
Refactoring Patterns Study in Code Clones during

Software Evolution
Jaweria Kanwal Katsuro Inoue Onaiza Maqbool

Quaid-i-Azam University Osaka University Quaid-i-Azam University

Islamabad, Pakistan Osaka, Japan Islamabad, Pakistan

 kjaweria09@yahoo.com inoue@ist.osaka-u.ac.jp onaiza@qau.edu.pk

Abstract—To investigate how code clones are handled by de-

velopers when they perform refactorings during software releas-

es, we performed a longitudinal study on different versions of five

Java systems. Our results show that a small proportion of code

clones are refactored during the releases and code clones of same

clone class are refactored consistently.

Index Terms—Software refactoring, code clones, software

maintenance and evolution.

I. INTRODUCTION

Code clones―identical code fragments in software―are

the result of developer’s copy-paste-modify activity during

software development. Sometimes clones cause an additional

maintenance effort such as a change in one clone fragment may

cause change in other clone fragments [1]. For this reason

clones need to be detected for better software maintenance [2].

One of the maintenance tasks is to remove the clones from the

system through refactoring. Refactoring is a widely used tech-

nique during software maintenance to improve code quality. It

is the process of improving the internal structure of a software

system without affecting its overall behavior [3]. There are

different refactoring solutions for different types of code

smells. Most well-known refactoring patterns have been pro-

posed by Fowler [3]. These are 65 refactoring patterns e.g.

move_method, extract_method, extract_interface and

add_parameter.

Refactoring on code clone instances may/may not remove

them from the system. For example, if the refactoring task is

extract method, which takes the code fragment from the meth-

od and puts it in another method, then clones may be removed

from the system as a result of this refactoring task but if only

add_parameter task is performed on a clone instance, (which

only changes the function signature) then it may improve the

design of system but does not remove the clones from the sys-

tem.

In literature, code clone evolution has been studied to inves-

tigate their change behavior e.g. how long clones remain in the

system, whether they change consistently or inconsistently.

Kim et al. [4] concluded that all clones are not refactorable and

hence remain in the system till last release of the software.

Among the disappearing clones, most of them disappear within

few check-ins, thus reducing the need of extensive refactoring

of code clones. But there is no work in literature to study the

clone evolution in terms of actual refactorings performed on

clones between software releases.

In this paper, we perform a longitudinal study to investigate

code clone evolution in terms of refactoring tasks performed in

the subsequent versions of software. Investigation of actual

refactorings performed on code clones gives historical evidence

of how code clones are treated by developers when they per-

form refactorings in software. In this paper, we focus on fol-

lowing two research questions:

1) How often are code clones refactored in software?

2) How often are clones refactored consistently?

Inspection of these research questions gives historical

background of clone refactorings between software releases

which will help software maintainers in taking code clone re-

factoring decisions in future releases. To the best of our

knowledge there is no work on the historical study of clones in

terms of actual refactorings performed on them. Our work is

novel in this regard.

II. EXPERIMENTAL SETUP AND RESULTS

In this section we describe the study setup for addressing each

research question and analyze the results. For clone detection,

we used CloneMiner [5] tool which uses a token based clone

detection technique. We set the similarity threshold as 30

tokens for code clones. In order to identify refactorings

performed between two versions, we use Ref-Finder [6] tool

which extracts well-known refactoring patterns [3] between

consecutive versions of software. Refactoring tasks detected

by Ref-Finder tool are reported at method level, class level or

interface level, referred to as refactored entities in this paper.

The methods and files where clones reside are referred as

clone entities. We developed an application for mapping clone

entities with refactored entities.

For experiments, we selected five Java systems i.e. JHotDraw,

Guava, Jabref, JFreeChart and Xerces_J. These are well

known systems and have been studied previously for clone

research. We selected some latest versions of these systems.

Starting version number of each system is different for

different systems, so for discussing the experimental results,

we used the general notation of representing each version as

Vn and next version as Vn+1. For JHotDraw starting version

(Vn) is 7.1, for Guava 14.0.1, for Jabref 2.11.1, for JFreeChart,

1.0.12 and for Xerces_J, 2.5.

A. How Often Are Code Clones Refactored in Software?

Table 1 represents the percentage of refactored clones in each

version of five Java systems. Average number of refactored

clone instances in each system is also presented.

Table 1 shows that number of refactored clones is different in

different versions. In some versions of JHotDraw, Guava and

Xerces_J, number of refactored clones are greater than other

978-1-5090-6595-0/17/$31.00 c© 2017 IEEE IWSC 2017, Klagenfurt, Austria45

versions. This indicates that developers are concerned with the

quality of software and paying attention to clones.

For example, in Xerces_j, there is a great variation in

refactored clones. In version Vn+3, refactored clones are 34%

but in next version they are 2%. This shows that there is no

consistency of refactoring code clones between consecutive

versions. This variation in clone refactorings depends upon the

number of actual refactorings performed in these versions. In

Xerces_J, in version Vn+3 actual refactorings performed are

496 whereas in next version number of refactorings is only

seven. This shows that number of refactorings performed in

versions varies widely. One possible reason of this variation

may be the release time duration between the versions.

Release duration between version Vn+2 and Vn+3 is four months

and release duration between version Vn+3 and Vn+4 is only one

month. Developers may not be able to perform refactorings in

such a short time period between the two releases.

On average, the number of refactored clones in different

versions in these five systems ranges from 2% to 24%. This

shows that a very small proportion of code clones are

refactored between consecutive versions.

TABLE 1: REFACTORED CLONES IN JAVA SYSTEMS

Versions JHotDraw Guava Jabref JFreeChart Xerces_J

Vn 27. 4% 47.0% 6.0% 3.8% 32.0%

Vn+1 19.1% 0.8% 9.0% 4.5% 24.8%

Vn+2 21.1% 0.5% 4.8% 1.3% 34.0%

Vn+3 21.4% 0.8% 17.0% 0.5% 34.2%

Vn+4 33.3% 6.2% 6.7% 1.2% 2.0%

Vn+5 - 8.2% 0.4% 0.6% 10.5%

Vn+6 - - 3.4% - 7.1%

Vn+7 - - - - 8.2%

Average 24.2% 10.5% 6.7% 2.0% 19.1%

B. How Often Are Clones Refactored Consistently?

Refactored clones are analyzed further to know whether these

are consistent or inconsistent clone refactorings. If all

instances of a clone class are refactored and same refactoring

task e.g. add_parameter is applied on them then it will be a

consistent refactoring. Consistent clone refactoring represents

that developers are aware of clone entities in the software. We

can call consistent refactoring as clone-aware refactoring. If

only a fraction of clone instances is refactored, then it is called

in-consistent refactoring. One possible reason of this

inconsistent refactoring may be unawareness of developers of

exact clone information in the system. Or it may be a design

issue or programming language limitation that other two

instances cannot be refactored similarly.

To determine how often clones are refactored consistently in

software, we measured the number of clone classes that are

consistently refactored in different versions.

Table 2 shows the percentage of clones that are refactored

consistently among the total refactored clones in different

versions of five Java systems. In some versions 100% clones

are refactored consistently whereas in some versions, only

10% clone refactorings are consistent. In JHotDraw, more than

52% clones are refactored consistently in each version.

Table 2 also shows the average number of consistently

refactored clones for each system. Highest average of

consistently refactored clones among the five systems is 62 in

JHotDraw and lowest is 38% in JFreeChart. In JHotDraw,

Guava and Xerces_J, consistent refactorings of clones are

more than 52% which shows that developers of these systems

are aware of the presence of clones while performing

refactoring tasks.

TABLE 2: PERCENTAGE OF CONSISTENT REFACTORINGS AMONG TOTAL

CLONE REFACTORINGS

Versions JHotDraw Guava Jabref JFreeChart Xerces_J

Vn 62.7% 62.0% 50.0% 32.0% 53.1%

Vn+1 56.7% 20.0% 80.0% 42.0% 40.0%

Vn+2 73.5% 100% 42.8% 32.0% 47.1%

Vn+3 52.0% 45.4% 70.4% 42.1% 49.0%

Vn+4 66.8% 45.0% 32.3% 44.1% 100%

Vn+5 - 48.0% 10.0% 36.0% 34.2%

Vn+6 - - 45.1% - 44.4%

Vn+7 - - - - 52.3%

Average 62.2% 53.2% 47.2% 38.0% 52.0%

III. CONCLUSIONS

In this paper, we studied code clone evolution by investigating

the refactoring patterns applied on code clones. Our results

showed that a small portion of code clones are refactored

during the releases. More than 40% clones are refactored

consistently in most of the versions. Consistent refactoring of

clones represents that in many cases developers are aware of

cloning in the system and that they intentionally use this copy

paste approach.

In the future we will investigate variation in the frequency

of clone refactorings, utility of clone refactorings on software

maintenance and assessing their impact in next versions.

ACKNOWLEDGMENT

This work was supported by Japan Society for the Promo-

tion of Science, Grant-in-Aid for Scientific Research (S)

JP25220003, and by Osaka University Program for Promoting

International Joint Research.

This research was also supported by Higher Education

Commission, Pakistan.

REFERENCES

[1] C. Kapser and M. Godfrey. “”Cloning considered harmful” considered

harmful: patterns of cloning in software,” Journal of Empirical Software

Engineering, vol. 13, pp. 645-692, 2008, Springer.
[2] T. Kamiya, S. Kusumoto and K. Inoue. “CCFinder: a multilinguistic

token-based code clone detection system for large scale source code,”

IEEE Transactions on Software Engineering, vol. 28, pp. 654-670, 2002.
[3] M. Fowler, “Refactoring: Improving the Design of Existing Programs,”

Addison-Wesley, 1999.

[4] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. “An Empirical Study of
Code Clone Genealogies,” ACM SIGSOFT Software Engineering Notes,

vol. 30, pp. 187-196, 2005.

[5] H. Basit, and S. Jarzabek. “A data mining approach for detecting higher-
level clones in software,” IEEE Transactions on Software Engineering,

vol. 35, pp. 497-514, 2009.

[6] M. Kim, M. Gee, A. Loh and N. Rachatasumrit. “Ref-Finder: a

refactoring reconstruction tool based on logic query templates,”

Proceedings of the eighteenth ACM SIGSOFT international symposium

on Foundations of software engineering, pp. 371-372, ACM, 2010.

46

