
Source File Set Search for
Clone-and-Own Reuse Analysis

Takashi Ishio∗†, Yusuke Sakaguchi∗, Kaoru Ito∗, Katsuro Inoue∗
∗ Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

† Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan
Email: {ishio, s-yusuke, ito-k, inoue}@ist.osaka-u.ac.jp

Abstract—Clone-and-own approach is a natural way of source
code reuse for software developers. To assess how known bugs
and security vulnerabilities of a cloned component affect an
application, developers and security analysts need to identify
an original version of the component and understand how the
cloned component is different from the original one. Although
developers may record the original version information in a
version control system and/or directory names, such information
is often either unavailable or incomplete. In this research, we
propose a code search method that takes as input a set of
source files and extracts all the components including similar
files from a software ecosystem (i.e., a collection of existing
versions of software packages). Our method employs an efficient
file similarity computation using b-bit minwise hashing technique.
We use an aggregated file similarity for ranking components. To
evaluate the effectiveness of this tool, we analyzed 75 cloned
components in Firefox and Android source code. The tool took
about two hours to report the original components from 10
million files in Debian GNU/Linux packages. Recall of the top-
five components in the extracted lists is 0.907, while recall of a
baseline using SHA-1 file hash is 0.773, according to the ground
truth recorded in the source code repositories.

Keywords-Software reuse, origin analysis, source code search,
file clone detection

I. INTRODUCTION

Software developers often reuse source code of existing
products to develop a new software product [1]. Mohagheghi
et al. reported that reused components are more reliable than
non-reused code [2]. While open source software projects
reuse code from other OSS projects, industrial developers
also use open source systems due to their reliability and cost
benefits [3].
Clone-and-own approach is one of the popular approaches

to source code reuse [4], [5]. Dubinsky et al. [1] reported
that cloning is perceived as a natural reuse approach by
the majority of practitioners in the industry. Although many
reusable components are available online in binary forms for
various operating systems, developers copy source code of
an existing component into their project’s so that they can
build and test their product using a particular version of a
component or modify it for their own purpose. For example,
Mozilla Firefox 45.0 includes a modified version of zlib 1.2.8
in its modules/zlib directory; a developer added a header
file mozzconf.h in order to rename functions defined in
the library. Koschke et al. [6] reported that copies of specific
libraries are involved in a relatively large number of projects.

Cloned components may introduce potential defects into an
application. Sonatype reported that many applications include
severe or critical flaws inherited from their components [7].
Hemel et al. [8] reported that each of Linux variants embedded
in electronic devices has its own bug fixes.
To investigate known bugs and security vulnerabilities of a

cloned component, developers and security analysts need to
identify an original version of the component and understand
how the cloned component is different from the original one.
However, in general identifying the original version is tedious
and time-consuming. The main reason is that original com-
ponent names and version numbers are often unrecorded [9].
Another reason is that a cloned component may be a derived
version in a different project. For example, Firefox includes
another copy of zlib in security/nss/lib/zlib direc-
tory; the version is a part of the NSS component. To identify
an original version of a cloned component, an analyst has
to compare its source code with all the existing versions of
components in its software ecosystem.
A baseline method to analyze a cloned component is code

comparison using file hash values such as SHA-1 and MD5.
Since the method cannot detect modified files, Kawamitsu
et al. [10] proposed a code comparison technique that identifies
the most similar file revision in a repository as an original ver-
sion of a file. The experiment reported 20% of cloned files are
modified in eight projects. Although the method is effective, its
simple pairwise comparison of files is inefficient to analyze an
entire software ecosystem, which includes millions of source
files.
In this research, we propose a code search method tailored

for analyzing a cloned component. It takes as input a set
of source files, and reports existing components including
files that are similar to the input files. The method ranks
components using aggregated file similarity, assuming a cloned
component is the most similar to the original component. A
reported list of components enables developers and security
analysts to compare their cloned component with its original
version.
Our code search method employs the b-bit minwise hash-

ing technique [11] that is an extension of Min-Hash tech-
nique [12], [13]; in summary, the technique enables to estimate
file similarity using hash signatures. Our method constructs a
database of hash values for each file in a software ecosystem.
Using the database, our method then extracts a subset of files

likely similar to a query and then computes actual similarity
for the subset. Although a database construction takes time,
we can search similar files within a practical time.
We also define a filtering method for components using file

similarity. Since different versions of a library often include
similar files, we select components having the most similar
files as a representative set.
We conducted an experiment to evaluate the effectiveness of

the tool. As the ground truth, we manually identified original
versions of 75 cloned components included in source code
of Firefox 45.0 and Android 4.4.2 rc1. We then analyzed the
components with a database of Debian GNU/Linux packages
including 10 million source files. Recall of the top-five compo-
nents in the extracted lists is 0.907, while recall of a baseline
using SHA-1 file hash is 0.773. To obtain all the original
components, a user needs to investigate 551 components in
the lists. It is smaller than 931 components reported by the
baseline method. The result shows that our method ranks the
original components at higher positions and reduces manual
effort of a user.
The contributions of the paper are summarized as follows.
• We defined a code search method to extract similar files
from a huge amount of source files efficiently.

• We defined a component filtering method to select likely
original components.

• We created the ground truth dataset of actual clone-and-
own reuse instances for two major OSS projects, and
evaluated our method using the dataset.

Section II shows related work of our approach. The ap-
proach itself is detailed in Section III. Section IV presents
the evaluation of our approach using OSS projects. Section V
describes the threats to validity of the work. Section VI
describes the conclusion and future work.

II. RELATED WORK

A. Code Clone Detection
Code clone detection has been used to analyze source

code reuse between projects. Kamiya et al. [14] proposed
CCFinder to detect similar code fragments between files.
German et al. [15] used CCFinder to detect code siblings
reused across FreeBSD, OpenBSD and Linux kernels. They
identify the original project of a code sibling by investigating
the source code repositories of the projects. Hemel et al. [8]
analyzed vendor-specific versions of Linux kernel using their
own clone detection tool. Their analysis showed that each
vendor created a variant of Linux kernel and customized many
files in the variant.
Koschke et al. [6] also used a clone detection technique to

analyze code clone rates in 7,800 OSS projects. They found
that a relatively large number of projects included copies of
libraries. They excluded the copies from analysis, because the
analysis did not focus on inter-project code reuse.
Krinke et al. [16] proposed to distinguish copies from

originals using the version information recorded in source code
repositories. Krinke et al. [17] used the approach to analyze

GNOME Desktop Suite projects. The result shows that there is
a lot of code reuse between the projects. Although the version
information is useful to select older files as candidates of
reused files, our method does not use it because source code
repositories are not always available.
Sajnani et al. [18] proposed SourcererCC, a scalable code

clone detection tool. They optimized comparison of two code
fragments, based on an observation that most of files are
different from one another. We employ b-bit minwise hash-
ing technique to avoid unnecessary code comparison. Our
approach can be combined with SourcererCC’s optimization.
Sasaki et al. [19] proposed a file clone detection tool named

FCFinder. The tool normalizes source files by removing code
comments and white space, and compare the resultant files
using MD5 hash. This method is not directly applicable to our
problem, because it cannot detect similar but modified files.
Hummel et al. [20] proposed to use an index database

for instant code clone detection. While it is similar to our
approach, the clone index is designed to report source code
locations. It is not suitable to compute source file similarity.
Jiang et al. [21] proposed DECKARD, a code clone detec-

tion tool using a vector representation of an abstract syntax
tree of source code. Nguyen et al. [22] extended a vector
representation for a dependence graph and proposed a code
clone detection tool named Exas. The tool has been used
to detect common patterns in source code [23], rather than
identification of similar files.
Detected instances of source code reuse are clues to ex-

tract the common functionalities in software products. Rubin
et al. [24] reported that industrial developers extract reusable
components as core assets from existing software products.
Bauer et al. [25] proposed to extract code clones across
products as a candidate of a new library. Ishihara et al. [26]
proposed a function-level clone detection to identify common
functions in a number of projects. Our method can be seen as
a file-level detection of cloned components.
While our method enables a user to select original compo-

nents for comparison, it does not directly support a source code
comparison activity itself. Duszynski [27] proposed a code
comparison tool to analyze source code commonalities from
a number of similar product variants. Sakaguchi et al. [28]
also proposed a code comparison tool that visualizes a unified
directory tree for source files of several products. Fischer
et al. [29] proposed to extract common components from
existing product variants and compose a new product.

B. Origin Analysis
Godfrey et al. [30] proposed origin analysis to identify

merged and split functions between two versions of source
code. The method compares identifiers used in functions to
identify original functions. Steidl et al. [31] proposed to
detect source code move, copy, and merge in a source code
repository. The method identifies a similar file in a repository
as a candidate of an original version.
Kawamitsu et al. [10] proposed to identify an original

version of source code in a library’s source code repository.

It is an extension of origin analysis across two source code
repositories. A user of the method must know what library
is included in the program. Our method does not need such
knowledge, because it compares input files with all the existing
components in a software ecosystem.
Sojer et al. [32] pointed out that ad-hoc code reuse from

the Internet has a risk of a license violation. Inoue et al. [33]
proposed a tool named Ichi-tracker to identify the origin of ad-
hoc reuse. It is a meta-search engine to obtain similar source
files on the Internet and visualizes the similarities. While Ichi-
tracker takes a single file as a query, our method enables a user
to analyze a set of files as a component.
Kanda et al. [34] proposed a method to recover an evolution

history of a product and its variants from their source code
archives without a version control. The approach also com-
pares the full contents of source files, using a heuristic that
developers tend to enhance a derived version and do not often
remove code from the derived version. It might complement
our approach, because it helps to understand an evolution
history of components reported by our method.
Antoniol et al. [35] proposed a method to recover the

traceability links between design documents and source files.
The method computes similarity of classes by aggregating
similarity of their attribute names to identify an original class
definition in design documents. Our method can be seen as
a coarse-grained extension that identifies original components
using aggregated file similarity.
Hemel et al. [36] proposed a binary code clone detection to

identify code reuse violating software license of a component.
The method compares the contents of binary files between a
target program and each of existing components. Sæbjørnsen
et al. [37] proposed a clone detection for binary code. It uses
a locality sensitive hashing to extract similar code fragments
in binary files. Qiu et al. [38] proposed a code comparison
method for a binary form to identify library functions included
in an executable file.
For Java software, Davies et al. [39], [40] proposed a file

signature to identify the origin of a jar file using classes and
their methods in the file ignoring the details of code. German
et al. [41] demonstrated the approach can detect OSS jar files
included in proprietary applications. Mojica et al. [42] used
the same approach to analyze code reuse among Android
applications. Ishio et al. [43] extended the analysis to auto-
matically identify libraries copied in a product. Differently
from those approaches, our method directly compares source
files because small changes in files might be important to
understand differences between a cloned component and its
original version.
Luo et al. [44] proposed a code plagiarism detection ap-

plicable to obfuscated code. The detection method identifies
semantically equivalent basic blocks in two functions. Chen
et al. [45] proposed a technique to detect clones of Android
applications. The analysis uses similarity between control-flow
graphs of methods. Obfuscated code is out of scope of our
method. Ragkhitwetsagul et al. [46] evaluated the performance
of code clone detection and relevant techniques for source files

Fig. 1. An example input and output of our method. Two components are
selected to cover four files. They are sorted by aggregated file similarity.

modified by code obfuscators and optimizations.

III. OUR APPROACH

Our method takes as input a set of source files and reports
a list of components that likely include the original version
of the files in a software ecosystem. In this paper, a software
ecosystem is a collection of components {C1, C2, · · · , Cn}.
Each component comprises a set of files. Our implementation
assumes that each component has a unique name such as “zlib-
1.2.8” and “libpng-1.6.9”.
We use source file similarity, because popular libraries

written in C/C++ are used by many projects. While the main
target of our method is C/C++, our implementation supports
C/C++ and Java. Our method is language independent except
for the lexical analysis step. The lexical analysis assumes that
each source file has a correct file extension representing a
programming language.
Our method comprises two steps: component search and

component-ranking. The first step extracts a set of components
R including files similar to query files Q. The second step
filters and ranks components according to aggregated file
similarity. We use a simple assumption: A component in a
database is likely original if it has the most similar file to a
query file.
Fig. 1 shows an example input and output of our method.

The example query Q includes five files: P.c, P.h, Q.c,
R.c, and S.c. Our method compares each query file with
files in a component database. In the example, our component
search step detects similar files in three components X-1.0,
X-1.1, and Y-0.2. Three edges connecting a product and
components have labels indicating the sum of similarity values.
Using file similarity and the aggregated similarity, our method
ranks Y-0.2 at the top and X-1.1 at the second. Y-0.2 is
the most likely original component, because it has four similar

Example code:
a: while ((*dst++ = *src++) != ’\0’);
b: while (*dst++ = *src++);

trigrams(a) trigrams(b)

〈 _, _, while 〉, 〈 _, while, (〉, 〈 _, _, while 〉, 〈 _, while, (〉,
〈 while, (, (〉, 〈 (, (, * 〉, 〈 while, (, * 〉,
〈 (, *, dst 〉, 〈 *, dst, ++ 〉, 〈 (, *, dst 〉, 〈 *, dst, ++ 〉,
〈 dst, ++, = 〉, 〈 ++, =, * 〉, 〈 dst, ++, = 〉, 〈 ++, =, * 〉,
〈 =, *, src 〉, 〈 *, src, ++ 〉, 〈 =, *, src 〉, 〈 *, src, ++ 〉,
〈 src, ++,) 〉, 〈 src, ++,) 〉,
〈 ++,), != 〉, 〈), !=, ’\0’ 〉, 〈 ++,), ; 〉,
〈 !=, ’\0’,) 〉, 〈 ’\0’,), ; 〉,
〈), ;, _ 〉, 〈 ;, _, _ 〉 〈), ;, _ 〉, 〈 ;, _, _ 〉

sim(a, b) =
|trigrams(a) ∩ trigrams(b)|
|trigrams(a) ∪ trigrams(b)| =

11

19
= 0.579

Fig. 2. An example of similarity value. A bold trigram is unique to a code
fragment.

files. X-1.1 is the second, because its two files P.h and Q.c
are more similar than files in Y-0.2. Those files are also
likely original files. Our method filters out X-1.0, because
it does not have a file whose similarity is higher than other
components.

A. Component Search
Our component search uses a file-by-file comparison. Given

a query set of source files Q, we extract candidates of original
components R from a collection of components as follows.

R = {Ci | ∃q ∈ Q, f ∈ Ci. sim(q, f) ≥ th}
where sim is a similarity function and th is a similarity
threshold, respectively. It should be noted that the definition
does not use release date of components, because there is
a time lag between an official release of a project and its
packaging for a software ecosystem. If accurate timestamps
are available for both query files and components, our method
can use a subset of components older than query files.
Our similarity of source files is Jaccard index of token

trigrams defined as follows.

sim(f1, f2) =
|trigrams(f1) ∩ trigrams(f2)|
|trigrams(f1) ∪ trigrams(f2)|

where trigrams(f) is a multiset of trigrams extracted from a
file f . We employ the Jaccard index because it approximates
the edit distance [47]. A higher similarity indicates that a larger
amount of source code could be reused. Compared with the
longest common subsequence, it is less affected by moved
code in a file. Furthermore, it can be efficiently estimated using
the Min-Hash technique [12], [13].
We use a token as a trigram element to ignore the length

of identifier names. A lexer extracts a token sequence by re-
moving comments and white space. The lexer keeps identifiers

Algorithm 1 Component Search
Inputs
Q: A set of files to be analyzed.
F : A set of existing files in a software ecosystem.
Owners(f): A mapping from a file f to components
including the file.

Outputs
R: A set of components including query files.
S(q, C): Similarity of a query file q and its most similar
file in a component C.

1: Initialize R ← φ
2: Initialize S(q, C) ← 0 for all possible q and C.
3: for q ∈ Q do
4: for f ∈ F do
5: if min(|trigrams(q)|,|trigrams(f)|)

max(|trigrams(q)|,|trigrams(f)|) ≥ th then
6: if sime(q, f) ≥ th−m then
7: if sim(q, f) ≥ th then
8: for Ci ∈ Owners(f) do
9: R ← R ∪ Ci

10: if S(q, Ci) < sim(q, f) then
11: S(q, Ci) ← sim(q, f)
12: end if
13: end for
14: end if
15: end if
16: end if
17: end for
18: end for

as they are, because identifiers are important clues to identify
a version [10]. Our lexer also keeps preprocessor directives
in C/C++ source files. Fig. 2 shows a pair of example code
fragments, their trigrams, and a similarity value obtained from
the trigrams. In the figure, a trigram 〈 A, B, C 〉 indicates
three consecutive tokens in a code fragment. A symbol “ ” in
a trigram indicates the beginning and end of a file.
Algorithm 1 shows an entire process of the component

search step. The algorithm starts with a query Q and a file
collection F . Since the same file may be included in multiple
components, we use F to represent a set of existing unique
files in a software ecosystem, and Owners(f) to represent a
set of components including the file f . Our implementation
uses SHA-1 file hash to detect files shared by components.
The algorithm computes similarity values S(q, C) between

query files and their most similar files in C defined as follows.

S(q, C) = max {sim(q, f) | f ∈ C}
The line 2 initializes S(q, C) to zero and the lines 10 and
11 update it. A file f ∈ C may update similarity values of
multiple query files, because a developer could copy the file
f to create the files.
The whole process compares all the pairs of q ∈ Q and

f ∈ F with two optimizations. First, it compares the size of
trigram sets at the line 5. The statement uses the following

property to avoid unnecessary comparison.

min(|X|, |Y |)
max(|X|, |Y |) < th =⇒ |X ∩ Y |

|X ∪ Y | < th

The property is derived from min(|X|, |Y |) ≥ |X ∩ Y | and
max(|X|, |Y |) ≤ |X ∪ Y |. Secondly, the process computes
sime(q, f) that is an estimated similarity computed by b-
bit minwise hashing technique [11]. Since it may have a
margin of error, line 6 uses th − m as a threshold, where
m specifies allowable errors. Finally, the process computes an
actual similarity metric sim(q, f) to compare trigrams. If it is
higher than a threshold, components including f are added
to R in the component-ranking step. The lines 10 and 11
record the highest similarity of a query file q and a component
Ci. The recorded similarity values S(q, Ci) are used in the
component-ranking step.
The algorithm works efficiently because sime(q, f) avoids

unnecessary actual similarity computation. In summary, b-bit
minwise hashing technique approximates a similarity of files
by comparing k pairs of b-bit signatures. Each signature repre-
sents a trigram sample in a file. In case of our implementation,
we chose parameters b = 1, k = 2048; 2048 trigram samples
in a source file are selected and then translated into 1-bit
signatures. Consequently, a file is represented by a 2048-bit
vector.
To compute sime(q, f), we use k independent hash func-

tions hi(t) (1 ≤ i ≤ k). Each function translates a trigram t in
a file into an integer. Our implementation uses 64-bit integers
as described in the Appendix. Using the hash functions, min-
hash signatures mi(f) (1 ≤ i ≤ k) for a file f are computed
as follows [13].

mi(f) = min {hi(t) | t ∈ trigrams(f)}
A min-hash signature mi(f) represents a trigram sample
selected from a file. If two files f1 and f2 are more similar,
more likely mi(f1) and mi(f2) select the same trigram and
result in the same value. The probability of mi(f1) = mi(f2)
is represented by the similarity of files [13]:

P (mi(f1) = mi(f2)) = sim(f1, f2)

We use b-bit min-hash signatures bi(f) (1 ≤ i ≤ k) extracted
from min-hash signatures. In case of b = 1, the signatures are
computed as follows [11].

bi(f) = LSB(mi(f))

where LSB is the least significant bit; i.e., bi(f) ∈ {0, 1}.
The probability of bi(f1) = bi(f2) is represented by

P (bi(f1) = bi(f2)) = sim(f1, f2) +
1− sim(f1, f2)

2

because the condition is satisfied when mi(f1) = mi(f2) or
two different signatures have the same LSB by chance.
We estimate a similarity of files q and f using their b-bit

min-hash signatures bi(q) and bi(f) (1 ≤ i ≤ k). Since the
probability of bi(q) = bi(f) is dependent on a similarity, we

Actual Similarity − Estimated Similarity

D
en

si
ty

 (%
)

−0.10 −0.05 0.00 0.05 0.10

0

5

10

15

20

Fig. 3. The distribution of errors obtained by randomly created samples for
sim(f1, f2) = 0.6.

compute an estimated similarity sime(q, f) from an observed
probability as follows.

sime(q, f) = (Po(q, f)− 1

2
)× 2

Po(q, f) = 1− 1

k

k∑

i=1

XOR(bi(q), bi(f))

where Po(q, f) is an observed probability of bi(q) = bi(f)
on k (2048) samples. The maximum value of sime(f1, f2)
is 1.0. If two files are the same, their estimated similarity is
always 1.0. Although the sime(f1, f2) could be negative, we
simply regard them as zero. It should be noted that this is a
simplified version for ease of implementation, compared with
the original (strict) estimation that was conducted in [11].
Computation of sime is O(1), because it uses XOR bit-

operations and bit counting. It is much efficient than Jaccard
index computation that requires O(n) depending on file size
n. Since a signature does not change, we compute b-bit min-
hash signatures for each f ∈ F and store them in a database.
The tool loads the entire database on memory because it is
sufficiently compact; 1 GB memory can store signatures for
four million files. For each query, we then compute signatures
for q ∈ Q and compare them with signatures in the database.
The line 6 in Algorithm 1 uses th−m, where m specifies

allowable errors. We use m = 0.1 for our implementation.
Fig. 3 shows the distribution of errors of 108 randomly created
Po samples under the condition sim(f1, f2) = 0.6. In the
figure, sim(f1, f2)− sime(f1, f2) is always less than 0.1. In
other words, sime(f1, f2) > th−m. We confirmed that it was
sufficient in the experiment.

B. Component Ranking

The second step filters and ranks extracted components R to
enable a user to identify an original component easily. To filter
components, we consider that C1 is a better candidate than
C2 if C1 provides more similar files than their corresponding

TABLE I
THE SEARCH RESULT FOR THE EXAMPLE INPUT IN FIG. 1

Q X-1.0 X-1.1 Y-0.2
P.c 1.0 0.7 1.0
P.h 0.9 1.0 0.9
Q.c 0.9 1.0 0.9
R.c 0.0 0.0 1.0
S.c 0.0 0.0 0.0
SQ(C) 2.8 2.7 3.8
|C| 3 3 5

source files in C2. We define this relation C1 ⊃S C2,

C1 ⊃S C2 ⇐⇒ (∀q.S(q, C1) ≥ S(q, C2) ∧
∃q.S(q, C1) > S(q, C2)) ∨
(∀q.S(q, C1) = S(q, C2) ∧ |C1| < |C2|)

where S(q, C) represents similarity values recorded in Algo-
rithm 1. We then select a smaller component (in terms of
the number of files) if two components have tied similarity,
because it is likely a simpler version. Using the relation, we
select a subset of components RS from R:

RS = {C ∈ R | �Ci ∈ R. Ci ⊃S C}
Table I shows example similarity values S(q, C) for the

example input in Fig. 1. Since the similarity values satisfy
the condition of Y-0.2 ⊃S X-1.0, we obtain RS =
{Y-0.2,X-1.1} excluding X-1.0.
We assign a higher rank to a component that could provide

a larger amount of code to the query files. To measure the
degree of potential code reuse, we use the sum of file similarity
SQ(C) defined as follows.

SQ(C) =
∑

q∈Q

S(q, C)

We rank components in the descending order of SQ(C).
Our method provides the following information to a user.
• A list of components RS sorted by SQ(C). Each com-
ponent is reported with attributes SQ(C), |Q|, and |C|.
The result for the example input is following.

Y-0.2 (3.8 / 5) 5 files
X-1.1 (2.7 / 5) 3 files

A pair of SQ(C) and |Q| indicates the amount of reused
code in Q. |C| is also important to analyze whether Q is
a complete copy of C or not.

• A full list of components R in the descending order of
SQ(C). We provide this list because our filtering may
accidentally exclude an original component from RS . A
user can analyze all the components if necessary.

• A table of similarity S(q, C). Although the component
search step does not need file names, our implementation
uses file names for this report. Table II shows an excerpt
of a similarity table for modules/zlib directory of
Firefox 45.0. It shows that the analyzed directory is likely
a clone of zlib 1.2.8 with some modification. It also
shows that file inflate.c in Firefox likely includes
a similar change as MongoDB 3.2.8.

TABLE II
AN EXCERPT OF A SEARCH RESULT FOR MODULES/ZLIB DIRECTORY OF

FIREFOX 45.0.

Q zlib 1.2.8 MongoDB 3.2.8
gzlib.c 1.000 (gzlib.c) 0.000
inflate.c 0.995 (inflate.c) 0.999 (third party/zlib-1.2.8/inflate.c)
mozzconf.h 0.000 0.000
zconf.h 0.985 (zconf.h) 0.985 (third party/zlib-1.2.8/zconf.h)
zlib.h 0.997 (zlib.h) 0.997 (third party/zlib-1.2.8/zlib.h)
zutil.c 1.000 (zutil.h) 1.000 (third party/zlib-1.2.8/zutil.h)
SQ(C) 25.971 19.950
|C| 51 9351

These information enables a user to easily focus on candidates
of original components and investigate actual source files in
the components.

IV. EVALUATION
We investigate two research questions to evaluate the effec-

tiveness of our method.
RQ1. Does our method accurately report an original com-

ponent?
RQ2. Is our method efficient?
To answer the questions, we analyze actual clone-and-own
instances in two products: Firefox 45.0 and Android 4.4.2 rc1.
These projects reuse components in a well-organized manner.
Firefox developers often record version numbers of reused
components in commit messages in their source code reposi-
tory. Android developers manage their own git repositories for
cloned components and record Change-Id to identify changes
of the original components. We manually analyzed directo-
ries whose names are likely cloned component names, and
identified original versions using the commit-log messages.
We then excluded components whose original versions are
unidentifiable. We spent about one week for the analysis.
Our database of components is the Snapshot Archive of

Debian GNU/Linux [48]. We regard a version of a Debian
package as a component. The archive includes all the existing
source code packages released for Debian from 2005 until the
present. We automatically downloaded files through its ma-
chine usable interface [49]. While Debian package maintainers
sometimes apply their own patches, we included only original
source tarballs whose names matched a pattern “*.orig.*”.
The database includes 200,018 package files (868 GB in

total). The resultant dataset includes 9,730,689 C/C++ files
and 1,310,235 Java files. The total size is 5,733 MLOC (185
GB) including comments and white space.
Our queries comprise 21 directories in Firefox and 54

directories in Android whose original versions are available
as Debian packages. The directory names and corresponding
Debian package names are included in the Appendix. Fig. 4
plots the distributions of the numbers of files in each of
directories. The queries include various size of components;
the minimum one comprises two files, while the maximum one
comprises 1,163 files. The medians of Firefox and Android
queries are 76 and 79.5, respectively. Their total number is
13,720. Since the database includes copies of Firefox and

Firefox Android

0

200

400

600

800

1000

1200

Fig. 4. The number of files in each query (|Q|).

Baseline th=1.0 th=0.9 th=0.8 th=0.7 th=0.6

0

2000

4000

6000

8000

Fig. 5. The number of components reported for each query (|R|).

Android themselves, we exclude their related packages from
the search space.

The baseline of evaluation is a simple file search using
SHA-1 file hash instead of our similarity function (i.e.,
R = {C | Q ∩ C �= φ}). We sort the extracted components
in the descending order of |Q ∩ C| that is equivalent to
SQ(C). Our method uses five threshold for component search:
th = 0.6, 0.7, 0.8, 0.9, and 1.0 in order to evaluate the effect
of threshold. The parameter th = 1 ignores white space and
comments, differently from the baseline.

For each query, we obtain the rank of the original version
in an extracted list. The rank approximates manual effort of a
user. To evaluate the effect of our filtering method separately
from search method, we use both our filtering result RS and a
full result without filtering R. In case of RS , we assume that a
user investigates all the elements in RS , and then investigates
R if RS does not include an original component.

Baseline th=1.0 th=0.9 th=0.8 th=0.7 th=0.6

0

5

10

15

20

25

30

#S
el

ec
te

d
C

om
po

ne
nt

s

Fig. 6. The number of selected components for each query (|RS |).

A. Accuracy

Fig. 5 shows the distribution of the size of |R|, i.e. the
number of reported components for each query. It shows
that many similar files are included in various components.
In case of the baseline method, the median of |R| is 60.
Since our method detects similar files, a lower threshold
results in a larger number of components. The medians of
|R| are 145, 318, 367, 375, and 500 in cases of th = 1.0
through th = 0.6, respectively. It should be noted that the
plots exclude queries that report no components. The baseline
method reports no component for three queries. One of them
is the smallest component whose files are modified. The other
two components have differences in comments and white
space.
Fig. 6 plots the number of selected components (|RS |) for

each query. As shown in this figure, the size is less than five
components for most of queries. The median is 1 in cases
of the baseline and th = 1.0. The median is 2 in cases of
th = 0.9 through th = 0.6. While a lower threshold results
in a larger RS , the difference is not statistically significant.
Wilcoxon rank sum test results in p = 0.244 for two cases
th = 0.9 and th = 0.6. Our filtering approach successfully
selects a small number of components.
Table III summarizes recall of components appeared in the

top-k elements of resultant lists. For example, the baseline
method ranks 64% of original components at the top of lists.
The column “All” shows recall of components in the entire
lists. The column “Rank Total” shows the sum of positions
of the original components in the results. It approximates the
effort to identify all the original components in the lists. Each
row shows the result of a configuration. Each configuration
uses a search method in the first column. The top six configu-
rations simply reports a full list of R without our filtering. The
bottom six configurations use a filtered list of RS . The result
shows that our method with th = 0.9, RS performs the best
among the configurations. A user can identify all the original
components in the top-5 components for 90.7% cases and 551

TABLE III
RECALL OF ORIGINAL COMPONENTS IN TOP-k SEARCH RESULTS.

Search Method Ranking Top-1 Top-3 Top-5 Top-10 All Rank Total
Baseline R 0.640 0.760 0.773 0.827 0.960 931
th = 1 R 0.653 0.773 0.787 0.853 0.987 1017
th = 0.9 R 0.680 0.800 0.827 0.867 1.000 759
th = 0.8 R 0.680 0.813 0.827 0.867 1.000 818
th = 0.7 R 0.627 0.773 0.787 0.840 1.000 930
th = 0.6 R 0.613 0.760 0.773 0.840 1.000 928
Baseline RS 0.707 0.840 0.840 0.867 0.960 719
th = 1 RS 0.733 0.867 0.867 0.893 0.987 785
th = 0.9 RS 0.733 0.893 0.907 0.920 1.000 551
th = 0.8 RS 0.733 0.880 0.893 0.920 1.000 627
th = 0.7 RS 0.680 0.853 0.880 0.907 1.000 692
th = 0.6 RS 0.667 0.853 0.880 0.907 1.000 689

TABLE IV
AN EXCERPT OF A SEARCH RESULT OF LIBPNG COMPONENT IN

ANDROID 4.4.2 RC1 WITH th = 0.9.

Query files libpng 1.2.46 libpng 1.2.49
png.c 0.962 0.958
png.h 0.982 0.980
pngpread.c 1 0
pngrtran.c 1 0.999
pngrutil.c 0.985 0.978
pngset.c 0.987 1.000
pngtest.c 1 0.999
SQ(C) 41.902 39.900
|C| 45 45

components in total. Our method reduces 40% of user’s effort
compared with the baseline reporting 931 components. The
baseline method also requires additional effort to analyze three
queries that resulted in no components.
The result shows that modified files are important to identify

original components. A simple exclusion of white space and
comments does not improve the result; our similar file search
with th = 1 and R results in a longer list of components,
although it slightly improves recall. Our method with th < 1
performs better than the baseline and th = 1, because
modified files provide a clue to sort components and identify
an original version. A lower threshold does not improve a
result, because it also detects various versions of the same
components affecting the results.
Our filtering method successfully improves results in all

the cases. In case of th = 0.9, it reduces 27% of manual
effort to investigate the reported lists. This is because the
most similar version of a library among several versions in
R is actually the original version. In this experiment, only
882 out of 13720 query files (6.4%) are modified in Firefox
and Android. Developers tend to reuse source files without
modification.
We do not regard other components in RS as false positives,

because some of them are also informative. For example,
Android includes a modified version of libpng 1.2.46. Our
method ranks the original version at the top. Our method also
ranks libpng 1.2.49 at the second. Table IV shows an excerpt

th=1.0 th=0.9 th=0.8 th=0.7 th=0.6

0

500

1000

1500

Ti
m

e
fo

r e
ac

h
qu

er
y

(s
ec

.)

Fig. 7. Time spent for each query.

from the reported similarity values for them. It shows that file
pngset.c in Android is the same as a file in libpng 1.2.49.
The file includes a security fix for CVE-2011-3048 [50] found
in 1.2.x before 1.2.49. Our method successfully reports that
the cloned component includes a part of the newer version.

Our filtering method excluded some original components
from RS . An example is the Expat XML parser library
in Android. Our method reports node-expat-2.3.12 that is a
NodeJS binding component instead of the original version,
because both Android and the component includes all the
files in the original Expat library and an additional header
file expat_config.h generated by configure script.
Another example is zlib 1.2.8 in Android. In this case, zlib
1.2.8 component in the database does not include contrib
files because of a license issue. Hence, our method accidentally
reports another component including a full copy of the original
version. This is a limitation of our repository-based approach.

Our file search cannot identify any origins for 1240 files
(9.04%) using th = 0.6. They are likely added by the projects.
We believe that this is also useful for a user to understand how
a cloned component is modified. The baseline method does not
provide this additional information.

TABLE V
TIME FOR 75 QUERIES AND THE NUMBERS OF COMPUTED SIMILARITY

VALUES.

Time (sec.)
Method Median Total #sime(q, f) #sim(q, f)
Baseline 2.0 270 N/A N/A
th = 1 23.7 5,013 93,836,051 27,300
th = 0.9 50.1 7,719 5,468,450,021 72,848
th = 0.8 51.4 8,956 11,463,856,656 98,512
th = 0.7 74.3 11,951 18,229,604,035 125,520
th = 0.6 77.7 12,595 25,967,936,034 189,043

Actual Similarity − Estimated Similarity

Fr
eq

ue
nc

y

−0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10

0
10

00
0

25
00

0

Fig. 8. The distribution of errors for file pairs compared during the
experiment with th = 0.6.

B. Performance

Our experiment is performed on a workstation equipped
with Intel Xeon E5-2690 v3 (2.6 GHz), 64 GB RAM, and
2 TB HDD. We use a single thread to execute a query.
Figure 7 shows the time spent for each query with different

threshold. A lower threshold takes longer time, because it
affects a size-based optimization of Algorithm 1 (Line 5). The
median is 77.7 seconds for th = 0.6. The longest query takes
25 minutes. Table V shows the median time required for each
query and the total time for 75 queries for each parameter.
The baseline method takes about 200 seconds to read files and
compute SHA-1 file hash values. Comparison of SHA-1 file
hash takes 70 seconds. While our method takes significantly
longer time than the baseline, the time is still practical because
a user can analyze a result of a query during execution of other
queries. It should be noted that the query time is strongly
dependent on component search. The component-ranking step
takes less than 2 seconds in all the configurations.
Our method compares each query file with a database

of files. Since the total number of query files is 13,720,
our method takes at most a few seconds to compare a file
with 10 million files. This performance is achieved by b-bit
minwise hashing technique. To analyze the effect of similarity
estimation, we count the numbers of computed estimated
and actual similarity values. They are shown in the columns
#sime(q, f) and #sim(q, f) of Table V. The table clearly
shows that sime(q, f) enables us to avoid the computation
of sim(q, f). The ratio of #sim(q, f) is reported to be less

than 0.03% in all cases.
The experiment uses m = 0.1 in Algorithm 1. We executed

the same experiment with m = 0.2 and confirmed the same
result. Hence, m = 0.1 is sufficiently large. Fig. 8 shows the
distribution of errors between actual and estimated similarity.
The lowest estimated similarity satisfying the sim(q, f) ≥ 0.6
is sime(q, f) = 0.513.
Our implementation constructs a database of components in

prior to search. We took about 5 days to extract all the files
from package archives, remove duplicated files, and compute
file signatures. The archive extraction step is the bottleneck,
because the step has to process 2 TB of files in archives.
Our database uses 4 GB for file signatures and 20 GB for
component names and file names. Our implementation keeps
file signatures on memory. Our database can be incrementally
updated, by simply adding file signatures. A larger database
can be hosted by multiple servers, because we can search
multiple component sets independently and later merge the
final result.

V. THREATS TO VALIDITY
We analyzed Firefox and Android source code repositories,

because developers in the projects keep their record of code
reuse. Our result might be dependent on code reuse strategies
of the projects.
We manually analyzed commit messages recorded in the

repositories. Since the version information is verified by two
authors but no developers of the projects, the result has a risk
of human error.
The result is dependent on components included in a

database. Our database represents a single software ecosystem:
Debian GNU/Linux source code packages. Since we used
original source code provided by each project, we believe the
packages reflect activities of various projects. On the other
hand, our analysis does not reflect source code modified by
package maintainers of the operating system.
The collection of software packages may miss important

packages. For example, libpng project maintains a number
of branches: libpng 0.x, 1.0.x, 1.2.x, 1.4.x, 1.5.x, 1.6.x, and
1.7.x. Since package maintainers selected major branches to
create Debian packages, our dataset includes a subset of
official versions. It may affect the analysis of variants in the
experiment.
While the Debian Snapshot Archive is publicly available, we

found several errors (i.e., 404 not found) and corrupted archive
files during our analysis. Since the entire dataset is large, the
result might be affected by this accidental data corruption.
The performance of b-bit minwise hashing signature is

dependent on underlying hash functions. It may miss a similar
file with a very low probability. We confirmed that we did
not miss any files during the experiment. For replicability, our
strategy to define 2048 hash functions is included in Appendix.

VI. CONCLUSION

This paper proposed a code search method to extract orig-
inal components from a software ecosystem. In the experi-
ment, our method successfully reported original components

compared with the baseline method. Our implementation also
reports the computed similarity values to enable further anal-
ysis.
To implement an efficient code search, we used b-bit min-

wise hashing technique. It enabled us to extract less than
0.03% of likely similar files from a database in a second. Our
method also introduced a component filtering method using
aggregated file similarity. It reduces manual effort to analyze
reported components.
In future work, we would like to apply our method to ana-

lyze clone-and-own reuse activity in various projects including
industrial organizations. We are also interested in a systematic
method to analyze known issues and vulnerabilities caused by
cloned components in a software product.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
bers JP25220003, JP26280021, and JP15H02683.
We are grateful to Naohiro Kawamitsu for the implemen-

tation of hash functions and Raula Gaikovina Kula for his
comments to improve the manuscript.

APPENDIX

Hash Function. Our implementation uses 2048 hash
functions to translate a file into a file signature. We use the
following hash functions on 64-bit integer:

hi(t) = ai × base(t) + bi

where 1 ≤ i ≤ 2048, ai and bi are randomly generated 64-bit
integers. The base(t) function translates a trigram into a 64-
bit integer. Since a trigram in a multiset is identified by four
elements A, B, C, and i (i-th occurrence of a trigram ABC),
the base function is defined as follows.

base(A,B,C, i) = (((i× 65537) + A.hashCode())

×65537 + B.hashCode())

×65537 + C.hashCode()

where hashCode() is String.hashCode method in
Java.
Component List. Table VI and Table VII show analyzed

directories in Firefox and Android, respectively. The package
names are defined by Debian GNU/Linux package maintain-
ers; some of them are different from official project names.

TABLE VI
ANALYZED DIRECTORIES IN FIREFOX 45.0

Package Name Directory
cairo-1.10 gfx/cairo
double-conversion-1.1.1 mfbt/double-conversion
graphite2-1.3.6 gfx/graphite2
gtest-1.6.0 testing/gtest
hunspell-1.3.3 extensions/spellcheck/hunspell
libav-11.3 media/libav
libevent-2.0.21 ipc/chromium/src/third party/libevent
libffi-3.1 js/src/ctypes/libffi
libjpeg-turbo1.4.2 media/libjpeg
libpng1.6-1.6.19 media/libpng
libsoundtouch-1.9.0 media/libsoundtouch,
libspeex-1.2 media/libspeex resampler
libvorbis-1.3.5 media/libvorbis
libvpx-1.4.0 media/libvpx
nspr-4.12, nsprpub
nss-3.21.1 security/nss
opus-1.1 media/libopus
snappy-1.0.4 other-licenses/snappy
srtp-1.4.4 netwerk/srtp
stlport-5.2.1 build/stlport
zlib-1.2.8 modules/zlib

TABLE VII
ANALYZED DIRECTORIES IN ANDROID 4.4.2 RC1

Package Name Directory† Package Name Directory†
arduino-0022 arduino libogg-1.2.0 libogg
blktrace-1.0.1 blktrace libpng-1.2.46 libpng
bouncycastle-1.49 bouncycastle libsepol-2.2 libsepol
bsdiff-4.3 bsdiff libusb-1.0.8 libusb
bzip2-1.0.6 bzip2 libvorbis-1.3.1 libvorbis
checkpolicy-2.1.11 checkpolicy libvpx-1.3.0 libvpx
dnsmasq-2.51 dnsmasq libxml2-2.7.8 libxml2
dropbear-0.49 dropbear libxslt-1.1.26 libxslt
e2fsprogs-1.41.14 e2fsprogs mksh-43 mksh
easymock-2.5.2 easymock netperf-2.4.4 netperf
expat-2.1.0 expat openfst-1.3.3 openfst
flac-1.2.1 flac openssh-5.9 openssh
genext2fs-1.4.1 genext2fs openssl-1.0.1e openssh
grub-0.97 grub oprofile-0.9.6 oprofile
guava-libraries- guava pixman-0.30.0 pixman
11.0.2 6
harfbuzz-0.9.14 harfbuzz ng ppp-2.4.5 ppp
ipsec-tools-0.7.3 ipsec-tools protobuf-2.3.0 protobuf
iptables-1.4.11.1 iptables safe-iop-0.3.1 safe-iop
iputils-3:20121221 iputils scrypt-1.1.6 scrypt
jhead-2.86 jhead speex-1.2rc1 speex
jpeg-6b jpeg srtp-1.4.4 srtp
jsilver-1.0.0 jsilver stlport-5.2.1 stlport
junit4-4.10 junit stressapptest- stressapptest

1.0.4
libgsm-1.0.13 libgsm tagsoup-1.2 tagsoup
libhamcrest-java- hamcrest tcpdump-3.9.8 tcpdump
1.1
libmtp-1.0.1 libmtp valgrind-3.8.1 calgrind
libnl-2.0 libnl-headers zlib-1.2.8 zlib
† All the component directories are located in external directory.

REFERENCES

[1] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki, “An Exploratory Study of Cloning in Industrial Software
Product Lines,” in Proceedings of the 17th European Conference on
Software Maintenance and Reengineering, 2013, pp. 25–34.

[2] P. Mohagheghi, R. Conradi, O. Killi, and H. Schwarz, “An empirical
study of software reuse vs. defect-density and stability,” in Proceedings
of the 26th International Conference on Software Engineering, 2004,
pp. 282–291.

[3] C. Ebert, “Open source software in industry,” IEEE Software, vol. 25,
no. 3, pp. 52–53, 2008.

[4] J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik, “Managing forked
product variants,” in Proceedings of the 16th International Software
Product Line Conference, 2012, pp. 156–160.

[5] T. Mende, R. Koschke, and F. Beckwermert, “An evaluation of code
similarity identification for the grow-and-prune model,” Journal of
Software Maintenance and Evolution, vol. 21, no. 2, pp. 143–169, 2009.

[6] R. Koschke and S. Bazrafshan, “Software-clone rates in open-source
programs written in C or C++,” in Proceedings of the 10th International
Workshop on Software Clones, 2016, pp. 1–7.

[7] L. Constantin, “Developers often unwittingly use components that
contain flaws,” iTWorld.com, http://www.itworld.com/article/2936575/
security/software-applications-have-on-average-24-vulnerabilities-
inherited-from-buggy-components.html [Posted June 16, 2015].

[8] A. Hemel and R. Koschke, “Reverse Engineering Variability in Source
Code Using Clone Detection: A Case Study for Linux Variants of
Consumer Electronic Devices,” in Proceedings of the 19th IEEE Working
Conference on Reverse Engineering, 2012, pp. 357–366.

[9] P. Xia, M. Matsushita, N. Yoshida, and K. Inoue, “Studying reuse of
out-dated third-party code in open source projects,” JSSST Computer
Software, vol. 30, no. 4, pp. 98–104, 2013.

[10] N. Kawamitsu, T. Ishio, T. Kanda, R. G. Kula, C. De Roover, and
K. Inoue, “Identifying source code reuse across repositories using LCS-
based source code similarity,” in Proceedings of the 14th International
Working Conference on Source Code Analysis and Manipulation, 2014,
pp. 305–314.

[11] P. Li and A. C. Konig, “b-bit minwise hashing,” in Proceedings of the
19th International Conference on World Wide Web, 2010, pp. 671–680.

[12] J. Leskovec, A. Rajaraman, and J. Ullman, Mining of Massive Datasets.
Cambridge University Press, 2011.

[13] A. Z. Broder, “On the resemblance and containment of documents,” in
Proceedings of the Compression and Complexity of Sequences, 1997,
pp. 21–29.

[14] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[15] D. M. German, M. D. Penta, Y.-G. Guéhéneuc, and G. Antoniol, “Code
siblings: Technical and legal implications of copying code between
applications,” in Proceedings of the 6th Working Conference on Mining
Software Repositories, 2009, pp. 81–90.

[16] J. Krinke, N. Gold, Y. Jia, and D. Binkley, “Distinguishing copies from
originals in software clones,” in Proceedings of the 4th International
Workshop on Software Clones, 2010, pp. 41–48.

[17] ——, “Cloning and copying between GNOME projects,” in Proceedings
of the 7th IEEE Working Conference on Mining Software Repositories,
2010, pp. 98–101.

[18] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“SourcererCC: Scaling code clone detection to big-code,” in Proceedings
of the IEEE/ACM 38th IEEE International Conference on Software
Engineering, 2016, pp. 1157–1168.

[19] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue, “Finding file clones
in FreeBSD Ports Collection,” in Proceedings of the 7th IEEE Working
Conference on Mining Software Repositories, 2010, pp. 102–105.

[20] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based
code clone detection: Incremental, distributed, scalable,” in Proceedings
of the 26th IEEE International Conference on Software Maintenance,
2010, pp. 1–9.

[21] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and accurate tree-based detection of code clones,” in Proceedings of
the 29th International Conference on Software Engineering, 2007, pp.
96–105.

[22] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen, “Accurate and efficient structural characteristic feature
extraction for clone detection,” in Proceedings of the 12th International
Conference on Fundamental Approaches to Software Engineering, 2009,
pp. 440–455.

[23] A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A large-scale study
on repetitiveness, containment, and composability of routines in open-
source projects,” in Proceedings of the 13th International Conference
on Mining Software Repositories, 2016, pp. 362–373.

[24] J. Rubin, K. Czarnecki, and M. Chechik, “Managing cloned variants:
A framework and experience,” in Proceedings of the 17th International
Software Product Line Conference, 2013, pp. 101–110.

[25] V. Bauer and B. Hauptmann, “Assessing Cross-Project Clones for
Reuse Optimization,” in Proceedings of the International Workshop on
Software Clones, 2013, pp. 60–61.

[26] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Inter-project
functional clone detection toward building libraries – an empirical study
on 13,000 projects,” in Proceedings of the 19th Working Conference on
Reverse Engineering, 2012, pp. 387–391.

[27] S. Duszynski, J. Knodel, and M. Becker, “Analyzing the source code of
multiple software variants for reuse potential,” in Proceedings of the 18th
IEEE Working Conference on Reverse Engineering, 2011, pp. 303–307.

[28] Y. Sakaguchi, T. Ishio, T. Kanda, and K. Inoue, “Extracting a unified
directory tree to compare similar software products,” in Proceedings of
the 3rd IEEE Working Conference on Software Visualization, 2015, pp.
165–169.

[29] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “En-
hancing clone-and-own with systematic reuse for developing software
variants,” in Proceedings of the 30th IEEE International Conference on
Software Maintenance and Evolution, 2014, pp. 391–400.

[30] M. W. Godfrey and L. Zou, “Using Origin Analysis to Detect Merging
and Splitting of Source Code Entities,” IEEE Transactions on Software
Engineering, vol. 31, no. 2, pp. 166–181, 2005.

[31] D. Steidl, B. Hummel, and E. Juergens, “Incremental Origin Analysis
of Source Code Files,” in Proceedings of the 11th Working Conference
on Mining Software Repositories, 2014, pp. 42–51.

[32] M. Sojer and J. Henkel, “License risks from ad hoc reuse of code from
the internet,” Communications of the ACM, vol. 54, no. 12, pp. 74–81,
2011.

[33] K. Inoue, Y. Sasaki, P. Xia, and Y. Manabe, “Where does this code come
from and where does it go? – integrated code history tracker for open
source systems –,” in Proceedings of the 34th IEEE/ACM International
Conference on Software Engineering, 2012, pp. 331–341.

[34] T. Kanda, T. Ishio, and K. Inoue, “Extraction of product evolution
tree from source code of product variants,” in Proceedings of the 17th
International Software Product Line Conference, 2013, pp. 141–150.

[35] G. Antoniol, B. Caprile, A. Potrich, and P. Tonella, “Design-code trace-
ability for object-oriented systems,” Annals of Software Engineering,
vol. 9, no. 1-4, pp. 35–58, Jan. 2000.

[36] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding
software license violations through binary code clone detection,” in
Proceedings of the 8th Working Conference on Mining Software Repos-
itories, 2011, pp. 63–72.

[37] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, “Detecting
code clones in binary executables,” in Proceedings of the 18th ACM
International Symposium on Software Testing and Analysis, 2009, pp.
117–128.

[38] J. Qiu, X. Su, and P. Ma, “Library functions identification in binary
code by using graph isomorphism testings,” in Proceedings of the 22nd
IEEE International Conference on Software Analysis, Evolution, and
Reengineering, 2015, pp. 261–270.

[39] J. Davies, D. M. German, M. W. Godfrey, and A. Hindle, “Software
bertillonage: Finding the provenance of an entity,” in Proceedings of
the 8th Working Conference on Mining Software Repositories, 2011, pp.
183–192.

[40] ——, “Software bertillonage: Determining the provenance of software
development artifacts,” Empirical Software Engineering, vol. 18, pp.
1195–1237, 2013.

[41] D. M. German and M. D. Penta, “A Method for Open Source License
Compliance of Java Applications,” IEEE Software, vol. 29, no. 3, pp.
58–63, 2012.

[42] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and
A. Hassan, “A large-scale empirical study on software reuse in mobile
apps,” IEEE Software, vol. 31, no. 2, pp. 78–86, 2014.

[43] T. Ishio, R. G. Kula, T. Kanda, D. M. German, and K. Inoue, “Software
ingredients: Detection of third-party component reuse in Java software
release,” in Proceedings of the 13th International Conference on Mining
Software Repositories, 2016, pp. 339–350.

[44] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applica-
tions to software plagiarism detection,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014, pp. 389–400.

[45] K. Chen, P. Liu, and Y. Zhang, “Achieving Accuracy and Scalability
Simultaneously in Detecting Application Clones on Android Markets,”
in Proceedings of the 36th IEEE/ACM International Conference on
Software Engineering, 2014, pp. 175–186.

[46] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “Similarity of source
code in the presence of pervasive modifications,” in Proceedings of the
16th International Working Conference on Source Code Analysis and
Manipulation, 2016, pp. 117–126.

[47] E. Ukkonen, “Approximate string-matching with q-grams and maximal
matches,” Theoretical Computer Science, vol. 92, no. 1, pp. 191–211,
January 1992.

[48] Debian GNU/Linux, “The snapshot archive,” http://snapshot.debian.org/
(Accessed August 19, 2016).

[49] ——, “Machine-usable interface of the snapshot archive,” https:
//anonscm.debian.org/cgit/mirror/snapshot.debian.org.git/plain/API (Ac-
cessed August 19, 2016).

[50] National Vulnerability Database, “CVE-2011-3048,” 2011, https://web.
nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-3048.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

