
SoL Mantra: Visualizing Update Opportunities
Based on Library Coexistence

Boris Todorov∗, Raula Gaikovina Kula†, Takashi Ishio†, Katsuro Inoue∗
∗Osaka University, Osaka, Japan

†Nara Institute of Science and Technology, Nara, Japan
Email: {boris-t, inoue}@ist.osaka-u.ac.jp, {raula-k, ishio}@is.naist.jp

Abstract—In software development, software reuse has become
a pivotal factor in creating and providing high-quality software
at a reduced cost. The reuse of a code creates dependencies,
which as they increase over time become difficult to manage
and avoid compatibility issues or bugs. With newer version
releases, come various quality improvements, new features and
issue fixes, but deciding whether or not to adopt those is a
difficult task for large software with a lot of dependencies. To
address those difficulties, we propose SoL Mantra which is a
tool that shows update opportunities by leveraging the Wisdom
of the Crowd in a software ecosystem. Using this combined
knowledge, our tool displays information about the complexity of
each update opportunity. The orbital layout provides the means
to visualize the update opportunities and demonstrate its merits
by showcasing two examples from the JavaScript ecosystem.
Through these examples, we demonstrate how maintainers can
benefit from SoL Mantra’s visual cues.

I. INTRODUCTION

For the past decade, predominant practice within software
engineering has been the usage of third-party software, also
known as software library [1].

The merit of using software libraries lies in the reusing
of code. The inherited benefits include reducing the man-
hours cost when developing new software, safety and stability
from codes approved by various developers. However, as
time passes, the libraries grow older and newer versions are
released, providing security improvements, new features and
bug fixes. That also brings risks for software maintainers,
whose job is to keep a software running and operational
throughout its life cycle. Updating a library dependency could
bring all the beforehand mentioned improvements, but can also
cause devastating problems to the software.

Researchers have observed and document empirically how
software developers interact and deal with library updating.
Some even conclude based on a large sample of Java clients
that use Maven libraries, that high number of systems keep
their dependencies outdated [2]. Others provide in-depth anal-
ysis on the impact of newer version releases and what changes
within them drive developers to adopt newer versions [3], [4].

Software maintainers, have to carefully evaluate various
risks while making decisions ”if” and ”when” to update their
software’s library dependencies. Studies have been conducted
expressing concerns in incompatibility when updating [5],
[6]. Oppositely, not updating a library could also lead to

devastating problems, such as the heartbleed bug1. Libraries
evolve over time, making additions to their functionalities
and addressing various issues that the previous version might
have. This evolution is represented by the releases, their
corresponding versions and supported documentation.

Previous works have tackled the problem of providing a
visual aid for update opportunities. Kula et al. [7] visualized
the evolution of systems and their dependencies. While this
approach uses historical data to determine library update
candidates, we apply the combined developer knowledge in
the entire ecosystem. Yano et al. [8] proposes VerXCombo,
a prototype tool, that presents various library version combi-
nations. Similarly to our work, VerXCombo uses Wisdom of
the Crowd to provide library combinations and provides more
detailed information.

In this work, we address the problem with updating libraries
and propose the peculiar Software Library Mantra tool (SoL
Mantra), applying the combined knowledge of all software
developers of a language ecosystem (Wisdom of the Crowd)
with coexistence coefficient (cc), defined by Kula et al. [9]
and described in detail in Section II. We provide information
whether or not a system dependency is outdated, by using
simple and intuitive visual elements. Furthermore, to illustrate
the potential risk from updating a library, we evaluate the
popular library usage in the ecosystem and offer suggestions,
which libraries should be updated together if either of them
is considered for updating. The main technical challenges in
achieving results lie in finding a balance between visualization
technique and providing enough information without it being
unreadable. We demonstrate the usefulness of our tool, by
using two visualization examples based on a data sample
of popular libraries within the JavaScript ecosystem. The
first one consists of a smaller system, while the second one
depicts a larger one. In both cases, our tool contributes and
provides update opportunity information. With them, we will
also display how our tool helps to identify update opportunities
and using cc understand the complexities for each candidate.
A demonstration with 23 library examples can be observed at
https://goo.gl/2Rewn4

1http://heartbleed.com/

(a) Coexistence Logic (b) System that uses A and B

Fig. 1: Library Coexistence Mapping

II. TOOL BASIC CONCEPTS

Our main objective is to provide an intuitive visual tool to
assist maintainers by providing update opportunities informa-
tion. The SoL Mantra, checks if a system’s dependencies are
up-to-date and by using a coexistence notation to determine
the complexity of each potential update.

A. Solar System Metaphor

Our selected layout for the visualization is the Orbital
Layout2. This visualization was considered after investigating
the Hexagonal Binning3 and Dependency Wheel visualization
technique4. This visualization uses the D3.js API5.

B. Basic Data Concepts

In order to understand the visualization, we define the
following data elements:

• System - the program, whose dependencies to other
libraries are our concern for visualization.

• Library - the programs used by the system or other
libraries, forming library dependency directed graph.

• Coexistence(cc) - as defined by Kula et al [9], coexistence
is a binary relation between two libraries (nodes) in an
ecosystem, where those two libraries are used by at least
one common library or common system.

Fig. 1a is an example of coexistent of libraries. For instance,
library A is used by Q, D, J, F and E, respectively, library
B by J, F, E and Z. We see that there are three users that
use both A and B - J, F and E or we denote: UsersA ∩
UsersB = {J, F,E}, where UsersX denotes the set of users
of X . We also define the coexistence coefficient (cc) of A for
B as follows:

|UsersA ∩ UsersB|
|UsersA|

(1)

meaning, A’s cc for B is the ratio of A’s users which are
simultaneously B’s users. For example, libraries babel-core
with 6,884 users, and mocha with 3,165 users in npm ecosys-
tem are in coexistence relation, because they share 3,158
common users, thus the cc of babel-core’s for mocha is 0.4587

2https://github.com/emeeks/d3.layout.orbit
3https://github.com/d3/d3-hexbin
4http://www.redotheweb.com/DependencyWheel/
5https://d3js.org/

TABLE I: Ranza Dependencies

Library Coexistent Library (cc)
mocha None
supports-color mocha(99.09%)
glob mocha(23.05%), supports-color(1.59%)
char-spinner glob(100%), mocha(100%), supports-color(100%)

bluebird char-spinner(0.2%), glob(49.49%),
mocha(12.32%), supports-color(0.85%)

babel-core bluebird(95.45%), char-spinner(0.76%), glob(95.45%),
mocha(45.87%), supports-color(3.17%),

(45.87%), meaning about half of babel-core’s users are also
mocha’s users. On the other hand, mocha’s cc for babel-core
is 0.9978, meaning almost all of mocha’s users are also babel-
core’s users.

C. Visualization Design and Representation

Fig. 1b shows our visual design with the system always
represents the core of our orbital layout and is denoted by the
orange color (sun). All the libraries used by the system are
denoted as planets orbiting the system, hence every library will
be a separate planet regardless of its coexistence with other
libraries. Coexisting libraries will always be orbiting around
the library (planet) they coexist with. To further elaborate on
the matter, library B is both a planet referenced in the system
and a coexistent (moon) with library A.

To vividly explain our visualization and its functionalities
we will use a real example with a sample package and
thoroughly explaining each of the visual elements and how
they work. The package in question is ranza6, a dependency
checker package which contains only 6 dependencies, as
shown in Table I.

Fig. 2 illustrates the SoL Mantra for the ranza system
example and the various elements we created:

• Core (Sun) - in the center of the visualization, lies the
software system that uses libraries. Fig. 2a shows the
ranza’s system Sol Mantra, therefore ranza is placed as
the core (yellow node).

• Planets - the planets are direct representations of the
libraries used by the software system. For example on Fig.
2a, there are 6 planets showing the 6 libraries that ranza
uses - char-spinner, supports-color, glob, mocha, blue-
bird and babel-core. The distance from the Sun currently
has no meaning, apart from increasing the readability.

• Color - every planet has an outdated flag, based on a
boolean value. The color filling the planet changes to
represent if the system uses the latest version or not, i.e.
green - up-to-date and red - outdated.
As seen on Fig. 2a char-spinner is green, which denotes
it is up-to-date, while supports-color, babel-core, mocha,
glob and bluebird are red, therefore update candidates.

• Rotation - to make sure outdated packages are easy to
spot, we also apply a rotation direction, together with the
color as a two-pronged approach to distinguish between
up-to-date and outdated libraries. The up-to-date ones,

6https://github.com/raphamorim/ranza

(a) Ranza overview, showing all 6 packages in use, 5 flagged as
outdated (color and rotation) are candidates for an update.

(b) babel-core’ coexisting
libraries. The 5 that orbit
around babel-core, show they
are coexisting (have a cc with
babel-core).

Fig. 2: Ranza Sol Mantra - showing 5 update opportunities
based on their color and rotation (not shown) and the corre-
lating update complexity based on their coexistence.

always orbit in a clockwise direction, while the outdated
ones revolve in an opposite fashion. Because we are
unable to show the rotation in this paper, the effect can
be observed on our tool.

• Moons - represent coexisting libraries as orbiting the
planet they coexist with7. The moons are duplicates
to the libraries that the system uses with the purpose
of showing which libraries should be considered to be
updated together. As shown in Table I, babel-core has 5
coexisting libraries within the system, which is illustrated
onto the Sol Mantra by adding these 5 as the orbiting
moons, i.e. Fig. 2b.

• Size and Speed - similar to the two-pronged approach

7Only planets can have moons

for the outdated flag, we provide a second visualization
element that will show potential warnings for update
opportunities. The size and speed, based on the number
of moons (coexisting libraries), serve the purpose to
concretely depict libraries with a high coexisting count.
The higher the number, the larger the planet becomes and
the slower it rotates on its orbits and the opposite, small
planets that orbit faster, means that they have few or no
coexisting libraries. For example, a planet with a large
number libraries will be larger compared to one without.
Oppositely, the speed will be considerably slower.

III. APPLICATION EXAMPLES

In this section we will demonstrate the applications of our
tool through two distinct examples from the JavaScript npm
ecosystem.

A. Target Data

To help us evaluate our tool, we selected and applied it to
the node package manager (npm)8. It is the largest JavaScript
repository, hosting over 230,000 packages with new ones
constantly being added [10]. A package is treated as the
system or libraries and it generally uses other libraries in
the ecosystem. We selected the top 30 most used and liked
packages for 2016. We then gathered various relevant data,
such as stars, pull requests, issues, commits. contributors,
releases, branches, dependencies, dependents in order to help
us assess those projects.

In Table II, we provide a general statistics of our generated
data and the filtering data. Most of the projects we use have
a high star rate on github, with a maximum value of almost
70,000, mean and median with very close values. So we can
safely state that these projects are popular within the software
community. All of the projects are active and still under
development. Proof can be found in the massive numbers
of commits, pull requests, issues and releases. The average
number of dependencies is at 9, but we were able to run a test
on a package with close to 50 dependencies. Some packages
did not use any libraries in their software, so we were unable
to test them, hence, we were forced to discard 7 from our
initial 30, resulting in 23 packages to test.

We implemented a script based tool to gather and collect
the data needed for the visualization. In detail, to generate
our data and calculate cc, we used packages available from
the npm repository. In order to check if a library is outdated,
we relied upon is-outdated package9 and compared the result
with the current version in the package.json file. For the
coexistence coefficient, we used several packages in unison.
We started by generating the users for every package, with
get-dependencies package10. Secondly, we created the sets
using js-combinatorics11. Finally, by using comparray12, we

8https://www.npmjs.com/
9https://github.com/rogeriopvl/is-outdated
10https://github.com/SharonGrossman/get-dependencies
11https://github.com/dankogai/js-combinatorics
12https://github.com/JonathanPrince/comparray

TABLE II: Collected Data Summary

Data Stars Pull Requests Issues Commits Contributors Releases Branches Dependencies Dependents
Minimum 917 0 0 186 15 11 1 0 1
Maximum 67,706 180 690 8640 1595 396 103 47 24,432

Mean 9914 30 149 1492 158 77 17 9 4272
Median 11,863 21 168 2162 177 89 14 7 2279

Tested Packages: express, request, browserify, grunt, pm2, socket.io, mocha, gulp-uglify, cheerio, passport, hapi, react, karma, pug, mysql, less, mongodb
node.js driver, jshint, morgan, webpack, restify, magick, jsdom

extracted the common packages between all users of each set
and calculated the final cc score.

To illustrate the use of our visualization and how a developer
would use our tool, we selected two packages from our final
23. The first one is react13, and is the highest starred package
from our test data, with 67,706 stars on GitHub. For the second
example, we chose cheerio14 in order to showcase how our tool
performs on a larger system. Both examples’ data can be seen
in Table III.

B. Example - react

React is a popular library used for interface creation. After
generating the data, we can see the results, plotted onto our
orbital layout. Fig. 3a Shows react system overview with a
total of 5 dependencies, represented by the 5 planets orbiting
the core. Continuing, 2 of them are green colored, i.e. up-to-
date, and 3 are red, i.e. outdated.

From the overview, we can see that loose-envify, object-
assign and fbjs are outdated and present an update opportunity.
To evaluate the potential risks, their coexisting libraries have to
be examined. By hovering over with the mouse and inspecting
loose-envify, we can see that it has 100% cc with prop-types
and object-assign (Fig. 3b).

fbjs has 3 coexisting packages in this example and as seen
on Fig. 3c - 95.7% cc with prop-types and object-assign, and
23.16% with loose-envify.

For react or tool results conclude that there are total of 3
update opportunities based on outdated flags. By inspecting
them, the software developer can evaluate the update com-
plexity with the reported cc values. Loose-envify has 100% cc
with both of its moons, therefore careful evaluation should be
made before updating. The case is similar for fbjs, since it has
95.7% with 2 of the moons. Although the cc with loose-envify
is only 23.16%, it should still be evaluated.

C. Example - cheerio

For the second example, we selected cheerio library pack-
age, providing implementation of core jQuery15, designed
specifically for servers.

Cheerio compared to the previous example, references more
library packages in its code, and we will use that to show how
our tool handles a larger system. Fig. 4, shows cheerio’s SoL
Mantra with 15 libraries that have high coexistence between
each other.

13https://github.com/facebook/react
14https://github.com/cheeriojs/cheerio
15https://jquery.com/

(a) React, SoL Mantra overview with its 5 dependencies: 2 up-
to-date and 3 update opportunities

(b) loose-envify update opportunity
complexity

(c) fbjs update opportunity com-
plexity

Fig. 3: React SoL Mantra with 3 complex update opportunities

After assessing the up-to-date libraries, we direct our
attention towards the outdated ones. There are 11 update
opportunities in total and 6 of them have high coexistence
count - istanbul, coveralls, parse5, htmlparser2, benchmark
and lodash. The full cc information can be observed on our

TABLE III: Examples Data

Data Stars Pull Requests Issues Commits Contributors Releases Branches Dependencies Dependents
react 67,706 125 599 8640 1011 61 38 4 12,479

cheerio 12,298 16 132 1043 88 52 14 18 5358

Fig. 4: Cheerio SoL Mantra - 11 outdated and 4 up-to-date
libraries.

tool’s result page.
Lastly in this example, we observe an interesting case,

where xyz package does not have any coexistence on its own,
but coexists with the others, apart from dom-serializer, with
varying coexistence - from 0.05% with lodash, to 48% with
dom-serializer.

From the cheerio overview visualization, we see that it uses
packages which have high coexistence amongst each other. All
the 11 outdated flags should carefully be inspected to evaluate
the update complexity of each individually.

In conclusion, in both examples, our tool flagged the out-
dated libraries. Even in a bigger system like cheerio all 11
outdated libraries are easily detectable. Through cc we evaluate
the complexity of each update opportunity. In smaller systems
like react, the libraries didn’t have high coexistence count
but have high cc values, thus an easy update decision could
be made. For the bigger system case where most packages
have a high coexistent count, each update opportunity is more
intricate and must be carefully evaluated.

IV. THREATS TO VALIDITY AND LIMITATIONS

Our collected data is based on established projects that have
been developed by dedicated teams, hence, we have not tested
smaller or personal projects. The projects we tested, could have
specific library version for internal reasons. Further evaluating
with use cases by real-life developers is required.

Because we only evaluate the data provided by the npm
repository, we do not consider if the library references within
the code are being used. Our tool only lists those that are
registered and written on the package.json file of the respective
project.

Improvements to SoL Mantra could be necessary based on
use cases feedback. First and foremost, for larger software
systems that use library packages with long names, the ones
placed near the core, will become unreadable, unless focused
specifically. Second, if all libraries have data similarity, they
could overlap in neighboring orbits, which reduces visibility.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose our Sol Mantra tool, providing
information for library update opportunities to software main-
tainers, by applying the coexistence coefficient.

Future work includes evaluating the usefulness, effective-
ness and scalability of the SoL Mantra, by creating test cases,
and including feedback from software maintainers. Depending
on the results, further adjustments and enhancements will be
added. Another potential visual element to explore for the
future is the distance from the core. Currently, it serves only
an aesthetic function to increase visibility, i.e. planets with
higher moon count are pushed further out.

ACKNOWLEDGMENTS

This work is supported by JSPS KANENHI (Grant Numbers
JP25220003).

REFERENCES

[1] C. Ebert, ”Open source software in industry” in IEEE Software, Vol. 25,
No.03, pp. 52-53, 2008.

[2] R. G. Kula, D. M. German, A. Ouni, T. Ishio and K. Inoue, ”Do
developers update their library dependencies?”, Emp. Soft. Eng., 2017.

[3] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto and S. Panichella, ”How
the Apache community upgrades dependencies: an evolutionary study”,
Emp. Soft. Eng., Vol. 20, No. 5, pp. 1275-1317, 2015.

[4] C. Bogart, C. Kästner and J. Herbsleb, ”When it breaks, it breaks: how
ecosystem developers reason about the stability of dependencies”, ASE
(Workshop SCGSE), pp. 86-89, Lincoln, NE, 2015.

[5] S. Raemaekers, A. van Deursen, and J. Visser, ”Semantic Versioning
versus Breaking Changes: A Study of the Maven Repository”, 14th IEEE
SCAM, pp. 215-224, 2014.

[6] R. G. Kula, D. M. German, T. Ishio, and K. Inoue, ”Trusting a Library:
A Study of the Latency to Adopt the Latest Maven Release”, 22nd IEEE
SANER, Vol. 22, pp. 520-524, Montreal, Canada, 2015.

[7] R. G. Kula, C. De Roover, D. M. German, T. Ishio and K. Inoue (2014),
”Visualizing the Evolution of Systems and Their Library Dependencies”
in 2nd IEEE VISSOFT, pp. 127-136, Victoria, BC, Canada, 2014.

[8] Y. Yano, R. G. Kula, T. Ishio and K. Inoue (2015), ”VerXCombo: An
interactive data visualization of popular library version combinations” in
23rd IEEE ICPC, pp. 291-294, Florence, Italy, 2015.

[9] R. G. Kula, C. De Roover, D. M. German, T. Ishio and K. Inoue,
”Modeling Library Popularity within a Software Ecosystem”, Tech. Rep.
Osaka University, Software Engineering Laboratory.

[10] E. Wittern, P. Suter, S. Rajagopalan, ”A Look at the Dynamics of the
JavaScript Package Ecosystem”, 13th MSR, pp. 351-361, Austin, TX,
USA, 2016.

