IEICE

TRANSACTIONS

on Information and Systems

VOL. E101-D NO. 1
JANUARY 2018

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.

The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.

Distribution by anyone other than the author(s) is prohibited.

A PUBLICATION OF THE INFORMATION AND SYSTEMS SOCIETY

-. The Institute of Electronics, Information and Communication Engineers
l Kikai-Shinko-Kaikan Bldg., 5-8, Shibakoen 3 chome, Minato-ku, TOKYO, 105-0011 JAPAN

130

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.1 JANUARY 2018

[PAPER

Changes of Evaluation Values on Component Rank Model by
Taking Code Clones into Consideration

Reishi YOKOMORI'®, Norihiro YOSHIDA ™", Masami NOROY, and Katsuro INOUE''", Members

SUMMARY There are many software systems that have been used and
maintained for a long time. By undergoing such a maintenance process,
similar code fragments were intentionally left in the source code of such
software, and knowing how to manage a software system that contains a lot
of similar code fragments becomes a major concern. In this study, we pro-
posed a method to pick up components that were commonly used in similar
code fragments from a target software system. This method was realized by
using the component rank model and by checking the differences of eval-
uation values for each component before and after merging components
that had similar code fragments. In many cases, components whose evalu-
ation value had decreased would be used by both the components that were
merged, so we considered that these components were commonly used in
similar code fragments. Based on the proposed approach, we implemented
a system to calculate differences of evaluation values for each component,
and conducted three evaluation experiments to confirm that our method was
useful for detecting components that were commonly used in similar code
fragments, and to confirm how our method can help developers when de-
velopers add similar components. Based on the experimental results, we
also discuss some improvement methods and provide the results from ap-
plications of these methods.

key words: component rank, code clone, component graph, use relation

1. Introduction

The size of many software applications continuously in-
creases with prolonged maintenance due to accommodating
many additional features. Therefore, the number of classes
that compose such software increases, and relationships be-
tween such classes also increase and become exceedingly
complicated. When implementing new features, developers
add new code fragments to the software. Sometimes these
code fragments are very similar to existing code fragments.
This is because, implementing a similar feature also requires
producing similar code fragments. Such similar code frag-
ments are called code clones [1], [2]. It is generally desir-
able to remove or not to create a code clone; however, some
types of code clones are difficult to resolve. Therefore, sim-
ilar code fragments are sometimes intentionally left in the
source code, and knowing how to manage the software that
contains a lot of similar code fragments becomes important

Manuscript received April 10, 2017.
Manuscript revised September 5, 2017.
Manuscript publicized October 5, 2017.
"The authors are with Department of Software Engineering,
Nanzan University, Nagoya-shi, 4668673 Japan.
"'The author is with Graduate School of Informatics, Nagoya
University, Nagoya-shi, 464—8601 Japan.
T The author is with Graduate School of Information Science
and Technology, Osaka University, Suita-shi, 565-0871 Japan.
a) E-mail: yokomori @nanzan-u.ac.jp
DOI: 10.1587/transinf.2017EDP7125

v [w]

|v4 Vs

][]

Fig.1 Idea of our approach: Merging clone-related components.

v [w]lv]lw]

when one desires to maintain the source code.

On the other hand, our research group proposed a rank-
ing model for recommending desirable components from
many components by extracting use relations between com-
ponents and performing repeated computation, and we call
it the component rank model [3]. The purpose of the compo-
nent rank model itself is for recommending desirable com-
ponents from a viewpoint of how many components use the
component.

In this paper, we extend the component rank model by
reflecting upon relationships of code clones between com-
ponents on the component graph. In our approach, com-
ponents that have similar code fragments are merged in the
graph. For example, we consider a part of the component
graph in Fig. 1. It has nine nodes that represent nine com-
ponents, where V4 and Vs have similar code fragments to
each other. In this case, we merge V, and Vs into V), where
the edges from the merged components and the edges to the
merged components are also merged, respectively. Then, we
re-calculate a second evaluation value based on the merged
graph to obtain two evaluation values of each component
before and after reflection of the code-clone relations.

In this study, we focused on how the evaluation value of
each component on the ranking model changes in the above
operation, and examined the characteristics of components
whose evaluation value have decreased. Such components
were mainly components that were used by several compo-
nents in the merged components. The fact that the several
components were using the same component sometimes in-
dicated duplications of similar code fragments, and some-
times indicated that the same component is merely used for
another purpose. Depending on the detection technique of
code clone, even if the same component was used by outside
of similar code fragments, it may be related to the duplica-
tion of the similar code fragments if we considered them
as gapped clones [4]. Even if it is not clear whether com-

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers

YOKOMORI et al.: EXTENSIONS OF COMPONENT RANK MODEL

ponents in the merged components were using the compo-
nent same way in their similar code fragments or not, we
made a hypothesis that components whose evaluation value
decreases tend to be used by similar code fragments in the
merged components, and we would suggest to leverage such
components.

Before merging, such components could obtain eval-
uation values from each component in the merged compo-
nents; however, it became evident to only provide an evalua-
tion value from the merged ones after merging. From Fig. 1,
Vi (V,) was used by both of V4 and Vs, so evaluation value
of Vi (V) would decrease, and we made a hypothesis that
V1(V,) would be used in a similar way by V4 and V5. Our
method is to pick up components, such as V| and V,, that
tend to be used by components that have similar code frag-
ments. We proposed that our method can consider a degree
of reduction of use relations from the merged components
by using a degree of change for the evaluation values, com-
pared with the simplistic approach of making a list of the
commonly used components from the merged component.

As a method to leverage such components, we consider
a situation where components that realized several simi-
lar features had already been implemented in the software.
Then, developers are adding new components to realize a
similar additional feature. In such situations, it is easy to
produce new code fragments that are similar to the existing
code fragments, because developers are trying to implement
the new feature that is similar to the existing features, and
we consider the followings are alternatives of actions by de-
velopers.

1. Developers extract similar code fragments by analyz-
ing the existing components based on clone detection
tools, and perform a refactoring activity against the ex-
isting components and a new component.

2. Developers search components that have realized sim-
ilar features as examples of the usages of the particular
component, and add a new component in the same way
as the detected components faithfully.

3. Developers are permitted to add a new component us-
ing their own method without any constraints.

If the action #1 is performed, it is possible to gather
identical processing for one code fragment, so the maintain-
ability of the software improves and it would provide the
best result among the three alternatives from a viewpoint
of the maintainability. However, developers cannot always
perform action #1 depending on the condition of the source
code. In such cases, action #3 is easy to be performed in
the actual development when the number of components in-
volved increases or the description of components become
complicated, and followed by understanding of the source
code becomes more difficult because there are several real-
ization methods to implement similar features. Maintain-
ability of the software decreases substantially because de-
velopers have to prepare solutions for each code fragment.
If action #2 is performed, developers add new features with
an awareness of the presence of the similar code fragments.

131

Thus, a new similar code fragment is added to the software,
and the time and effort to maintain consistency of the source
code increases. However, the cost for understanding the
source code does not change significantly because similar
processing was realized by one realization method. Main-
tainability of the software also would be retained because
the developers have to prepare only one type of solution.

We consider that developers should first perform action
#1 against code clones that are easy to solve, followed by
action #2 against cloned code that are difficult to solve. To
achieve action #2, developers must grasp that there are sim-
ilar code fragments in the existing components, and the new
component has some common characteristics with the exist-
ing components. Based on the change of evaluation values
on the ranking model, we consider that our method can sup-
port for keeping maintainability of the software or identify-
ing components that required refactoring, by showing com-
ponents that were used by similar code fragments. We con-
sider that our methods can help developers in the action #2,
because our methods can extract components that would be
commonly used in existing similar code fragments, and can
support to grasp the common characteristic that a new com-
ponent is just using the target component.

Based on the proposed approach, we implemented a
system that shows the components whose evaluation value
has changed after reflection of the code-clone relations. By
using the system, we conduct three evaluation experiments.
In the first experiment, we applied our method to the sev-
eral open-source projects and confirmed that the evalua-
tion value of the components used by several components
in the merged components would decrease or not. In the
second experiment, we searched case samples, and verified
how many assumed cases existed in the actual software, and
confirmed that a percentage of the reduction of the evalu-
ation value was useful for detecting components that were
commonly used in similar code fragments. In the third ex-
periment, we introduce what components were detected by
our methods and how these components were used by the
merged components, as a case study, and discuss how our
method can help developers when developers add similar
components.

This paper is a revised version of [5]. In the intro-
duction, we added a description how our approach can help
developers, technical explanations about our approach, and
case studies to examine what components can be extracted,
as the third experiment. From them, we will discuss how
the proposed approach can help developers when develop-
ers add similar components. We also added considerations
of the improvement methods based on the results of three
evaluation experiments, and explained further experiments
to examine several approach for improvement. We consider
that these two things are the major contributions of this ver-
sion.

In Sect. 2, we introduce the component graph and the
component rank model as background. In Sect. 3, we con-
sider how the evaluation value of each component may
change when components that have common similar code

132

fragments were merged on the component graph. In Sect. 4,
we introduce our implementation. In Sect.5, we conduct
three evaluation experiments. Finally, in Sect. 6, we discuss
the results and further experiments for improvement meth-
ods and introduce related works.

2. Component Graph and Component Rank Model

In general, a component is a modular part of a system that
encapsulates its content and whose manifestation is replace-
able within its environment [6]. We model software systems
by using a weighted directed graph, called a Component
Graph [3]. In the component graph (V, E), anode v € V rep-
resents a software component, and a directed edge ey, € E
from node x to y represents a use relation, in other words,
component x uses component y.

Based on the component graph, we proposed the Com-
ponent Rank Model [3]. In the model, the component graph
represents a Markov chain, and movement of the software
developer’s focus on the target software is represented by
a probabilistic state transition. The weight of each node at
the steady state is regarded as the evaluation value of the
corresponding component, and this model calls the order of
the components sorted by the evaluation value component
rank of the components. The component rank model was
proposed as a part of the component search engine, and we
confirmed that a few components obtained the majority of
the evaluation values, and these components were very gen-
eral and core classes. On the other hand, many components
had minimum evaluation values or close to the minimum
ones, and these were specific and independent classes.

This model introduces several definitions to calculate
the evaluation values (weights) for the component graph
G = (V,E). Each node v in the component graph G has a
nonnegative weight value w(v) where O < w(v) < 1. The sum
of the weights of all nodes in G is 1, and the total weights of
the nodes are kept as 1.

The calculation process encompasses the following
steps:

1. Set the initial weights for each node.
Each node has 1/n as an initial weight if the target sys-
tem consists of n components.

2. Calculate the weights of the edges, and re-calculate the
weights of the nodes.
2-1 Calculate the weights of the edges from the weights
of the nodes.
For each edge ¢;; € E from v; to v;, we define a weight
w'(e;;) of e;; as follows:

w'(e;;) = dij X w(v;)

Figure 2 (a) depicts this definition. Here d;; is called a
distribution ratio for edge e;;, where 0 < d;; < 1, and if
there is no edge from v; to v;, d;; = 0. The distribution
ratio, d;; is used for determining the forward weights
of v; to an adjacent node v;. For each node which has
any outgoing edges, the sum of the distribution ratios

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.1 JANUARY 2018

wv) /. U W)
w(e;) wi(eg) $
Cjj Y i /
w(v;) =W (ej;) T wW(ey) +
'“+W,(ekj)+
(b) Weight of Node
Fig.2 Definition of weights.

w(ey) =dy w(v;)

(a) Weight of Edge

vy

Fig.3 Anexample of the stable weights assigned to the nodes and edges.

for the outgoing edges is always 1. In the current im-
plementation, if a node a has n outgoing edges, then
the distribution ratios of the outgoing edges from a are
all 1/n. In the actual calculation, we must treat the
target component graph as a strongly-connected graph
to guarantee the termination of the repeated computa-
tion, so we introduce pseudo use relations between all
nodes. This is not included in this paper, so please refer
to [3].

2-2 Re-calculate the weights of the nodes from the
weights of the edges.

The weight of a node v; is re-defined as the sum of the
weights of all incoming edges ey;, such that:

we) = Y wiew)

e €IN(v;)

Here, IN(v;) is the set of the incoming edges of v;. Fig-

ure 2 (b) shows this definition.

2-3 Repeat calculation 2-1 and 2-2 until convergence.
3. The weight of each node at the steady state is regarded

as the evaluation value of the corresponding compo-

nent, and the components are sorted by the evaluation

value.

Figure 3 shows a component graph with the evalua-
tion value set to the steady state. Also, v; has two outgoing
edges, and weight = 0.4 is evenly divided between the two
outgoing edges with 0.2 each (i.e., dj, = dj3 = 0.5). For ex-
ample, v3 has two incoming edges, each with weight = 0.2,
so that the total weight of v is 0.4.

3. Representing Code Clone Relations on the Compo-
nent Graph

A code clone is a code fragment that has identical or sim-
ilar code fragments to that in the source code[1]. Code

YOKOMORI et al.: EXTENSIONS OF COMPONENT RANK MODEL

clones appear not only in a single component, but also ap-
pear between different components. It is generally desirable
not to create a code clone; however, code clones are some-
times woven with a certain intention. In such cases, devel-
opers must share information about the code that has similar
code fragments, to satisfy software maintainability. This is
because developers should review other code fragments to
maintain consistency when one such code fragments should
be modified.

In this paper, we extend the component rank model by
revealing the relationships of the code clones. As a method
for revealing code clone relationships, we merge the nodes
which have the same or similar code fragments. For exam-
ple, we consider a part of the component graph in Fig. 1. It
has nine components, and V4 and V5 have similar code frag-
ments to each other. In this case, we merge V, and Vs into
V. and the edges are also merged. In the merged compo-
nent graph, the edges are drawn from V, to V} if V, uses V4
or Vs, and the edges are also drawn from V; to V. if V4 or
Vs uses V,, respectively.

In this way, we obtain two component graphs, before
and after merging, based on the relationships of the code
clone and calculate two component ranks based on the two
component graphs. We focus our attention on the com-
ponents that are not merged, and calculate the differences
of the evaluation value of each component. In this study,
we have an interest regarding how the evaluation value of
each component changes by revealing the relationships of
the code clones. We examine how the evaluation value of
the components would change as follows:

e Incoming edges to V4 and V5 are aggregated to one in-
coming edge to V. So, the number of outgoing edges
from V5 and Vg decreases and the evaluation value of
these edges would increase. So, the evaluation value of
each incoming edge increases.

e The evaluation value of V} is a sum of all incoming
edges, and hence would be larger than that of either V,
or V5. However, the evaluation value of VA’1 would not
exceed that of the sum of V4 and V5. This is because
the incoming edges to V4 and Vs are aggregated to one
incoming edge. For example, we consider a situation
where x nodes are merged, and the number of outgoing
edges from a certain node becomes nton — x + 1. The
evaluation value of each edge becomes - ~__ times;

—x+1
however, —— is equal to or less than x, so the eval-

uation valflext)lf the merged incoming edge would not
exceed the sum of the incoming edges before merging.

e We consider a case of a component that is used by both
merged components. V) is used by both V4 and Vs.
Before merging, V| obtains evaluation values via the
edges from V4 and Vs. After merging, the outgoing
edges from V4 or Vs are also aggregated to one out-
going edge, and V; obtains an evaluation value via the
edges from V,. The evaluation value of V; does not
exceed the sum of that of V4 and Vs, so the evaluation
value of V; decreases.

133

e We consider a case of a component that is used by only
one of the merged components. Vs uses V3, but V4 does
not use V3. Before merging, V3 obtains an evaluation
value via the edge from Vs. After merging, V3 obtains
an evaluation value via the edge from V. The evalua-
tion value of V; is larger than that of Vs, so the evalua-
tion value of V3 would increase.

o All nodes are affected by the following factors:

— In the repeated calculation, a decrease or increase
of the evaluation values are spread to other nodes
through their outgoing edges.

— When a closed path is built by the merged compo-
nents, components on the closed path give a part
of their evaluation value to other components on
the closed path, so the evaluation values increase.

Thus, the evaluation value of the component, which is
used by several components among the merged ones, would
decrease. We tried this operation in some examples, and
confirmed that the changes of most of the evaluation val-
ues were about several tens of percent, and the variability of
the evaluation values in the upper ranked and lower ranked
components did not change so much. On the other hand,
the changes on the ranking were quite different between the
upper ranked components and the lower ranked ones. Even
if the evaluation value had decreased, the ranking of higher-
ranked components did not change so much, this is because
it had still sufficient evaluation value after the operation.
At the same time, the ranking of lower-ranked components
were very sensitive about the change of the evaluation value,
this is because there were many components with low eval-
uation values.

It was difficult to evaluate all components properly
from a viewpoint of the changes on the ranking, so our
method only considered changes on the evaluation values.
We also believe that there is a difference of the decreas-
ing degree by how the component is used by other com-
ponents. Components that receive evaluation values from
merged components and other components would have a
low decreasing degree. On the other hand, components that
are only used locally by the merged components would ex-
hibit a high decreasing degree. Hence, we set a hypothesis
that “Components whose evaluation value decreases tend to
be used by similar code fragments in the merged compo-
nents.”

4. Implementation of the Analysis Tool

We implemented a tool that calculates two component ranks
and compares the difference of each component’ s evalua-
tion value. In this tool, our analysis target is a Java software
system, and we choose a .java file as a component. This
tool is implemented by PHP, and Fig.4 is an overview of
the system. The following is the analysis procedure:

1. CCFinder [1] get information about the code clone. We
treat two .java files to have a clone relation if they have

134

Implementation

3

Comp.

Graph R >

(before) Calcu (before) Com

fate pare Result
Comp. CR CRs
Graph [™® ‘)‘ CR Ly
(after)
Y

(after)

4 5 6

Software

Fig.4 Overview of the analysis tool.

similar code fragments that are longer than 30 tokens.

2. Classycle’s analyzer’ provides the use relations. In the
analysis of the Classycle’s analyzer, we get the follow-
ing as use relations: inheritance of class, declaration
of variables, creation of instances, method calls, and
reference of fields. Classycle’s analyzer’s results are
based on relations between the classes, so the results
are mapped into relations between the files.

. Calculate a component rank before merging.

. Merge components that have a clone relation, and the use
relations are also re-considered on the merged compo-
nent graph.

. Calculate a component rank after merging.

6. Compare the two component ranks and the result of the

comparison is outputted as a table.

=~ W

wn

S. Experiments

To confirm that we can detect components that would be
used by similar code fragments in a similar way, we per-
formed the following two experiments.

1. In the previous section, we discussed how the evalua-
tion value of each component changes by merging, and
we conjectured that the evaluation value of the com-
ponent that is used by several components among the
merged ones, would decrease. We focus attention on
the non-merged components, and these are then cate-
gorized, and we apply our method to the source code of
the open-source projects. In this experiment, we con-
firm that the evaluation values of the Group A compo-
nents decrease more than the other components (Group
B or C). We would like to check the adequacy of our
consideration, and consider actual use.

Group A These components are used by several
components in the merged components. We can
imagine a situation that there are several sets of
the merged components in a component graph. In
such a case, if the component meets the require-
ment against at least one of the set, then the com-
ponent belongs to this group.

Group B These components are used by only one
of the merged components. This means that the

Thttp://classycle.sourceforge.net/

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.1 JANUARY 2018

component of this category is used only once at
most from all the sets of the merged components,
and some of the sets may not use the component.
Group C Other components are components that are
not used by any sets of the merged components.

2. We obtain Group A components using experiment #1.
For each Group A component, we investigate whether
the merged components use the Group A component in
a similar way or not, by visually reviewing the code.
We check the adequacy of our hypothesis that, “Com-
ponents whose evaluation value decreases tend to be
used by similar code fragments in the merged compo-
nents.”

3. In experiment #2, we found several Group A compo-
nents whose evaluation value had decreased. As a case
study, we investigated how such Group A components
were used by the merged components that have similar
code fragments. Through the explanation of the case
study, we evaluate how our method can support exist-
ing codes implemented by Action #1~#3, described in
Introduction.

5.1 Rate of Variability

The number of nodes decreased by merging the compo-
nents; however, the evaluation value is distributed relatively
evenly between each component, and the sum of the evalu-
ation values are always 1. So, we must compare two evalu-
ation values in view of the decrescence of the nodes.

To compare two evaluation values, we suppose the fol-
lowing situation; first, the number of nodes in the compo-
nent graph before merging are represented as Vi fore, and
an evaluation value of node v; iS wW(v;)pefore. After merging,
the number of nodes decreased into Vi, and the evalua-
tion value of the node became w(v;),f.,. We define a rate of
variability of node v; as following;

w(vi)afz‘er X Vafter

x 100 (1)
w(”i)before X Vbefore

5.2 Experiment #1: Changes in Evaluation Values

We selected 45 open-source projects in SourceForge. This
selection was performed via a search function of Source-
Forge, and we selected projects that have both source code
files (java) and bytecode (.jar) and we did not have any
other intentions. For each project, we got one version of
the software and applied our method to it, and calculated a
rate of variability for each component. We categorized the
non-merged components into Groups A, B, and C, and cal-
culated an average variability rate for Groups A, B, and C,
respectively.

Table 1 shows an average of the rate for components in
Groups A, B, and C per project, respectively. Some projects
did not have any components belonging to Group A (B, or
C), so the number of projects for each category was less

YOKOMORI et al.: EXTENSIONS OF COMPONENT RANK MODEL

Table 1 Average of rate of variability for each project.
Standard
Projects | Average | Deviation | Increased | Decreased
Group A 43 88.5% 19.6 3 40
Group B 41 107.7% 16.2 19 22
Group C 43 104.3% 6.4 20 23
20
515
c
%10
[l
o -l = — -
Frifgerasrgeg
S SR8 S RBRS8RERg
Differences of Average Variability (B-A) per project b

Fig.5 Histogram of the difference of average rate (B -A) per project.

N
=]

-
7

Frequency
=
°

[

o

]
=
o

-20-10.1
10-0.1
10-19.9
20-29.9
30-39.9
40-49.9
50-59.9
60-69.9
70-79.9
80-89.9
90-99.9
100 -109.9

Differences of Average Variability (C-A) per project

Fig.6 Histogram of the difference of average rate (C -A) per project.

than 45. We confirmed that an average rate of variability
for Group A components decreased 10%; whereas, that for
the components in Groups B and C increased slightly. In
this way, the average rate of variability for the components
in Group A decreased more than that observed for Groups
B and C. Group C components were not directly affected
by the merging nodes, so the standard deviation of Group C
was smaller than that of Groups A and B.

Some projects did not have any components belonging
to Group A (B, or C); however, components were present
in both Group A and B in 36 projects, whereas components
were present in both Group A and C in 37 projects, respec-
tively. For each respective project, we calculated the differ-
ence between the average rate of variability for the compo-
nents in Groups A and B, and also the difference between
that for Group A versus that for Group C. Figure 5 shows a
distribution of the differences between Group A and Group
B, and Fig.6 shows a distribution of the differences be-
tween Group A and C, respectively. In a few project, there
were some Group A components whose evaluation values
increased after merging components. This is because propa-
gations of indirect values caused by the change of the graph
structure were larger than the direct changes in values, and
details will be discussed in the discussion. Many projects
were plotted in a range of 10% from 20%, and in 80-90%
of the projects, we confirmed that Group A components lost
evaluation values more than the other components.

We also analyzed these differences statistically by us-

135

ing the Welch’s t-test, and confirmed that there was a sta-
tistically significant difference between Groups A and B
(¢ =0.01,d = 1.04, and 1 — 8 = 0.99988), and there was
also a statistically significant difference between Groups A
and C (¢ = 0.01,d = 0.94, and 1 — 8 = 0.99932), respec-
tively. From these results, we concluded that the evaluation
value of the component that was used by several components
of the merged components tended to decrease more than the
cases for the other components.

5.3 Experiment 2: Components Used by Merged Compo-
nents

We selected 34 open-source projects from 45 projects in Ex-
periment #1 due to time constraints, and the non-merged
components were categorized in the same manner as Ex-
periment #1. In Experiment #2, we focused on the Group
A components. For each Group A component, we analyzed
how the component was used by the merged components
by visually reviewing the code, and whether the component
was used in a similar way or not. This means that the com-
ponent was used by similar way inside or outside of the de-
tected code clone in the merged components, and their be-
haviors using the component were almost identical. Mainly,
we judged it based on whether there were common descrip-
tions that used the component in the processing, or before
or after the processing. This is because CCfinder[1] can-
not detect gapped clones [4], so even if the same component
is used by outside of similar code fragments, it may be re-
lated to the duplication of the similar code fragments if we
considered them as gapped clones. We categorized how the
component was used in the merged components, and dis-
cussed the points to be considered when we analyze code
clones with considering use relations.

From the 34 open-source projects, we extracted 423
components that belonged to Group A, and checked whether
the component was used in a similar way or not. We con-
firmed that 269 components (64%) were used by the merged
components in a similar way. On the other hand, 154 com-
ponents (36%) were used by merged components in a dif-
ferent way. Hence, almost two-thirds of Group A compo-
nents were used by the merged components in a similar way.
There were several merged sets, so we confirmed 339 ex-
amples from the 269 components. We classified these 339
examples based on how the component was used. In 195
cases, we confirmed that the components were used by a
method-call or creation of an instance, and so on, in the
similar code fragments. In many of the remaining cases, the
components were inherited by several subclasses, and these
subclasses had common descriptions that were recognized
as code clones. In other cases, the Group A components
were exception classes, and these components were used in
similar exception handlings.

Among the 34 projects, there were 24 projects that have
more than three components that belong to Group A. For
each project, we calculated a value that are obtained by di-
viding the number of Group A components that were used

136

Frequency
o m N W oA G &

0-9.9%
10-19.9%
20-29.9%
30-39.9%
40-49.9%
50-59.9%
60 - 69.9%
70-79.9%]
80 -89.9%
90 - 99.9%]

100%]

Precision Ratio of Group A Components per project

Fig.7 Histogram of the precision for each project.

100
80 j/_\’

60

40

Precision Ratio

20

Top X components (dnsjava)

Fig.8 Precision ratio for the top X cases (dnsjava).

100
80 1 /\/\/\/\
60

40

Precision Ratio

20

0+

TopX components (jackcess)

Fig.9 Precision ratio for the top X cases (Jackcess).

by the merged components in a similar way by the number
of Group A components, and considered it as a precision
ratio of the project. Figure 7 shows a distribution of the pre-
cision ratio for each project. We confirmed that there was
a distribution peak around the average (64%); on the other
hand, there were several projects whose precision ratio was
100%.

In the next analysis, we evaluated based on cases
that were represented by pairs of Groups A component
and merged components. We selected 2 projects, dnsjava’
Ver.3.4.1. and Jackcess'™ Ver.2.0.4. that had more than 20
cases. For each project, these cases were arranged in order
of decreasing rate of the evaluation value of the Group A
component, and we calculated a precision ratio for Top X
(X =1,---,20) cases as the same manner of the previous
one. Figure 8 is a transition of the precision ratio for the
Top X dnsjava cases, and Fig. 9 is that for the Top X Jack-
cess cases, respectively. In these figures, a solid line shows
the precision ratio for the Top X cases, and a horizontal line

Thttp://sourceforge.net/projects/dnsjava/
TThttp://jackcess.sourceforge.net/

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.1 JANUARY 2018

shows the precision ratio for all cases in the projects.

For dnsjava, Group A component was used by the
merged components in a similar way in the cases whose de-
creasing rate were from the first to the ninth, so the solid
line in Fig. 8 keeps 100% till the ninth. For Jackess, Group
A component was used by the merged components in a dif-
ferent way in the case whose decreasing rate was the largest,
however, Group A components were used by the merged
components in a similar way in the cases whose decreasing
rate were from the second to the sixth, so the solid line in
Fig. 9 was increasing tendency from the second to the sixth.
With a few exceptions, the line of the precision ratios al-
ways remained above the precision ratio for all cases in the
projects, so we considered that the components whose eval-
uation value had decreased significantly fitted our hypothe-
sis well.

5.4 Experiment 3: Case Studies

For each top five Jackess and dnsjava cases in the last analy-
sis of Experiment #2, we investigated how Group A compo-
nent was used by the merged components that have similar
code fragments as a case study. Table 2 and 3 is a sum-
mary of this investigation, and it represents top five cases
and contains the name of Group A component, the names of
the merged components that have similar code fragments,
the Group A component was used in similar way or not,
common points, and the results of estimate of what the de-
veloper had taken in Action #1-#3. About what actions are
expected when developers attempt to add similar functions,
we presented it at the Introduction as Action #1-#3. We es-
timated it from the similarity of implementation methods of
class members related to the Group A component. As a re-
sult, we couldn’t find cases implemented by Action #1 and
detected only cases implemented by Action #2 and #3. This
18 because our method is based on code clones, and code
clones would not be detected when developer had taken Ac-
tion #1.

In the cases of dnsjava, cases that were used by two
component-groups were ranked high. One is a group con-
sisting of 30 components that implements various types of
DNSRecord and protocol, and the other is a group consist-
ing of two components. In the former case, about a half
of 30 components used the corresponding Group A com-
ponent in similar way, however, the remaining components
were unrelated ones that didn’t use the Group A component.
Before merging, the Group A component obtained evalua-
tion value from each half of these 30 components. After
merging, the Group A component obtained evaluation value
only from the merged ones, so evaluation values for such
Group A components have decreased a lot. In the 1st case of
dnsjava, contents related to Mnemonic were very simple, so
class members related to Mnemonic were implemented with
consistency. And some cases used by two classes were not
complicated, so we consider that such case would be before
the derivation. On the other hand, in the case of 2nd and
4th, we confirmed that there were several kinds of imple-

YOKOMORI et al.: EXTENSIONS OF COMPONENT RANK MODEL

137
Table2 Summary of top 5 dnsjava cases.
GroupA Merged Components Similar | Common Point Estimated
that have similar code fragments Way? Approach
1 | Mnemonic 30 Files(CERTRecord,DSRecord, Yes For keeping configuration in 11 Classes Action #2
EDNSOption, KEYBase, KEYRecord,
SIGBase, SOARecord, TKEYRecord,
TSIGRecord, and so on) ... (A)
2 | Tokenizer (A) Yes For realization of rdataFromString() in 18 Classes Action #3
3 | Tokenizer APLRecord and TXTBase Yes For realization of rdataFromString() Action #2
4 | Compression | (A) Yes Described as a parameter of rrToWire() in 18 Classes | Action #3
5 | Compression | APLRecord and TXTBase Yes Described as a parameter of rrToWire() Action #3
Table 3 Summary of top 5 Jackcess cases.
GroupA Merged Components Similar | Common Point Estimated
that have similar code fragments Way? Approach
1 | ComplexValue ColumnImpl, CursorImpl No
IndexCursorlmpl, IndexImpl
and ComplexColumnInfolmpl
2 | ComplexValue AttachmentColumnInfolmpl and Yes For Management of Id information Action #3
VersionHistoryColumnInfolmpl in toValue()
3 | ComplexDataType | AttachmentColumnInfolmpl and Yes To use information of ComplexDataType | Action #2
VersionHistoryColumnInfolmpl in getType()
4 | QueryFormat AppendQueryImpl and UpdateQueryImpl Yes To use static variable in QueryFormat Action #2
5 | Querylmpl AppendQueryImpl and UpdateQueryImpl Yes They are derived from QueryImpl. Action #3
For preprocessing in toSQLString()

mentation among 30 components, and it is difficult to grasp
the content effectively even if we review only the methods
of the same name. The 6-9th cases were not introduced in
the Table 2, however, these cases were also similar to the
2nd-fifth cases, and the implementation approaches of re-
lated methods derive into several ones.

For Jackess, Group A component was used by the
merged components in a different way in the 1st case, how-
ever, Group A components were used by the merged com-
ponents in a similar way in the cases from the second to the
fifth, and these similar descriptions were minimum required
and small in size. In case of such the small one, two sim-
ilar descriptions were sometimes implemented by different
approaches.

We consider that there are many software systems that
contain a lot of similar components in order to manage var-
ious formats and protocols. The detail of these compo-
nents would be different, so descriptions of these compo-
nents would be easily derived from the difference. For ef-
ficient understanding, refactoring is needed to divide such
similar descriptions into common and original sections. We
consider that our method is not only useful to support ac-
tion #2, but also useful to support action #3, this is because
detected components could be a trigger of such refactoring.

6. Discussion

6.1 Experimental Results

From the results of Experiment #1, we confirmed that the
evaluation values of the Group A components, those that

were used by several components among the merged com-
ponents, decreased more on average than those of Groups B

and C. On the other hand, we also confirmed that the eval-
uation values of some components in Group A increased
and those of the components of Group B or C decreased
severely. Especially, there were three projects where the
average rate of variability of the Group A components in-
creased, and we investigated how the nodes in the compo-
nent graph were merged for such cases.

e Components with low evaluation values were affected
by indirect propagations caused by the change of evalu-
ation value of components with high evaluation values.
When a change of the graph structure was too large,
components with low evaluation values were also af-
fected.

o We confirmed that there were several groups of merged
components. Some of the Group A components were
used by several components in a certain group; how-
ever, some components were also used by only one
component in another group. In such cases, the eval-
uation value of such components tended to increase.

e When a change of the graph structure was too large,
or when the components whose role was quite different
were merged, several closed paths were produced in
the merged graph. In such cases, the distribution of
the evaluation value was affected by the created closed
paths.

From these results, we consider that it is not desirable
to merge components gratuitously, and our method would be
improved by setting a restriction for merging of the compo-
nents based on relativeness between the components. These
adjustments would be thought of as a configuration choice
problem [7], and we will show a brief result of these adjust-
ments in the next subsection.

138

From the results of Experiment #2, we confirmed that
almost two-third of the Group A components were used by
the merged components in a similar way. For actual use, we
consider the ratio was insufficient to realize the method by
simply extracting the components that were commonly used
by the code clone-related components. We consider that
sorting the components based on the variability rate seems
to be efficient, as indicated in Figs. 8 and 9, and decreasing
of evaluation value a lot due to the decreasing of its incom-
ing edges caused by merging a lot of components that have
similar code fragments. Our hypothesis that, “Components
whose evaluation value decreases tend to be used by similar
code fragments in the merged components.” worked to some
extent, for components whose evaluation value decreased a
lot.

We also classified 339 examples based on how the com-
ponent was used by the merged components. From a view-
point of clone analysis based on the use relation, this type
of classification would be useful for identifying a particu-
lar kind of use relations that are closely related to produc-
ing code clones. For example, we consider that the follow-
ing support would be realizable: when developers introduce
some classes that inherit a particular class, it can be sup-
ported by providing coding comments as there are already
some good examples that inherit the class, and these classes
serve as a useful reference. Based on such an approach, we
can control the existing code clone that derives and increases
in various forms in the software. Since such differentiated
code clones make it more difficult to detect code clones, our
method would be useful for improvement of the quality of
the software.

From the results of Experiment #3, we evaluate how
our method can support existing codes implemented by Ac-
tion #1~#3, mentioned in the Introduction.

o The code implemented by Action #1 is considered that
some measures had already been undertaken, so no fur-
ther support would be needed.

o If developers can take Action #2, similar descriptions
would be simple ones, or would be spread only to a
few components. Our method can support developers
by presenting existing examples, as already described
in Introduction. However, detailed support is required
at the time of recommendation. For example, non-
relevant components should be removed from the can-
didates of examples, and supporting system have to
present which methods are associated with the use of
the component.

o If developers take Action #3, similar descriptions have
been already derived and are difficult to grasp effi-
ciently. Our method can support developers by show-
ing these derived descriptions that using the detected
component, and by encouraging to perform refactor-
ing against these derived descriptions. This support can
improve a quality of the existing codes into the direc-
tion of Action #1 or #2.

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.1 JANUARY 2018

Table 4 Results: Restriction method based on the package dis-
tance(CardMe).
| Package Distance [9 [83] 2 [1] 0 |

Group A Components 33 31 32 12 9
Ave. Rate (Group A) (%) 99 98 96 60 39
Ave. Rate (Group B) (%) | 113 113 114 | 115 | 112
Ave. Rate (Group C) (%) 121 120 121 113 112

Precision (%) 70 71 69 75 78
Recall (%) 96 92 92 38 29
F-measure 0.81 | 0.80 | 0.79 | 0.5 0.42

6.2 Application of Improvement Methods

As examples of restriction for merging of components, we
attempted the following approaches for a few projects:

e We considered the distance between components on a
package hierarchy when merging components.

e We changed the definition of the clone relation so that
we only consider larger code fragments, namely those
that are longer than 40 (50, 70) tokens.

At first, we applied a restriction method based on
the distance between components on the package hierarchy
when merging components. We defined the distance be-
tween two components as the number of movements when
moving from one package to another package along a tree
structure. We did not merge the components whose dis-
tance was longer than a threshold value. For example, we
only merged components that belonged to the same pack-
age under the circumstances where the threshold value was
0, and we only merged components that belonged to the
same package, or that were a parent and child relationship
in a package hierarchy under the circumstances where the
threshold value was 1, respectively.

Table 4 shows results when we changed the threshold
value from 0 to 9. The target system was CardMe, which
was an implementation of RFC 2426 - VCard. For each
threshold value, we calculated a value that are obtained by
dividing the number of components in Group A that were
used by the merged components in a similar way by the
number of components in Group A, and considered it as a
precision ratio for the threshold value. To define a recall,
we searched components that have similar code fragments.
And then, we searched components that are used by these
components in a similar way, and treat them as a population
at recall. Hence, the recall shows how many components
in the population were extracted as Group A components
for a specific threshold. Components merged by clone rela-
tion don’t belong to the Group A-C, so some of the compo-
nents in the population were undetectable by any threshold.
The results indicate that an average rate of Group A com-
ponents tend to decrease by making the distance restriction
stringent. Precisions were also kept or improved by mak-
ing the distance restriction stringent; however, the recalls
decreased significantly when the restriction was made too

https://sourceforge.net/projects/cardme/

YOKOMORI et al.: EXTENSIONS OF COMPONENT RANK MODEL

Table 5 Results: Restriction method based on the size of similar code
fragments (JMDNS).

| Tokens [30(orig) | 40 [50 [70 |
Group A Components 15 13 11 3
Ave. Rate (Group A) (%) 103 90 92 76
Ave. Rate (Group B) (%) 110 103 105 102
Ave. Rate (Group C) (%) 87 102 99 102
Precision (%) 67 69 72 66
Recall (%) 90 81 72 18
F-measure 0.76 0.74 | 0.72 | 0.28

stringent. By applying this approach to several projects, the
result was slightly improved when we set the distance to 2
or 4. This means that the average rate of Group A and its
precisions were maintained or improved, and its recalls did
not decrease.

Next, we changed the threshold value of the code clone
detection in CCfinder. In this approach, we could consider
only larger similar code fragments by ignoring small frag-
ments, and we treated two .java files to have a clone relation
if they have similar code fragments that are longer than 40
(50, and 70) tokens.

Table 5 shows the results when we changed the thresh-
old value from 30 to 70 and precision and recall were cal-
culated by the same manner of the previous one. The target
system was JMDNS', a Java implementation of the multi-
cast DNS. In the case of 30 tokens, the evaluation values
of Group A components increased on average. There were
several similar code fragments that greatly change the struc-
ture of the graph by merging, and the changes of the eval-
uation values by indirect propagations were large. When
the threshold value was small, several similar code frag-
ments were coincidentally matched in the token structure,
and the tool recognized them as code clones. By increasing
the threshold value for detecting similar code fragments, the
evaluation values of Group A components decreased on av-
erage. We considered that the changes of the evaluation val-
ues close to the assumption were caused by the exclusion of
similar code fragments which matched coincidentally. We
determined that the average rates of Group A components
tend to decrease by making the length restriction stringent.
Precisions were also improved by making the length restric-
tion stringent; however, recalls decreased significantly. The
condition of recall with 30 tokens was not 100% because
some of the merged components were not combined under
the other condition, and some of those components belonged
to Group A under the other condition. By applying this ap-
proach to several projects, the result was improved when we
set the length to 40 or 50. This means that the average rate of
Group A and its precisions were improved, without making
its recalls decrease significantly.

We found that both ways could reduce the merging
components whose relationships were tenuous, and the av-
erage rates of Group A components and its precisions were
improved. So these cases would be successful cases. On
the other hand, the recalls dropped for both ways. We also

http://jmdns.sourceforge.net/

139

found that making stringent restrictions had an opposite ef-
fect, and applying several restriction methods little-by-little
appeared to be a good approach.

We can use also other restriction method by changing
extraction method of code clone to make the relationship
between merged components more predictable. By taking
into account gapped clone [4], similar code fragments can
be captured on a larger scale. For example, we consider that
only components that are highly relevant would be merged
by merging when more than 50% of the descriptions are in-
cluded in their similar code fragments. Hence, we would
like to try other restriction methods for improving the per-
formance of our approach.

In this paper, we choose a .java file as a component.
The granularity of a component also would affect the effec-
tiveness. For the usage that introduced in the Introduction,
we considered that the accuracy of information obtained be-
comes ambiguous one when the granularity of component is
coarse, and the accuracy of information obtained becomes
clarified one when the granularity of component is fine. We
also would like to try other granularity, and then we also
have to consider meaning under other conditions.

6.3 Related Works

From the use relation (dependency) analysis viewpoint, ar-
chitecture recovery is an active research area. Zhang repre-
sents the object-oriented system by using the Weighted Di-
rected Class Graph, and proposed a clustering algorithm for
recovering high-level software architecture [8]. Constanti-
nou represents hierarchical relationships between compo-
nents as a D-layer, by contracting closed paths in a compo-
nent graph, and investigated the relationships between the
architectural layers and design metrics [9]. In the past re-
search, we proposed a metric representing a change of com-
ponent rank as an impact on source code updates [10]. We
also focused on the change of the evaluation value of each
component in this work.

From the clone analysis viewpoint, Mondal analyzed
the stability of several kinds of cloned codes, and they re-
ported that Type3 clones, known as gapped clones, have
higher stability than other clones [4]. Antoniol analyzed the
evolution of code duplications in 19 versions of the Linux
kernel [11]. Yoshida et al. proposed an approach to support
clone refactoring based on code dependency (e.g., caller-
callee, shared variable) among code clones [12]. Their ap-
proach presented a coherent set of code clones as a refac-
toring opportunity. Our research used the component rank
model as a basis for consolidating clone information and
displaying the results. The characteristics of our research
paid attention to the components commonly used by cloned
code. In [13], Yamanaka suggested a daily reporting system
about modifications related to cloned codes. We consider
that changes of component rank may also benefit a report-
ing system.

140

7. Conclusion

In this paper, we extended a component rank model by con-
sidering code clones between components, and those com-
ponents that had a similar code fragment were merged onto
the component graph. We implemented a system based
on the method, and we conducted three evaluation experi-
ments. In the first experiment, we confirmed that the eval-
uation value of the component, which was used by several
components among the merged ones, decreased. In the sec-
ond experiment, we confirmed that almost two-thirds of the
components that were used by the several merged compo-
nents, were used by merged components in a similar way,
and sorted the components based on a rate of variability
which seemed to be efficient. In the third experiment, we
confirmed that the proposed approach would be useful for
preventing components from deriving more than necessary,
and also be useful for suggesting the need for factoring.

From these results, we could confirm a certain degree
of its utility, and a rate of variability seemed to be effi-
cient for filtering non-related components. We also sug-
gested improvement methods, and characteristics of these
improvement methods were confirmed by the application re-
sults. After further improvement methods were estimated,
we would like to implement a tool which helps to reduce
code clones in various forms. The tool would contribute
to support the software-maintenance work and the improve-
ment of the quality of the source code.

Acknowledgments

This research is supported by Nanzan University Pache Re-
search Subsidy I-A-2 for the 2017 academic year. I would
like to gratefully and sincerely thank to E. Senga. Original
idea of this research is based on his master thesis written
in Japanese [14]. We are supervisors of the thesis, and we
added all of the experiments and considerations for this pa-
per and [5].

References

[1] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multi-
linguistic token-based code clone detection system for large scale
source code,” IEEE Transactions Software Engineering, vol.28,
no.7, pp.654-670, 2002.

[2] LD. Baxter, A. Yahin, L. Moura, M. Sant’ Anna, and L. Bier, “Clone
detection using abstract syntax trees,” Proceedings of International
Conference on Software Maintenance, pp.368-377, 1998.

[3] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S.
Kusumoto, “Ranking significance of software components based on
use relations,” IEEE Transactions on Software Engineering, vol.31,
no.3, pp.213-225, 2005.

[4] M. Mondal, C.K. Roy, M. Rahman, R. Saha, J. Krinke, and K.
Schneider, “Comparative stability of cloned and non-cloned code:
An empirical study,” Proceedings of the 27th ACM Symposium on
Applied Computing, pp.1227-1234, 2012.

[5] R. Yokomori, N. Yoshida, M. Noro, and K. Inoue, “Extensions of
component rank model by taking into account for clone relation,”
Proceedings of the 10th International Workshop on Software Clones,

(6]

(71

(8]

[

[10]

[11]

[12]

[13]

[14]

ACM.

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.1 JANUARY 2018

pp.30-36, 2016.

C.W. Krueger, “Software reuse,” ACM Computing Surveys, vol.24,
no.2, pp.131-183, 1992.

T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for better
configurations: A rigorous approach to clone evaluation,” Proceed-
ings of the 2013 9th Joint Meeting on Foundations of Software En-
gineering, pp.455-465, 2013.

Q. Zhangs, D. Qiu, Q. Tian, and L. Sun, “Object-oriented software
architecture recovery using a new hybrid clustering algorithm,” Pro-
ceedings of the Seventh International Conference on Fuzzy Systems
and Knowledge Discovery, pp.2546-2550, 2010.

E. Constantinou, G. Kakarontzas, and I. Stamelos, “Towards open
source software system architecture recovery using design metrics,”
Proceedings of the 15th Panhellenic Conference on Informatics,
pp-166-170, 2011.

R. Yokomori, M. Noro, and K. Inoue, “Evaluation of source code up-
dates in software development based on component rank,” Proceed-
ings of 13th Asia Pacific Software Engineering Conference, Banga-
lore, India, pp.327-334, 2006.

G. Antoniol, U. Villano, E. Merio, and M.D. Penta, “Analyzing
cloning evolution in the linux kernel,” Information and Software
Technology, vol.44, no.13, pp.755-765, 2002.

N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “On
refactoring support based on code clone dependency relation,” Pro-
ceedings of the 11th IEEE International Software Metrics Sympo-
sium, pp.16:1-16:10, 2005.

Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, and T. Sano, “Indus-
trial application of clone change management system,” Proceedings
of the 6th International Workshop of Software Clones, pp.67-71,
2012.

E. Senga, “Evaluation of software components considered code
clone,” Master’s thesis, Dept. of Mathematical and Information Sci-
ence, Nanzan University, 2013. (in Japanese).

Reishi Yokomori received his Master and
Ph.D. from Osaka University in 2001 and 2003,
respectively. He has been with Nanzan Univer-
sity since 2005 and now he is an associate pro-
fessor in the department of software engineering
of Nanzan University. His research interests are
program analysis and software development en-
vironments. He is a member of the IEEE, and
the IEEE Computer Society.

Norihiro Yoshida received his B.E. from
the Kyushu Institute of Technology in 2004 and
his Master and Ph.D. from Osaka University in
2006 and 2009, respectively. He is an asso-
ciate professor at Nagoya University. Before
joining Nagoya University in 2014, he was an
assistant professor at the Nara Institute of Sci-
ence and Technology from 2010. His research
interests include program analysis and software
development environments. He is a member of
the IEEE, the IEEE Computer Society, and the

http://dx.doi.org/10.1109/tse.2002.1019480
http://dx.doi.org/10.1109/icsm.1998.738528
http://dx.doi.org/10.1109/tse.2005.38
http://dx.doi.org/10.1145/2245276.2231969
http://dx.doi.org/10.1109/saner.2016.30
http://dx.doi.org/10.1109/saner.2016.30
http://dx.doi.org/10.1145/130844.130856
http://dx.doi.org/10.1145/2491411.2491420
http://dx.doi.org/10.1109/fskd.2010.5569799
http://dx.doi.org/10.1109/pci.2011.36
http://dx.doi.org/10.1109/apsec.2006.35
http://dx.doi.org/10.1016/s0950-5849(02)00123-4
http://dx.doi.org/10.1109/metrics.2005.36
http://dx.doi.org/10.1109/iwsc.2012.6227869

YOKOMORI et al.: EXTENSIONS OF COMPONENT RANK MODEL
141

Masami Noro received his Ph. Dr. de-
gree from Keio University in 1988. He has been
with Nanzan University since 1996 and now he
is a professor in the department of software en-
gineering of Nanzan University. His research
interests are programming language semantics
and software architecture.

Katsuro Inoue received the B.E., M.E.,
and D.E degrees in information and computer
sciences from Osaka University, Japan, in 1979,
1981, 1984, respectively. He was an assistant
professor at the University of Hawaii at Manoa
from 1984 to 1986. He was a research associate
at Osaka University from 1984 to 1989, an as-
sistant professor from 1989 to 1995, and is a
professor beginning in 1995. His interests are
in various topics of software engineering such
as software process modeling, program analy-
sis, and software development environments. He is a member of the IEEE,
the IEEE Computer Society, and the ACM.

