smells



based on coupling and cohesion. Furthermore, JDeodorant
defines a set of Move Method refactoring preconditions to

check whether the recommended refactoring preserve the

behavior and the design quality based on entity placement

metric. However, the semantic coherence of the refactored

program was not considered. Later, Bavota et al. [3] have

proposed MethodBook, an approach to identify Move Method

refactoring opportunities to fix the Feature Envy bad smell.

MethodBook considers both structural and conceptual relation-

ships between methods to identify sets of methods that share

the same responsibilities using Relational Topic Model (RTM).

Furthermore, Sales et al. [8] proposed a Move Method refac-

toring recommendation approach, namely JMove that analyzes

a set of static dependencies established by a method. Then it

compares the similarity of the dependencies established by

a source method with the dependencies established by the

methods in possible target classes. Prior to that, Marinescu

[13], [14] proposed a set of metrics-based detection rules to

identify deviations from established design principles.

Ouni et al. [15], [16] proposed a multi-objective formulation

of refactoring to identify refactoring opportunities including

Move Method that provide a good trade-off between fixing

code smells, and preserving semantic coherence using two

heuristics related to vocabulary similarity and structural de-

pendency. Recently, Ouni et al. [4] proposed a search-based

refactoring approach with an industrial case study to identify

refactoring opportunities, including Move Method, that should

provide the best trade-off between improving software quality,

fixing code smells and reducing the effort required to apply

the recommended refactorings.

III. c-JRefRec OVERVIEW

A. Tool Design

Our tool, c-JRefRec, takes as input the source code of a

program under development in Eclipse IDE, to identify and

fix methods implemented in incorrect classes. It employs the

AST Parser of Eclipse Java Development Tools (JDT) to

analyze the relationships between classes or methods. The tool

generates a directed dependency graph G = (V,E) for the

entire program where the vertices in V represent methods

and fields in the program, and the edges in E represent

dependencies (method calls and field access) between them.

The tool automatically updates the dependency graph when

a developer modifies and saves or compiles a source file.

In addition to dependencies, c-JRefRec employs a semantic

analysis to identify move method refactoring candidates by

extracting all code identifiers including names of packages,

classes, methods, attributes, and parameters for each class as

well as the method to be moved.

Our tool provides two views for Eclipse: Class State View
and Refactoring Candidates View as shown in Figure 1 and

3. The Class State View shows how cohesion and coupling of

classes are affected by a code change, by comparing the new

dependency graph after change with the original graph. Then,

the Refactoring Candidates View shows candidates of Move

Method Refactoring, based on the dependency graph and the

identifiers extracted from files.

B. Class State View

The view provides four metrics to show cohesion and

coupling among classes as follows.

• methods(C) is the number of methods defined in class

C, excluding abstract methods. A higher value means that

the class has a larger responsibility in a system.

• edges(C) is the total number of incoming edges and

outgoing edges connected to members defined in class

C. The higher value means that the cohesion of the class

is lower.

• clients(C) is the number of classes which use any

methods or fields of class C. The higher value means

that the cohesion of the class is lower.

• dependents(C) is the number of classes whose method

is called or field is accessed by methods in class C. The

higher value means that the cohesion of the class is lower.

During a change task, the view lists all modified classes

and their client/dependent classes and shows their original

values of metrics before the change task and the differences

caused by the code change. Since this view is automatically

updated when source code is saved/compiled, the developer

can know the current number of methods and dependencies

added and/or removed in the change. Developers can request

a recommendation of refactoring candidates by clicking on a

class name in the list as shown in Figure 3.

C. Refactoring Candidates View

This view shows the recommended move method refac-

toring. Our tool lists possible refactoring candidates, and

then evaluates them using three structural heuristics and one

semantic heuristic.

The structural heuristics use by the following metrics.

• Δedges(R,C) is the number of edges to be added or

removed by applying a move method refactoring R.

• Δclients(R,C) is the number of client classes to be

added/removed by applying a move method refactoring

R.

• Δdependents(R,C) is the number of dependent classes

to be added or removed by applying a move method

refactoring R.

The semantic heuristic is represented by a semantic similar-

ity, assuming that a method m should be moved from class c1
to c2 if m is more similar to methods in c2 than methods in

c1. We capture the semantic similarity between a method m
and a class c as SS(m, c) = cosine(tf− idf(m), tf− idf(c))
using tf-idf vectors where methods and classes are regarded

as individual documents.

D. Identification of Move Method Refactoring Candidates

Our tool identifies Move Method Refactoring opportunities,

i.e., methods located in inappropriate classes using the follow-

ing condition: Δedges(R,Coriginal)+Δedges(R,Ctarget)+
Δclients(R,Coriginal) + Δclients(R,Ctarget) +



Figure 1: Class State View (before refactoring).

Figure 2: Refactoring Candidates View.

Δdependents(R,Coriginal)+Δdependents(R,Ctarget) < 0
AND SS(m,Coriginal) < SS(m,Ctarget)

This view shows that not only the name of the method

to be moved and the name of target class, but also the

current value of each dependency metrics showing if there

is an increase/decrease by the move method refactoring. So, a

developer can easily decide to apply the refactoring or not.

IV. ILLUSTRATIVE USAGE SCENARIO

We demonstrate the usefulness of c-JRefRec in a realistic

environment setting. Using our research prototype, we perform

a use case scenario in respect to refactoring decisions. A video

highlighting the main features of the tool is available at [17].

We chose the popular open source system JFreeChart as

a target software to show how c-JRefRec works based on the

code commit ID ’c7e8c72’ recorded on github. In this commit,

a new class org.jfree.chart.axis.AxisLabelLocation is created,

while some other fields and methods are added/changes in the

class org.jfree.chart.axis.Axis.

The Class State View is automatically displayed when a save

or compile action is performed. This view is also dynamically

updated every time the source code is changed and saved.

Figure 1 shows the view after this commit, which shows

how many values are changed in this task. More specifically,

Figure 3: Class State View (after refactoring).

the view displays the class name, the number of methods

contained in the class, the number of edges contained in the

class, the number of client classes that use the class, and the

number of dependent classes it uses. Since AxisLabelLocation

is a newly created class, the number of methods is increased

by 5 from 0, the number of edges is increased by 23 from 0,

the number of client classes is increased by 2 from 0, and the

number of dependent classes is increased by 1 from 0. As for

the class Axis which is also modified, the number of methods

is increased by 6 from 67, the number of edges is increased by

26 from 389, and the number of dependent classes is increased

by 1 from 8.

Furthermore, if the developer wants to know if there is a rec-

ommended move method refactoring for AxisLabelLocation,

then she has to click on that line. As a result, the Refactoring

Candidates View is automatically opened as shown in Figure

2. As can be seen in the figure, this view displays the method

name to be moved, the name of the target class, as well as

different metric values that simulates the refactoring to support

the developer taking his decision. These metrics include the

number of increased edges in the source class, the number

of client and dependent classes to be reduced from the source

class, the number of reduced edges and increased client classes

from the target class, the number of dependent classes to

be increased to the target class, and the semantic similarity

between the method and each of the source and target classes.

For example, in this commit, the method labelAnchorH() is

a newly added method in the class Axis. The tool shows

that the number of edges has increased in the source class

by 4, but the number of edges to be reduced from the target

class is 6. In other words, it can be seen that by performing

this refactoring, the number of edges will decrease by 2, thus

reducing coupling and increasing cohesion. In this way, the

developer can see how to improve the cohesion degree and

coupling degree by refactoring not only the method to be

moved but also in the target class. Moreover, the semantic

similarity between the method and the source class is about

0.166, and the semantic similarity between the method and the

target class is about 0.618. The semantic similarity means that



TABLE I: STUDIED SYSTEMS.

System Version #classes #methods KLOC

JFreeChart 1.0.13 504 7,551 91.174
JMeter 3.0 1,055 8,561 101.501
JUnit 4.4 350 1,254 10.025

the method is more similar to the target class than the source

class. These values meet the identification of move method

refactoring candidates conditions we defined in sectionIII-D.

So, c-JRefRec suggests that the labelAnchorH() method should

be moved from the Axis class to the AxisLabelLocation class.

The developer could apply this refactoring candidate if he

considers that it makes sense from a semantic point of view.

Figure 3 shows the Class Status View after this recom-

mended refactoring is applied. When refactoring is applied,

the Class State View is automatically updated. As shown in

Figure 2, the number of edges has decreased by 2. Finally, by

clicking to the recommended refactoring, the labelAnchorH

method added in this change task is automatically moved to

its envied class AxisLabelLocation.

V. EVALUATION

This section reports the evaluation of c-JRefRec. We also

compare c-JRefRec with a popular existing refactoring tool,

JDeodorant [9], [12], which is based on coupling and cohesion

improvements for the entire program. Our replication package

is available online on [17].

We designed our experiments to address the two following

research questions:

• RQ1. What is the accuracy of c-JRefRec in identifying

Feature Envy code smells compared to JDeodorant?

• RQ2. What is the accuracy of c-JRefRec in recommend-

ing Move Method refactorings compared to JDeodorant?

A. Analysis Method

We evaluate our approach on a benchmark of three non-

trivial Java open-source systems namely, JFreeChart1, JMeter2,

and Junit3, which are summarized in Table I.

To answer our research questions, we need a set of well-

known Feature Envy instances and their corresponding refac-

torings (ground truth). ATo this end, we manually synthesized

a gold set of Feature Envy instances and their refactorings.

For each studied system, we randomly selected 10 commits

from the control version archive. Then, for each commit, we

randomly selected two methods and manually moved them

to other random classes that are changed in that commit.

We used Eclipse to apply these moves for our gold set, so

that only move methods that comply with the default Eclipse

preconditions are included in the gold set. So that, for each

system, we have 20 Feature Envy instances.

To answer RQ1, we execute both c-JRefRec and Jdeodorant

on the dataset. Then we calculate the precision and recall

score of each approach in identifying the instance in the Gold

1http://www.jfree.org/jfreechart
2http://jmeter.apache.org
3http://junit.org/junit4

set. More specifically, precision and recall are calculated as

follows:
Detection Precision =

TP

TP + FP
(1)

Detection Recall =
TP

TP + FN
(2)

where TP (True Positive) corresponds to a Feature Envy

instance identified by the approach and also in gold set;

FP (False Positive) corresponds to an instance identified by

the approach, but not in the gold set; FN (False Negative)

corresponds to an instance in the gold set, but not identified

by the approach.

To answer RQ2, we check whether c-JRefRec and JDeodor-

ant are able to recommend Move Method refactorings to return

back each Feature Envy instance to its original class based

on the gold set. We use precision and recall to measure the

accuracy of each approach as follows:

Refactoring Precision =
#of correct refactorings

#of recommended refactorings
(3)

Refactoring Recall =
#of correct refactorings

#of refactorings in the gold set
(4)

B. Results

Results for RQ1. Figure 4 present the results for RQ1.

We observe that for the 10 commits of each system, c-
JRefRec achieves an average precision for detecting Feature

Envies of 0.48, while an average precision of 0.38 is achieved

by JDeodorant for the three systems. Moreover, c-JRefRec
achieved a maximal precision of 0.54 with JUnit, and JDeodor-

ant achieved also a maximal precision with Junit but with a

score of 0.4. In terms of recall, for the three systems and

over the 30 commits, we observe that c-JRefRec achieves an

average recall of 0.73, while JDeodorant achieves an average

recall of 0.25. Moreover, c-JRefRec achieved its maximal

recall of 0.8 with both JMeter and Junit, while JDeodorant

achieved its maximal recall with 0.35 for JMeter. Based on

these results, both c-JRefRec and JDeodorant do not show any

particular sensitivity with the size of studied systems.

In more details, we observe that c-JRefRec achieved signif-

icantly higher recall results (0.73) than precision (0.48) as it

tends to identify a relatively larger number of Feature Envy

candidates leading to a reduced precision score comparing to

recall. Inversely, JDeodorant has lower recall results than pre-

cision as it recommends a limited number of smell instances.

Results for RQ2. Figure 5 report the obtained results for

RQ2. For all the 30 commits of the three systems, c-JRefRec
achieved an average precision of 0.42 and an average recall

of 0.68, while JDeodorant achieved 0.38 and 0.25 of precision

and recall, respectively. In both tools, the achieved detection

results were slightly better than the refactoring results. That

is, in both techniques when a method is detected as a Feature

Envy, i.e., in an incorrect class, they were also able, in most

cases, to identify their correct class that the method originally

belonged to.

In most situations where c-JRefRec was not able to deter-

mine the correct class, we noticed that either there were few

connections to the original class (less than 3) or there are other
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Figure 4: The average precision and recall results for Feature Envy
detection achieved by each of c-JRefRec and JDeodorant for the three
studied systems.

classes with the same or higher number of connections, thus

preventing the original class from appearing in the first rank.

For the three systems, we observe that c-JRefRec achieves

better Move Method recommendation results than JDeodorant.

Although our approach starts from the traditional heuristics

for Move Method, it extends them with the (1) dependency
graph, (2) the semantic similarity (SS), and (3) considering

the importance of both source to target class and vice versa

using the structural metrics. Moreover, JDeodorant is based

on the idea that a method m should be moved from cs to

ct if it access more data from ct than from its original class

cs. However, using the semantic similarity (SS) heuristic, c-
JRefRec considers that m should be moved if its vocabulary

is more similar to the methods in ct than to the methods in ct.
On the other hand, JDeodorant only makes a recommendation

when the refactoring improves metrics for the entire system,

based on cohesion and coupling, regardless the current changes

performed by a developer.

VI. CONCLUSION AND FUTURE WORK

We presented c-JRefRec, a novel refactoring recommenda-

tion approach that relies on code commits to identify Feature

Envy smells and recommend Move Method refactorings to re-

move them. The proposed approach is based on five heuristics

using static and semantic program analysis. We evaluated our

approach on three Java open-source systems and 30 commits.

Our results show that c-JRefRec outperforms a popular state-

of-the-art technique and achieves precision and recall scores at

0.48 and 0.73, respectively, in detecting Feature Envy smells,

and a precision of 0.42 and recall of 0.68 in recommending

correct Move method refactorings. As part of our future work,

we plan to compare c-JRefRec with other available refactoring

tools and conduct an empirical study on different systems with

developers to evaluate our approach in real-world scenarios

and get more feedback. Moreover, we plan to extend c-JRefRec
to support more code smells and refactoring operations.
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Figure 5: The average precision and recall results for Move Method
refactorings recommendation achieved by each of c-JRefRec and
JDeodorant for the three studied systems.
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[7] M. O’Keeffe and M. O. Cinnéide, “Search-based refactoring for software
maintenance,” Journal of Systems and Software, vol. 81, no. 4, pp. 502–
516, 2008.

[8] V. Sales, R. Terra, L. F. Miranda, and M. T. Valente, “Recommending
move method refactorings using dependency sets,” in Working Confer-
ence on Reverse Engineering (WCRE), 2013, pp. 232–241.

[9] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 347–367, 2009.

[10] A. Ouni, M. Kessentini, H. A. Sahraoui, K. Inoue, and M. S. Hamdi,
“Improving multi-objective code-smells correction using development
history,” Journal of Systems and Software, vol. 105, pp. 18–39, 2015.

[11] R. Morales, Z. Soh, F. Khomh, G. Antoniol, and F. Chicano, “On the
use of developers’ context for automatic refactoring of software anti-
patterns,” Journal of Systems and Software, p. to appear, 2016.

[12] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou, “Jdeodorant: Identifi-
cation and removal of feature envy bad smells,” in IEEE International
Conference on Software Maintenance (ICSM), Oct 2007, pp. 519–520.

[13] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” in 20th IEEE International Conference on Software
Maintenance (ICSM), 2004, pp. 350–359.

[14] A. Trifu and R. Marinescu, “Diagnosing design problems in object
oriented systems,” in Proceedings of the 12th Working Conference on
Reverse Engineering, 2005, pp. 155–164.

[15] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “Search-based
refactoring: Towards semantics preservation,” in 28th IEEE International
Conference on Software Maintenance (ICSM), 2012, pp. 347–356.

[16] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, “Maintain-
ability defects detection and correction: a multi-objective approach,”
Automated Software Engineering, vol. 20, no. 1, pp. 47–79, 2013.

[17] “http://sel.ist.osaka-u.ac.jp/people/naoya-u/c-JRefRec.”


