
“Was my contribution fairly reviewed?” A Framework to Study
the Perception of Fairness in Modern Code Reviews

Daniel M. German
University of Victoria, Canada

dmg@uvic.ca

Gregorio Robles
Universidad Rey Juan Carlos, Spain

grex@gsyc.urjc.es

Germán Poo-Caamaño
University of Victoria, Canada

gpoo@uvic.ca

Xin Yang
Osaka University, Japan

xinyang@ist.osaka-u.ac.jp

Hajimu Iida
Nara Institute of Technology, Japan

iida@itc.naist.jp

Katsuro Inoue
Osaka University, Japan

inoue@ist.osaka-u.ac.jp

ABSTRACT

Modern code reviews improve the quality of software products. Al-

though modern code reviews rely heavily on human interactions,

little is known regarding whether they are performed fairly. Fairness

plays a role in any process where decisions that affect others are

made. When a system is perceived to be unfair, it affects negatively

the productivity and motivation of its participants. In this paper,

using fairness theory we create a framework that describes how fair-

ness affects modern code reviews. To demonstrate its applicability,

and the importance of fairness in code reviews, we conducted an em-

pirical study that asked developers of a large industrial open source

ecosystem (OpenStack) what their perceptions are regarding fairness

in their code reviewing process. Our study shows that, in general, the

code review process in OpenStack is perceived as fair; however, a

significant portion of respondents perceive it as unfair. We also show

that the variability in the way they prioritize code reviews signals a

lack of consistency and the existence of bias (potentially increasing

the perception of unfairness). The contributions of this paper are:

(1) we propose a framework—based on fairness theory—for study-

ing and managing social behaviour in modern code reviews, (2) we

provide support for the framework through the results of a case study

on a large industrial-backed open source project, (3) we present

evidence that fairness is an issue in the code review process of a

large open source ecosystem, and, (4) we present a set of guidelines

for practitioners to address unfairness in modern code reviews.

KEYWORDS

Fairness, Software Development, Modern Code Review, Open Source

Software, Human and Social Aspects, Transparency

ACM Reference Format:

Daniel M. German, Gregorio Robles, Germán Poo-Caamaño, Xin Yang, Ha-

jimu Iida, and Katsuro Inoue. 2018. “Was my contribution fairly reviewed?”

A Framework to Study the Perception of Fairness in Modern Code Reviews.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Asso-
ciation for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180217

In ICSE ’18: ICSE ’18: 40th International Conference on Software Engi-

neering , May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3180155.3180217

1 INTRODUCTION

The goal of modern code reviews is to ensure the high quality of

software [1, 4, 46, 52]. Code reviewing is a process in which a

reviewer makes a decision on somebody else’s contribution. As with

many other human intensive activities, code reviewing is prone to

bias; reviewers might have their personal points of view, interests and

circumstances that affect the decisions that they make [6, 19, 38, 61].

When an author has a patch rejected, it is natural to ask if the

decision was fair. If an author has the perception that her patch was

treated unfairly, it might lead towards resentment and might result

in actions that are not in the best interest of the project, such as

selfishness, retaliation and leaving the project [9, 17]. These actions

might affect the long term success and survival of a software project,

especially Open Source Software (OSS) [49]. In OSS projects, it is

reasonable that its participants expect to be treated fairly, even if they

might not agree on what fair is. In projects that use code reviews, the

review process becomes not only a way to guarantee quality, but it

could also stifle some contributors —eventually turning them away.

One important goal of any system that involves human decisions

is to guarantee that the allocation of resources, and decisions are

fair to both, the participants and the system as a whole. Fairness

involves many different aspects. One of them is bias; however, a

fair system can be biased towards certain participants; for example,

it is widely accepted that important bug fixes should be reviewed

first, or that reviewers should give more constructive comments to

newcomers than regular contributors. Fairness is also concerned with

the creation of procedures and appealing mechanisms, the manner

in which actors interact, etc.

We have developed a framework grounded on fairness theory to

explain fairness in modern code review process. A theoretical frame-

work is the structure that makes the context of a case study clear,

particularly when introducing a theory from a different field [44, 54].

We use this framework to conduct an empirical study of the percep-

tion of fairness in the code review process of a major OSS project.

The contributions of this paper are: we present (1) a frame-

work—based on fairness theory—for studying and managing social

behavior in modern code reviews; (2) support for the framework

through the results of a case study on a large industrial-backed open

source project, (3) evidence that fairness is an issue in the modern

code review process of a major industrial OSS ecosystem; and, (4) a

set of guidelines to address unfairness in modern code reviews.

523

2018 ACM/IEEE 40th International Conference on Software Engineering



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden German, Robles, Poo, Yang, IIda, and Inoue

2 ON THE CONCEPT OF FAIRNESS

Any time individuals form a group, from very small to entire soci-

eties, they face the challenge of allocating resources and rewards

among its members. Thus, individuals are continuously subject to

the decisions of others. These decisions have “both economic and so-

cioemotional consequences” [16], and “the way that the group deals

with these issues has a great impact on its effectiveness, and on the

satisfaction of its members” [43]. The importance of these decisions

prompts those subject to a decision to ask: “Was that fair?” [16].

At the core of this issue is the notion of fairness: how to decide and

allocate resources in a way that is fair and just to the individuals and

the group as a whole. Philosophy, psychology, law, sociology, man-

agement sciences and economics –among many other disciplines–

have extensively researched these issues in what is known as justice

theory (also known as fairness theory) [18] (fairness and justice

are synonyms in these fields). According to Folger and Cropan-

zano [24, 25] fairness theory –within the context of organizations–

“predicts that individuals will react negatively to decision making

events when the decision maker (1) could have done something

differently; (2) should have done something differently; or (3) the

current state of well-being would have been better if the event had

played out differently.” and focuses on “explaining when authorities

should be held accountable for unfavorable events.”

In particular, organizational justice is the study of fairness within

an organization; it is divided into four main areas of study [16, 17,

32] (see Table 1): (1) Distributive Fairness concerns the allocation

of outcomes (decisions and rewards) according to the participa-

tion of the individuals in the system [42], (2) Procedural Fairness

concerns the decision process that leads towards an outcome, (3) In-

teractional Fairness is defined as “the interpersonal treatment of

people” [8] and the degree to which the people affected by an out-

come are treated with dignity and respect [66]; and, (4) Informa-

tional Fairness focuses on the dissemination of information about

why procedures exist and how outcomes are reached [28].

2.1 Distributive Fairness

Distributive Fairness (also known as Distributive Justice) is con-

cerned with how to balance the distribution of outcomes with the

amount of participation of individuals in a system. According to

Cohen, distributive fairness is concerned with four dimensions [15]:

(1) outcomes are allotted to (2) persons, whose relative shares can

be described (3) by some functional rule, and by (4) some standard.

In other words, the decision to allot an outcome (including a re-

source, a treatment, or a decision) to an individual might depend on

both, her contribution to the system, and certain minimal standards

as defined by the system. These latter two aspects highlight the fun-

damental dichotomy of distributive fairness: it must find a balance

between equity (an individual who contributes more deserves more)

and equality (every individual deserves the same outcomes, regard-

less of contribution). Organizations favor equity because it rewards

those who contribute more to the organization [42]. However, in an

organization that emphasizes equity, there is still a minimal need of

its members to receive an allocation of outcomes in order to guaran-

tee their continuing participation in the system. Distributive fairness

is also concerned with how newcomers should be treated, as they

have not had an opportunity to contribute to the system [42].

Equity’s fundamental challenge is how to effectively measure the

contributions of an individual. Imperfection of this measurement

might prompt participants to “game” the system. Also, equity might

emphasize selfishness in detriment of the well-being of the over-

all system. In practice, an organization might implement equity in

some aspects (e.g., salary) and equality in others (e.g., benefits).

Distributive fairness attempts to address the challenges created by

self-interest (“if I contribute more, I should receive more”) in favor

of a long term benefit that comes from the restrain of this self-interest

in benefit of others [72].

2.2 Procedural Fairness

Procedural fairness refers to the perceptions of fairness in the pro-

cedural components used to determine outcomes in a system and

focuses on the events that precede the determination of the out-

come [43]. The determination of the outcome is done by decision

makers who control the process. When this process is perceived as

fair, the final distribution is likely to be accepted as fair—even in the

presence of bias (e.g., such as existence of equity) [43].

Procedural fairness relies upon the application of several rules.

When these rules are upheld, the procedure is perceived to be

fair [16]. These rules are: 1) consistency: the process is applied

consistently across all instances of decisions and across time; 2) bias

suppression: decision makers are neutral; 3) accuracy of informa-

tion: the decision is made based on accurate information; 4) control:

those affected by the decision have a voice that can alter the out-

come; 5) correctability: there exist appeal processes for correcting

bad outcomes; and, 6) ethicality: the process upholds personal and

organizational standards of ethics and morality.

Procedural fairness requires the documentation of the decision

process, including how to select those making the decisions, and a

clear establishment of policies and guidelines that cover the rules

cited above. Note that consistency and bias suppression run orthogo-

nal to equity. Equity presupposes a bias: those that contribute more

should receive more; within this bias, procedural fairness should

strive to be consistent across all decisions and without (other) bias.

Accuracy of information implies that decisions should be made

based upon correct information. A transparent decision process

allows the verification of its accuracy. We will discuss information

transparency further under Informational Fairness.

Control and Correctability give a voice to those affected by the

outcome. Control implies that the decision process allows those

affected to add or correct information or to question the decision

process (while in progress). Correctability implies that those affected

by a decision can appeal the process, ideally to a different decision

maker. Having a voice in the decision process has been found to im-

prove the satisfaction and perception of fairness in a system (known

as the fair voice effect) [26].

Ethicality implies a certain common set of values in the organi-

zation. An agent that acts unethically favors certain individuals or

ideas over others against the set of values of the system. Ethicality

overlaps with Interactional Fairness (described below).

To be effective, procedural fairness requires a set of policies that

serve both as a guideline on how a process should be performed, and

a social contract indicating the responsibilities and obligations of

those making decisions, and how they can be appealed. And it also

requires that decision makers abide by these policies.

524



Perception of Fairness in Modern Code Reviews ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 1: Dimensions of Fairness in organizational justice. Derived from Colquitt [16, 17].

Rules Process

Distributive Fairness

Equity Resources, treatment and outcomes are distributed in accordance with one’s contribution
Equality All participants deserve the same resources, treatment and outcomes regardless of contribution
Need The resources, treatment and outcome meet the minimal requirements of the recipient
Newcomers Newcomers should receive a positive bias

Procedural Fairness

Control The abilities to (1) voice one’s views and (2) influence the outcome
Consistency The process is applied consistently across time and persons
Bias suppression Decision makers are neutral
Information Accuracy Decisions are not based on inaccurate information
Correctability Appeal procedures exist for correcting bad outcomes
Ethicality The process upholds personal and organizational standards of ethics and morality

Interactional Fairness
Respect Actions and signals should reflect the intrinsic value that a person has for another
Psychological safety A mechanism to prevent harassment and protect victims when unacceptable treatments occur

Informational Fairness
Truthfulness Need to avoid deception
Adequacy of explanations Need of individuals to receive explanations that are reasonable and timely

2.3 Interactional Fairness

Interactional fairness is based on the fact that individuals are not

only concerned with outcomes, but also with the way they are treated

during the process that reaches those outcomes [9]. Its main concern

is that individuals should be treated with dignity and respect during

the entire decision process.

Bies argues [9] that people have a view of themselves that is

sacred and when this view is violated, it results in a painfully intense

experience; and that there are three main violations to this dignity

that are of concern: disrespect, invasion of privacy and exposure

to personal danger. Respect are actions and signals that reflect the

intrinsic value that a person has for another and disrespect are ac-

tions and signals that demean the perceived value of an individual

(her own perceived value –self-respect– or her value as perceived by

others–the respect of others) [29]. The most typical forms of disre-

spect are inconsiderate actions (e.g., not receiving timely feedback,

not receiving an explanation for a decision), abusive words or actions

(e.g., rudeness, public criticism, berating –that humiliates a person,

or prejudicial statements– sexism or racism). Invasion of privacy is

concerned with the disclosure of secrets, including asking improper

questions. Finally, exposure to personal danger refers –within the or-

ganization context– to actions that violate the psychological safety

of the individual (e.g., increase of stress due to an abuse) [21].

2.4 Informational Fairness

Informational fairness is concerned with two dimensions: truthful-

ness and adequacy of explanations. Truthfulness is the need to avoid

deception, as people who feel “lied to” become resentful [9]. Truth-

fulness also includes not having others stealing somebody else’s

ideas and/or divulging false information that might incorrectly affect

other’s perception of a person. Adequacy of explanations is the

need of individuals to receive explanations that are perceived to be

“adequate” (reasonable, timely, and specific) [16].

3 FAIRNESS AND CODE REVIEWS

Code reviewing is a decision process. Fundamentally, the decision

to accept or not a patch should be based on the merits of the patch

itself. However, how this process is performed and how the different

participants interact can have negative effects on the process and

long term success of the system. For these reasons, fairness is an

intrinsic property of code reviewing. How the review is conducted

(treatment), the resources it gets (its resource allocation), and how

the person submitting the patch is treated by the decision makers (the

reviewers) are issues of concern to fairness theory. Applying fairness

theory to code reviews has the potential to increase the satisfaction,

effectiveness and productivity of its participants, the quality of these

reviews, and overall, the success of the system.

In the rest of this section we describe a framework that we have

developed to describe how the different types of fairness can be

applied to code reviewing (see Table 2). Many of these issues are

already addressed in many code review processes currently in use.

This framework can be used to analyze these processes with the goal

of identifying their strengths and potential areas of improvement.

3.1 Distributive Fairness

A system that favors equality in code reviews would give every patch

contributor and every patch the same allocation of resources and the

same treatment. In the context of the contributor, who the author

of the patch is should not affect how the review is performed (its

prioritization, the quality of the review, the overall time to complete

the review, etc.). In the context of a patch, equality would imply that

every patch would have to be treated equally (e.g., a critical bug fix

should not be prioritized first).

A system that favors equity assumes that who the author of the

patch is/or characteristics of the patch should affect the allocation

of resources and treatment. Equity at the contributor level would

imply that those that contribute more (e.g., those who author more

code or more difficult code, or those who donate more money to

the project, etc.) should receive preferential treatment in the review

process. Similarly, equity at the patch level would imply that patches

that contribute more (e.g., implement a more desirable feature, fix a

more important defect, etc.) should receive better treatment.

As mentioned before, equity has been found to favor produc-

tivity [31]. It can be argued that the measure of contribution of a

patch is its importance: a more important patch deserves more than

a less important one. It is natural to expect that a code review system

would consider—with regards to the treatment of patches—equity

as a more desirable property than equality. With respect to the treat-

ment of individuals, it is less obvious if a system should benefit

those that contribute more (e.g., core developers versus less frequent

contributors). A system might give preferential treatment to core

developers [10] (e.g., their patches should be prioritized) and/or to

525



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden German, Robles, Poo, Yang, IIda, and Inoue

Table 2: A framework of fairness applied to Modern Code Reviews

Categories Rules Concerns

Distributive Fairness

Equity —Patch level What types of patches are important and should receive preferential treatment
Need —Patch level What is the minimal treatment that a patch should receive
Equity vs Equality–Individuals Decide if those who contribute more should be given preferential treatment, and how to measure contribution

Newcomers Decide what preferential treatment to give them

Procedural Fairness

Consistency and bias suppression Define standards of quality of treatment and requirements for successful patches
Control and Information Accuracy Allow authors and other non-reviewers to comment on the review in progress
Correctability Create an appeal process for rejected reviews
Ethicality Define ethical standards regarding how reviews should be conducted, including potential conflict of interest

Interactional Fairness
Respect

Define a Code of Conduct and a mechanism to enforce it
Psychological safety

Informational Fairness
Truthfulness Conduct code reviews with full, ongoing transparency to all involved parties, including the publication of metrics
Adequacy Reviewers should provide good feedback; explain delays and unexpected treatment and outcomes in a timely manner

newcomers –who should have their patches reviewed in a more

detailed and constructive way than seasoned developers. However,

giving preferential treatment to core developer might deter non-core

developers from participating [40].

Nonetheless, a review system must satisfy a minimal level of

need. Hence, need determines the minimal level of quality a code

review should have, such as being reviewed by a minimum number

of reviewers, should not stay in the reviewing queue for too long,

and/or should have a minimal level of quality in their feedback [77].

Another aspect relevant to distributive fairness is the distribution

of the decision making power to reviewers. Some systems award to

certain reviewers more weight than others (such as core reviewers

in OpenStack and super-reviewers in Apache [30, 52] whose votes

weight more than other reviewers), giving them the ability to have

a higher influence on the direction of the project. Similarly, some

systems might only allow certain contributors to be reviewers.

3.2 Procedural Fairness

A basic prerequisite of procedural fairness in code reviews is the en-

actment of policies that indicate who the reviewers are (the decision

makers), and how the code reviews should be performed. Usually,

the selection of reviewers is clearly documented; in some cases, a

system might allow any developer to review, in others, reviewers

are selected by vote or by appointment in the organization [74, 79].

As mentioned above, some reviewers might have more weight than

others in the review process.

Documenting the way to perform reviews should address multiple

aspects, including: how to select a patch to review (prioritization),

the minimal standards that a review should satisfy, the requirements

that a patch should satisfy to be accepted, etc. Organizations might

already have some of these policies in place [68].

Consistency and bias-suppression apply primarily to prioritiza-

tion of reviews, and the expected quality of treatment for a patch

under review. Prioritization is mainly concerned with the order in

which reviewers should process patches. This ordering should be

well documented and applied consistently. For example, due to

equity, there might exist different classes of patches, each with a

different priority; consistency implies that within each class patches

should be prioritized according to their time of arrival (or any other

property of the patch). The expected quality of treatment determines

what an author of a patch should expect from a review, and what a

reviewer is expected to do, including how to provide feedback in

case of rejection, especially to newcomers [60]. Bias suppression

indicates undesirable treatments to avoid. Individuals can be used to

do quality control to help reach consistency and bias-suppression,

and could anonymize the authors or reviewers of the patch.

Regarding control, the desirability of the fair voice effect implies

that the code review process should allow the author of the patch to

contribute its discussion before a decision is made. Control is usually

satisfied by allowing the author to reply to reviewers’ comments;

reviewers can consider this rebuttal (if submitted) before making

a decision. Rebuttals will also improve information accuracy as

it will be possible to correct misunderstandings and consider any

missing information.

Correctability implies that there is an appeal process in place for

those situations where the author feels that the decision was wrong.

Such process might include some type of penalty to reviewers who

are found at fault during the review process.

With respect to ethicality, it should be expected that reviewers

only accept good patches, although determining what a good patch

is is highly subjective. As stated above, ethicality also implies a set

of organizational values and practices (explicit or implicit). Approval

of own-patches by core developers, or bias towards colleagues of the

same organization might be perceived as ethical in some systems and

unethical in others; what is important is to know if this is acceptable

behavior or not. Nonetheless, the existence of an acceptable bias

should not imply lowering the quality of reviews (i.e., accepting bad

patches from oneself or somebody from the reviewer’s organization).

Another example of unethical behavior is two reviewers colluding to

have the patches of each other accepted, irrespective of their quality.

3.3 Interactional Fairness

Of all the types of fairness, interactional fairness is arguably the one

that has been addressed the most in code reviews –and in software de-

velopment in general– in the form of Codes of Conduct, which are

expected to cover dignity, respect and psychological safety. Tourani

et al. [70] found that codes of conduct are becoming pervasive in

OSS projects; they usually require participants to be respectful and

avoid disrespectful language (such as insults, sexism, violence). In

most cases, they offer a mechanism to report violations.

Code reviews place the author of the code being reviewed in a

perilous situation. While it is the code that is being judged, the author

might feel –by extension– that her qualities (as a software developer)

526



Perception of Fairness in Modern Code Reviews ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

are also being judged. Code reviews require language that concen-

trates on critiquing the code, not the person. Linus Torvalds has been

criticized for his verbal abuse and public shaming of other kernel

developers [12], leading to some developers leaving the project [57].

In response, Linux adopted a “Code of Conflict” that emphasizes an

adversarial process of “critique and criticism” that has been “proven

to create the most robust operating system kernel ever”; it does plea,

however, for respect and psychological safety [13, 55].

Many codes of conduct refer violators to a committee who decides

what action should be taken [70]. However, there is not a lot of

experience on how to act in such instances. In fact, the punishment

(or lack of) of a violator can trigger feelings of unfairness (either

for the one being judged or for the accusers). This is exemplified

recently in Node.js, where one of its technical leaders was reported

to have violated its code of conduct; the process and resolution of

this complaint has been acrimonious and has lead to a split of its

community [35].

3.4 Informational Fairness

Since their conception, modern code reviews have strived to be

open [33]. The evaluation of the code is done in an open environ-

ment, accessible to the author, the reviewers and the rest of the

development team. Usually, OSS projects make sure that all deci-

sions are documented for others to evaluate. The use of code review

metrics is becoming a common method to guarantee informational

fairness [34]. Such procedures maximize truthfulness in the code re-

view process. Adequacy in code reviews requires specific feedback,

in a timely manner (requirements of procedural fairness also). If a

review takes too long or has an unexpected outcome, an explanation

decreases the likelihood that the author feels unfairly treated.

4 CASE STUDY

We conducted an empirical study [53] on OpenStack to evaluate the

role of fairness in its code review process. OpenStack is an OSS

cloud computing platform initiated as a joint project of Rackspace

Hosting and NASA composed of 21 different official components,

each developed as an independent, but all sharing common devel-

opment infrastructure. As of today, more than 600 companies, in-

cluding major players, such as Ericsson, Hauwei, HP, IBM, Intel,

among others, actively contribute to the ecosystem [62]. We chose

OpenStack as our case study due to its perceived novelty, its high

inter-networked nature that involves many firms and individual con-

tributors, its heterogeneity involving both start-ups and high-tech

corporate giants, its market-size ($1.2bn in revenues in 2015, which

may grow to $3.4bn by 2018, as claimed by 51 Research [37]), and

its size (over 60,000 community members [63], over 500,000 code

reviews [65] and more than 5 million lines of code [64]).

We conducted a qualitative study [56] to better understand the per-

ception of fairness that authors and reviewers might have. We asked

OpenStack developers about their perception of whether the code

review process of OpenStack was fair, and whether they had experi-

enced unfairness (as an author) or acted unfairly (as a reviewer). For

this purpose we conducted a web survey composed of four questions,

taking into consideration the design and implementation procedures

suggested by Punter et al. [48].

We selected as potential respondents all OpenStack developers

who had participated in code reviews in the last four years (as au-

thors of code to be reviewed or as reviewers). We invited the 2,870

OpenStack developers who matched the previous criteria to partici-

pate in the survey via email. The survey was open for two weeks. We

received 213 responses (response rate of 7.4%, above the average in

Software Engineering studies [58]), 208 were both authors and re-

viewers (4 were only authors and 1 only reviewer). The respondents

were from eight different official projects of OpenStack.

For each question, respondents were invited to add comments

and clarifications in (free) textual form. These open-ended responses

were analyzed by the authors and categorized into the types of

fairness of code reviews presented in Section 3. We followed a case

study protocol [76] to mitigate the bias of the categorization. Two

authors of this paper performed the coding separately, then their

results were cross-validated, and with the help of a third author to

achieve agreement.

5 RESULTS

Since our goal was to explore if there was perception of unfair-

ness and what it was, we kept our questions simple and we did not

define what fair was. The questions were: (1) Have your contribu-

tions been treated fairly? (2) Have you treated others’ contributions

fairly? (3) Do you think the project process is fair? (4) When you

review code, how do you prioritize what contribution to review?

Each question had an answer in a 5-point Likert scale. In addition,

for each question, respondents were asked to “explain or provide

evidence” for their answer. The fourth question included a list of

potential prioritization strategies, asking reviewers to rank them in

importance.

5.1 Regarding fairness in OpenStack

Figure 1 shows the summary of the responses to the first three

questions. As an author of a patch, many participants considered

they had being subjected to unfair treatments: 24% (51) consider this

happens occasionally, and 15% (33) believe is occurs often or always.

As patch reviewers, the 60% (124) claimed to never perform unfair

reviews; however, 40% (83) considered they do unfair reviews rarely

or occasionally. While the majority agreed that the review process

of OpenStack is fair, 13% (28) respondents disagree or strongly

disagree that the entire review process is fair.

These results imply that, while the process is in general perceived

as fair, still a significant proportion of participants perceive unfair-

ness (some claiming that it occurs frequently). This perception of

unfairness is more common in authors than in reviewers.

Two authors of this study separately open coded each open-ended

answer. In particular, we concentrated only on responses where the

respondent feels there is unfairness. Because this study is exploratory

and our objective is to show that fairness is an issue—at least to

some contributors—those that imply the system is fair were ignored

(as shown in Figure 1c most respondents feel that the review process

of OpenStack is fair). These responses were classified according to

the fairness categories presented in Section 2. After classifying, they

discussed the responses that were not consistently classified to reach

an agreement. Table 3 summarizes the results.

527



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden German, Robles, Poo, Yang, IIda, and Inoue

never rarely occasionally often always

P
er

ce
nt

ag
e 

of
 r

es
po

ns
es

0
10

20
30

40

(a) “Have your contributions been treated un-

fairly?” (212 responses)

never rarely occasionally often always

P
er

ce
nt

ag
e 

of
 r

es
po

ns
es

0
10

20
30

40
50

60

(b) “According to your experience as a reviewer,

do you perform code reviews unfairly?” (209 re-

sponses)

strongly agree agree neutral disagree strongly disagree

P
er

ce
nt

ag
e 

of
 r

es
po

ns
es

0
10

20
30

40
50

60

(c) “In general, is the code review process in

OpenStack fair?” (213 responses)

Figure 1: Responses to Likert-scale questions in the web survey on the perception of fairness in OpenStack (a) as patch author, (b) as

code reviewer, and (c) in general of the OpenStack code review process

Table 3: Result of the categorization of the open-ended responses of the perception of unfairness in OpenStack

Category Rule Frequency∗ (as author) Frequency∗ (as reviewer) Frequency∗ (General)

Distributive
Equity & Equality 15 (28%) 14 (34%) 19 (45%)
Need 12 (22%) 4 (10%) 4 (10%)

Procedural

Control 0 (0%) 0 (0%) 3 (7%)
Consistency 19 (35%) 6 (15%) 7 (17%)
Bias suppression 16 (30%) 14 (34%) 19 (45%)
Information Accuracy 5 (9%) 3 (7%) 4 (10%)
Correctability 2 (4%) 0 (0%) 0 (0%)
Ethicality 4 (8%) 0 (0%) 0 (0%)

Interactional
Respect 2 (4%) 1 (2%) 1 (2%)
Psychological Safety 0 (0%) 0 (0%) 0 (0%)

Informational
Truthfulness 0 (0%) 0 (0%) 0 (0%)
Adequacy 5 (10%) 0 (0%) 0 (0%)

Non-applicable Out of context, too broad, etc. 9 (17%) 18 (44%) 13 (31%)
∗Some responses fall into several categories and rules, hence the sum of the frequency is higher than the total number of the responses.

As it can be seen, Distribute Fairness and Procedural Fairness

(mainly consistency and bias-suppression) were the most common

issues mentioned. This is in part because equity affects consistency.

In the following subsections, we proceed to show examples of com-

ments from respondents by category.

Distributive Fairness

Equity & Equality: There is a dissonance in the expectations of

different contributors. Some expect equity and see equality as unfair:

“Contributing members in good standing that regularly and

unselfishly carry their share of the workload can and should

expect to receive higher priority for reviews.”

Other respondents expect equality, and see equity as unfair:

“A submitter is presented with the illusion that all submis-

sions are equal, when in reality the community prioritizes [pull

requests] from known submitters.”

Newcomers: rather than receive special attention, newcomers ap-

pear to sometimes suffer a negative bias. A respondent describes a

textbook example of the impact of unfairness on her motivation to

be a contributor:

I have only tried to make one contribution. I was so discouraged

by the response from the reviewer I have not tried again.

While a reviewer acknowledges having a bias against newcomers:

“When short on time [I] tend to prefer patch styles I’m familiar

with (and agree with) over patch styles unfamiliar. This leads

to me preferring people I’m already familiar and that I know

write good patches over newcomers.”

Need: Respondents stated that some projects do not have enough

core reviewers, which delays the entire process.

“As the OpenStack projects are becoming bigger, the review

process is slowed down by the small number of core reviewers.”

Some respondents also believe that some reviewers do not invest

the appropriate effort to review their code (e.g., a reviewer judges a

patch before completely understanding it).

Procedural Fairness

Consistency: Respondents stated that reviews are not performed

consistently. One case is when some reviewers tend to complain

about minor issues more than others:

528



Perception of Fairness in Modern Code Reviews ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

“... many reviewers in OpenStack ... give a negative review not

for functionality but rather for a typo or an extra space.”

Some respondents, however, do not regard this type of behavior

as being unfair. Respondents also stated that consistency varies from

one project to another (names of projects have been replaced):

“I have contributed and reviewed in 3 projects: [Project A],

[Project B], and [Project C]. I found that [A] and [B] to be

quite reasonable and fair. As stated above, [C] is a disaster.”

Bias suppression: Bias was frequently mentioned; however, bias

was seen in many different aspects. One major bias is cross-project

collaboration and code cleanup:

“... each project tends to reject code that could be implemented

in the other projects in an effort to minimize their own code

base. But if/when they do that, important features cant land

because no one will take a fair share of the code.”

“The review process is sufficiently onerous and unpredictable

that contributors are actively dissuaded from code cleanup, as

this is not directly bug or feature driven.”

Control and correctability were rarely mentioned. Control was

positively mentioned to avoid unfairness:

“The culture in [Project A] is to gain mind share for new

features through discussion on M[ailing] L[ists] and summits.”

Regarding correctability, one respondent mentioned the lack of

an appeal process:

“[A] core reviewer gave me a -1 which was not understandable.

I asked him 4 times on IRC to discuss [it] and he ignored it.”

Ethicality: Some responses can arguably fall into this area. In par-

ticular, where reviewers explicitly benefit people that they know:

“People look out for friends instead of looking out for their

projects.”

Interactional Fairness

This type of fairness was only mentioned in the context of Respect,

primarily by satellite developers and who feel disrespected by more

central contributors. For example:

Requests for reviews from core members in the IRC channel

have sometimes been responded to with contempt.

Another writes how she feels demeaned by reviewer’s lack of

attention:

Contributions are ignored unless I beg for attention. I might

have time to contribute a minor improvement. I never have

time to beg for attention. If you don’t want my help, I got the

message loud and clear.

Newcomers appear to be a target, also:

“To a point where I have actually heard Cores [maintainers]

indicate that people need to be “hazed”, or prove themselves

or suffer really hard reviews to “earn their stripes”. I cannot

imagine how many developers we have chased away because

of this fraternity culture.”

Informational Fairness

Only Adequacy was mentioned in the answers, and it was mentioned

only in the context of being an author, not the reviewer. Answers

covered both dimensions: the quality (or lack) of feedback:

The reviewer does not explain what the problem is or does not

include the context of the argument.

and the lack of explanations for unexpected treatments —in this case,

a long delay:

Reviews that take too long are] very demoralizing for potential

contributors if they don’t hear feedback in a timely manor.

Summary

These responses clearly show that unfairness, especially with respect

to equity, equality, consistency and bias suppression are important

concerns to some contributors. This is probably because the docu-

mented procedures of OpenStack do not address these issues, leaving

them to interpretation. In our analysis, we omitted positive responses

(i.e., those who considered the review process as fair). Due to this,

and the limited number of responses, we can not make any general-

ization regarding the fairness of the review process in OpenStack.

5.2 Prioritization

OpenStack does not document how reviewers should prioritize

patches to review. That is the reason why we asked reviewers how

they prioritize what contribution to review. The purpose of this ques-

tion was to evaluate if reviews were prioritized consistently and

without bias. We asked OpenStack reviewers how they prioritize

patches to review and offered five possible answers: “a patch is se-

lected based on (1) the developer’s expertise, (2) the importance of

the patch, (3) the author of the patch, (4) the difficulty (the easiest or

the most difficult patch first), or (5) its freshness (the newest or the

oldest patch first)”, and gave them the option to elaborate on their

answer in a free textual answer.

Figure 2 shows the results. At it can be seen, the expertise of the

reviewer and the importance of the patch are consistently considered

the most important prioritization strategies by the majority of the

reviewers. Importance of the patch implies that, as expected, equity

is applied to the treatment of patches to review. The most often

mentioned reasons a patch is important are: security fix, and other

patches depend upon it.

The rest of the options to the question are more divided. A signifi-

cant number of people chose easiest first while others chose the most

difficult first; similarly, some reviewers chose oldest first, and others

newer first. This result shows a significant lack of consistency in the

selection of patches to review.

The respondents were very divided on whether to prioritize re-

views from people they know. Some of the answers imply that some

reviewers might lean towards equity (giving priority to patches from

frequent over satellite contributors):

“[I] tend to emphasize reviewing code submitted by [my] team,

particularly when I don’t have much time for review.”

In some cases, people look for patches that benefit them or their

organization, and this might lead towards ethicality issues. Two

respondents wrote:

“I try to review the contributions of my co-workers at [company

name] primarily.”

529



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden German, Robles, Poo, Yang, IIda, and Inoue

Percent

R
ow

 C
ou

nt
 T

ot
al

s

Oldest first

Newest first

Most difficult first

Easiest first

Based on who the author is

Most Importance first

Based on expertise

50 0 50

203

202

202

203

207

205

208

Not a priority Low priority Medium priority High priority Essential

Figure 2: Breakdown of answers to the question: When you review code, how do you prioritize what contribution to review?

“[I review first] patches that align with my interests.”

Regarding self interest, another reviewer highlighted that selfish-

ness is not necessarily good for the project:

“Most important for me != most important for the project.”

Some reviewers wrote that they tend to review patches after being

contacted by the author (who they usually know). This puts newcom-

ers at a disadvantage, since they are unlikely to have connections

with reviewers.

Overall, we found that reviewers prioritize for a variety of rea-

sons, some grounded on technical aspects and others in social ones.

However, without a clear policy of what the reviewing prioritization

is, authors of patches could find it difficult to know when the review

of their patch should be completed. This was summarized by one

respondent:

“[...] For example, a developer might think they are being

treated unfairly because other reviewers were completed and

merged before theirs.”

6 DISCUSSION AND IMPLICATIONS

Modern code reviews have considerable advantages, both to the

quality of the system and to the knowledge of its developers. How-

ever, social aspects of code reviews cannot be ignored [19]. Every

time a person evaluates the work of another, social tensions tend to

arise, especially when the outcome is unsuccessful (i.e., the patch is

rejected). In code reviews, the individual’s work is subjected to the

decisions of others and these decisions might have economic and

socioemotional consequences to the developers [16].

The literature on code reviews has concentrated on the mechan-

ics of doing code reviews, barely addressing its social interactions.

These interactions have been a growing concern for developers, as

reflected in blog posts and online discussions [55, 59]. Frequent

recommendations to address these issues are to be polite, to be ob-

jective, to avoid nit-picking, etc. However, that is not enough. Many

other aspects of fairness need to be taken into consideration.

During social interactions, events are likely to produce emotions,

especially the negative ones. These emotions affect directly the

attitudes and behavior of people [75]. In organizational settings, the

frequency and accumulation of the events, rather than their intensity,

determine the outcomes [22]. That is, people in an organization can

tolerate one or two major events, and yet, have difficulty to overcome

relatively minor –but constant– events that affect their work. Thus

for example, “The white-space reviewers drive me crazy!” is a

reflection of an event that triggers a negative emotional response.

Within our framework, the developer feels unfairly treated, which

may be exacerbated if the code is not reviewed before fixing the

white spaces. In the long term, the accumulation of these small

details may determine the satisfaction in the project, and future

participation. Fisher [22] argues that behaviors and attitudes are

dynamic, they change with the hassles and uplifts of everyday work.

The same occurs with the perception of fairness. Therefore, fairness

in code review must be constantly monitored.

Fairness theory provides a solid foundation to create better poli-

cies and procedures for code reviewing. Fairness has many dimen-

sions and ignoring any of them might lead to unfairness, even if the

rest of the dimensions are properly addressed. The framework that

we provide can serve as a starting point of discussion, and as a way

to evaluate perceptions of unfairness (as we have demonstrated in

our qualitative study).

6.1 Lessons for Practitioners

Guidelines for conduct code reviews usually address issues of inter-

actional fairness (politeness and constructive language) and informa-

tional fairness (provide good and precise feedback) [69]. However,

distributive and procedural fairness are considered much less.

530



Perception of Fairness in Modern Code Reviews ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

A reviewing system should start by addressing distributive fair-

ness, from which guidelines for procedural fairness are derived. This

includes defining: (1) the minimal needs of a patch review, (2) the

measurement of importance of patches, (3) the decision of whether

to use equity or equality with respect to authors; and (4) how to treat

newcomers.

Equity should be used in the treatment of patches. It is clear that

some patches are more important than others (e.g., security bug

fixes should have higher priority). Implementing equity of patches

requires the ability to measure a patch’s importance.

Even in the presence of equity, all code reviews should have a min-

imal level of quality (the needs of the review). Some of these needs

might be a function of the patches difficulty (e.g., larger patches

require longer reviews), while others should remain above a minimal

threshold (e.g., the reviewer will apply the same level of concentra-

tion and care to any review). The needs of a patch might also depend

on what the patch achieves (i.e., a patch to documentation might

require less reviewers or votes than a patch that affects a critical area

of the system).

Often the needs of a patch are in direct conflict with the reviewing

resources (especially where there is a shortage of reviewers). One

way to address this shortage is to allow some patches to have incom-

plete reviews (or no review at all); this will require that each review

clearly documents “level of attention” that the patch has received.

For example, certain types of patches could be approved with a

mark saying “hastily reviewed” or “not reviewed”. This way others

are informed of the potential risks of the accepted patch. In such a

scenario, the stated minimal need of a patch is lower, but the system

provides a way of signaling the risks of this process.

It is less obvious if some authors should be treated differently

than others. A code reviewing system should determine if equity or

equality be implemented. If equity is chosen, it requires a way to

measure contribution. It is not uncommon in reviewing systems for

core contributors to gain an advantage against other patch authors;

but it is important that this advantage is documented – those who are

biased against should know why, which reduces their perception of

being treated unfairly.

Procedural fairness requires the establishment of clear proce-

dures that document how the review is to be performed. Consistency

and bias-suppression go hand-in-hand. The reviews should be con-

sistent and without bias, except when the bias is a result of equity

(some patches/authors’ patches should have priority). Lack of con-

sistency was one of the major complaints in our survey. Regarding

control, modern code review process should always give a voice to

the author of the code. It is important that a patch is not rejected

(and the review closed) without allowing its author to respond to the

reviewer’s evaluation. Similarly, a system should be in place that

allows the author of a rejected patch to appeal the decision, ideally

involving new reviewers who did not participate in the former re-

view process. Due to the open nature of code reviews, information

accuracy is often not an issue, especially when the author and other

developers can contribute to the review.

Ethicality appeared in some of the responses to our survey. Au-

thors are concerned that some reviewers approve patches from cer-

tain authors without actually reviewing them (“quid pro quo”). A

code review process can specify some ethical expectations of the

reviewer, such as the requirement that a patch will never be approved

without a minimal level of review and that both the author and the

reviewer will not deceive others, or collude with each other.

Interactional Fairness is being addressed with codes of conduct.

In general, these documents address the issues of disrespect, and

exposure to personal danger but should also address issues of in-

vasion of privacy, where the reviewer improperly uses information

regarding the author (outside the review scope).

Regarding Informational Fairness, the openness of code reviews

(especially in OSS systems) minimize the issues of truthfulness.

With respect to adequacy, there are two main aspects: a) give specific

reasons for a rejection –typically documented in guidelines of how

to properly do code reviews); and, b) it is important that, when

reviews veer off from the expected procedures (such as taking too

long) the author is properly notified why. The existence of metrics

and analytics of the code review process that document the load of

reviewers, the length of the review queue, the turn-around time of

reviews, rejection rate, etc. appear to facilitate adequacy, as it creates

expectations on the authors regarding the quality of service that they

should expect (although we acknowledge that research is required to

verify this).

The existence of procedures, guidelines and code of conduct

might be sufficient. However, in some cases, it might be necessary

to have mechanisms for monitoring compliance and enforcement.

6.2 Implications for Researchers

Evaluating the work of others in a way that is perceived as fair

is not trivial, yet, little research has been done to study fairness

within the scope of software engineering. Recent work has found that

social issues in code reviews (such as organizational membership [5],

or anger in communication [47]) affect the outcomes, but work is

needed to evaluate if these behaviors are perceived as fair or not.

Fairness needs to be considered an important part of the health of a

system. The potential negative effects of unfairness might require its

early identification and removal. This requires research in methods

to monitor how fair the system is with respect to the expectations of

the organization and its members, and perhaps even more important,

how fair the system is perceived by its members. Metrics serve an

important role for this purpose. However, metrics must be consistent

with distributive fairness, and they should consider the merit (equity)

of the patches and their (minimal) need (e.g., some patches should

be reviewed faster than others, but no patch should take longer than a

certain time). Being able to do this requires research in assessing the

merits of a patch (e.g., when does a patch require to be prioritized?).

Similarly, it might be desirable to automatically monitor the fairness

of each reviewer.

Empirical studies can help clarify the more important attributes

of fairness. Similarly, studies are needed to evaluate the cost-benefit

ratio of implementing fairness policies and mechanisms. This will

inform organizations in terms of what actions are more likely to

yield results depending on their particular needs and resources.

Our empirical study was exploratory of one OSS system. More

research is needed to better understand how developers feel about

fairness in code reviews, both in open source and industry and what

are the effects of unfairness in both the system being developed, and

the individuals who perceive unfairness.

531



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden German, Robles, Poo, Yang, IIda, and Inoue

7 THREATS TO VALIDITY

Internal validity: relates to the validity of causal inferences (re-

searcher bias) made by the study. The framework is derived from our

interpretation of how the concepts in fairness theory could apply to

code reviews, and other researchers may arrive at a slightly different

framework to apply. The manual coding of the open-ended responses

in the survey may have introduced subjective bias in the results. To

reduce this bias, two authors coded independently the responses. The

results were merged afterwards. We calculated Cohen’s Kappa to

evaluate the level of inter-rater agreement between the two authors,

which was slightly above 0.7 [14]. In case of disagreement, both

authors discussed it with the help of a third author. Particularly, the

comments referring to equity and equality (from distributive fairness)

and bias suppression were difficult to split into different categories,

so we grouped them all into one.

Construct validity: refers to whether the studied parameters are

relevant to the research questions, and actually measure the social

constructs or concepts intended to be studied. In our study, we may

have missed some developer’s information, as we can only include

the people who have recognizable and available information on the

Internet (e.g., email address). We lack information for less than 7%

of developers. Considering that OpenStack is an industrial leading

OSS project, we may safely ignore those developers. Participation

in the web survey was low. However, as stated by Lethbridge et al.

“if the objective is to understand trends, with reasonable confidence,

then low response rates may well be fine” [41].

External validity: is concerned with the extent to which it is possi-

ble to generalize the findings. We do not claim that our results apply

to other software projects. Our study is exploratory, whose objective

is to support the framework to study social behavior in modern code

reviews. We presented preliminary evidence from the results that

further supports the framework being applicable to modern code

reviews, and demonstrates that the issues of fairness exist and should

be taken into consideration. Although providing rich data, a single

case study has limitations, and further research may help refine the

framework presented. Nevertheless, a frequent misconception is that

single case studies provide little value for the academic community,

and do not contribute to scientific development. Historical evidence

shows otherwise. It is known from the social sciences that “more

discoveries have arisen from intense observation than from statis-

tics applied to large groups” ([39]–page 95, as cited by Begel and

Zimmermann [7]). Similarly, individual cases have contributed to

discovery in physics, economics, and social sciences [23]. Both sin-

gle case studies and research on large samples are essential for the

development of an empirical body of knowledge [3].

8 RELATED WORK

With respect to code review studies, Bacchelli and Bird studied the

motivations, expectations and outcomes of modern code review [1].

Rigby et al. studied the review policies and examined which metrics

have the largest impact on review efficacy in OSS projects [50, 51].

von Krogh et al. note that some OSS projects have a “socialization”

process when accepting technical contributions [73]. Balachandran

suggested using review-bot to reduce human effort and improve

code review quality [2]. Bosu et al. investigated the factor of useful
reviews to improve the effectiveness of code reviews [11]. Thong-

tanunam et al. studied traditional code ownership heuristics using

code review activities [67]. Baysal et al. found the non-technical

factors of code review can significantly influence the code review out-

comes [5, 6]. McIntosh et al. found that there is a negative influence

on software quality when the poorly-reviewed code is merged [45].

Jiang et al. found that experience of developers impacts the patch

acceptance and the reviewing time [36]. Yang et al. studied the social

relationships between patch authors and reviewers [78]. Dabbish et

al. [20] found that information transparency motivates participation.

Tsay et al. [71] found that the level of previous participation of a

developer improves the politeness of the review.

Sentiment analysis has been used to study security related pull

requests in GitHub where it was found that these discussions tend

to have more negative emotions [47]. Gachechiladze et al. [27]

argued that detecting anger can be helpful to maintain the health of

a software project. The use of codes of conduct in OSS projects has

been of interest to researchers. Tourani et al. [70] studied how codes

of conduct are used in a large collection of OSS projects. Schneider

et al. [55] studied the interactions in the Linux mailing list, where

it is highlighted the dispute between kernel developers that lead to

Sharp leaving the kernel development. Squire et al. [59] provide

a collection of data about insults and improper language in OSS

projects discussions, and how they relate to their Code of Conducts.

9 CONCLUSIONS

Code reviews are a sociotechnical process where the author is sub-

jected to the decision of others. The exploratory survey of contrib-

utors and code reviewers of OpenStack (presented in Section 5)

demonstrates that unfairness is starting to be perceived as an issue.

Lack of fairness can be demoralizing and affect the productivity

and/or participation of some of its members, and can potentially

affect the long term success of a project. Codes of conduct are be-

coming common in software development (especially OSS), but they

typically address only interactional fairness. We created a framework

that helps study, understand, and manage the potential challenges

that code reviews face regarding fairness. We have also contributed

a set of guidelines that practitioners can use to improve fairness in

their code reviews.

Fairness is likely to be an issue in other decision processes in

software engineering. Having a fair development process might be

particularly important for OSS projects, where members choose to

participate, specially for large industrial-baked OSS projects (where

the entities that choose to participate also make large investments).

Fairness is a nascent area of research in software engineering;

among many topics, research is needed to i) understand how software

developers feel about fairness during their day-to-day activities; ii) to

measure the perceivable fairness of a software development project

and how it affects its productivity; and iii) how to improve it.

ACKNOWLEDGMENTS

This work was supported by Canada’s Natural Science and Engi-

neering Research Council, Japan’s JSPS KAKENHI Grant Number

JP25220003, and the Spanish Government through project TIN2014-

59400-R.

532



Perception of Fairness in Modern Code Reviews ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-

lenges of modern code review. In Proc. of the 35th Intl. Conf. on Software Engi-

neering (ICSE ’13). IEEE, 712–721.
[2] Vipin Balachandran. 2013. Reducing human effort and improving quality in peer

code reviews using automatic static analysis and reviewer recommendation. In
Proc. of the 2013 Intl. Conf. on Software Engineering. IEEE, 931–940.

[3] Victor R Basili, Forrest Shull, and Filippo Lanubile. 1999. Building knowledge
through families of experiments. IEEE Transactions on Software Engineering 25,
4 (1999), 456–473.

[4] Gabriele Bavota and Barbara Russo. 2015. Four eyes are better than two: On
the impact of code reviews on software quality. In Software Maintenance and

Evolution (ICSME), 2015 IEEE Intl. Conf. on. IEEE, 81–90.
[5] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey. 2013.

The influence of non-technical factors on code review. In Proc. of the 20th Intl.

Working Conf. on Reverse Engineering (WCRE ’13). 122–131.
[6] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W Godfrey. 2016.

Investigating technical and non-technical factors influencing modern code review.
Empirical Software Engineering 21, 3 (2016), 932–959.

[7] Andrew Begel and Thomas Zimmermann. 2014. Analyze this! 145 questions for
data scientists in software engineering. In Proc. of the 36th Intl. Conf. on Software

Engineering. ACM, 12–23.
[8] Robert J. Bies and Joseph S. Moag. 1986. Interactional justice: Communication

criteria of fairness. In Research on Negotiation in Organizations, R.J. Lewicki,
B.H. Sheppard, and M.H. Bazerman (Eds.). JAI Press, 43–55.

[9] Robert J. Bies and Debra L. Shapiro. 1987. Interactional fairness judgments: The
influence of causal accounts. Social Justice Research 1, 2 (01 jun 1987), 199–218.

[10] Amiangshu Bosu and Jeffrey C Carver. 2014. Impact of developer reputation on
code review outcomes in OSS projects: An empirical investigation. In Proc. of the

8th ACM/IEEE Intl. Symp. on Empirical Software Engineering and Measurement.
ACM, 33.

[11] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Characteristics of
Useful Code Reviews: An Empirical Study at Microsoft. In Proc. of the 12th Intl.

Working Conf. on Mining Software Repositories (MSR ’15). 146–156.
[12] Jon Brodkin. 2013. Linus Torvalds defends his right to shame Linux kernel

developers. Ars Technica. (July 2013).
[13] Mauro Carvalho Chehab. 2016. Code of Conflict. Online. (2016).

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
Documentation/process/code-of-conflict.rst?h=v4.13-rc6 Visited 2017-08-23.

[14] Jacob Cohen. 1968. Weighted kappa: Nominal scale agreement provision for
scaled disagreement or partial credit. Psychological bulletin 70, 4 (1968), 213.

[15] Ronald L Cohen. 1987. Distributive justice: Theory and research. Social Justice

Research 1, 1 (1987), 19–40.
[16] Jason A Colquitt. 2001. On the dimensionality of organizational justice: a construct

validation of a measure. Journal of applied psychology 86, 3 (2001), 386.
[17] Jason A. Colquitt and Jerome M. Chertkoff. 2002. Explaining Injustice: The

Interactive Effect of Explanation and Outcome on Fairness Perceptions and Task
Motivation. Journal of Management 28, 5 (2002), 591–610.

[18] Jason A. Colquitt, Donald E. Conlon, Michael J. Wesson, Christopher O. L. H.
Porter, and K. Yee Ng. 2001. Justice at the Millenium: A Meta-Analytic Review
of 25 Years of Organizational Justice Research. Journal of Applied Psychology

86, 3 (2001), 425–445.
[19] Jacek Czerwonka, Michaela Greiler, and Jack Tilford. 2015. Code Reviews Do Not

Find Bugs: How the Current Code Review Best Practice Slows Us Down. In Proc.

of the 37th Intl. Conf. on Software Engineering (ICSE ’15). IEEE, Piscataway, NJ,
USA, 27–28.

[20] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In Proc.

of the ACM Conf. on Computer Supported Cooperative Work (CSCW ’12). ACM,
1277–1286.

[21] Amy Edmondson. 1999. Psychological safety and learning behavior in work
teams. Administrative science quarterly 44, 2 (1999), 350–383.

[22] Cynthia D. Fisher. 2000. Mood and Emotions while Working: Missing Pieces of
Job Satisfaction? Research in Organizational Behavior 21, 2 (2000), 185–202.

[23] Bent Flyvbjerg. 2006. Five misunderstandings about case-study research. Quali-

tative inquiry 12, 2 (2006), 219–245.
[24] Robert Folger and Russell Cropanzano. 1998. Toward a General Theory of

Fairness. SAGE, 173–196.
[25] Robert Folger and Russell Cropanzano. 2001. Fairness Theory: Justice as Accou-

tability. Stanford University Press, 1–55.
[26] Robert Folger, David Rosenfield, Janet Grove, and Louise Corkran. 1979. Effects

of ‘voice’ and peer opinions on responses to inequity. Journal of Personality and

Social Psychology 37, 12 (1979), 2253–2261.
[27] Daviti Gachechiladze, Filippo Lanubile, Nicole Novielli, and Alexander Sere-

brenik. 2017. Anger and its direction in collaborative software development. In
Proc. of the 39th Intl. Conf. on Software Engineering: New Ideas and Emerging

Results Track. IEEE, 11–14.

[28] Jerald Greenberg. 1987. A taxonomy of organizational justice theories. Academy

of Management review 12, 1 (1987), 9–22.
[29] Steven L. Grover. 2014. Unraveling respect in organization studies. Human

Relations 67, 1 (2014), 27–51.
[30] Kazuki Hamasaki, Raula Gaikovina Kula, Norihiro Yoshida, A. E. Camargo Cruz,

Kenji Fujiwara, and Hajimu Iida. 2013. Who does what during a code review?
Datasets of OSS peer review repositories. In Proc. of the 10th Intl. Working Conf.

on Mining Software Repositories (MSR ’13). IEEE, 49–52.
[31] Il-Horn Hann, Jeffrey A Roberts, and Sandra A Slaughter. 2013. All are not equal:

An examination of the economic returns to different forms of participation in
open source software communities. Information Systems Research 24, 3 (2013),
520–538.

[32] Bryan W. Husted and Robert Folger. 2004. Fairness and Transaction Costs:
The Contribution of Organizational Justice Theory to an Integrative Model of
Economic Organization. Organization Scienc 15, 6 (2004), 719–729.

[33] Daniel Izquierdo-Cortazar, Lars Kurth, Jesus M Gonzalez-Barahona, Santiago
Dueñas, and Nelson Sekitoleko. 2016. Characterization of the Xen project code
review process: an experience report. In Proc. of the 13th Intl. Conf. on Mining

Software Repositories. ACM, 386–390.
[34] Daniel Izquierdo-Cortazar, Nelson Sekitoleko, Jesus M Gonzalez-Barahona, and

Lars Kurth. 2017. Using Metrics to Track Code Review Performance. In Proc. of

the 21st Intl. Conf. on Evaluation and Assessment in Software Engineering. ACM,
214–223.

[35] Joab Jackson. 2017. Node.js Forked Again Over Complaints of
Unresponsive Leadership. The News Stack https://thenewstack.io/
node-js-forked-complaints-repeated-harassment/. (Aug 2017).

[36] Yujuan Jiang, Bram Adams, and Daniel M. German. 2013. Will My Patch Make
It? And How Fast? Case Study on the Linux Kernel. In Proc. of the 10th Intl.

Working Conf. on Mining Software Repositories (MSR ’13). 101–110.
[37] Sean Michael Kerner. 2016. OpenStack Revenues Approaching

$3.4B: 451 Research. Online. (2016). http://www.eweek.com/cloud/
openstack-revenues-approaching-3.4b-451-research Visited 2017-08-23.

[38] Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W
Godfrey. 2015. Investigating code review quality: Do people and participation
matter?. In Software Maintenance and Evolution (ICSME), 2015 IEEE Intl. Conf.

on. IEEE, 111–120.
[39] Adam Kuper and Jessica Kuper. 1985. The Social Science Encyclopedia. Rout-

ledge.
[40] Amanda Lee, Jeffrey C Carver, and Amiangshu Bosu. 2017. Understanding the

impressions, motivations, and barriers of one time code contributors to FLOSS
projects: a survey. In Proc. of the 39th Intl. Conf. on Software Engineering. IEEE,
187–197.

[41] Timothy C Lethbridge, Susan Elliott Sim, and Janice Singer. 2005. Studying
software engineers: Data collection techniques for software field studies. Empirical

software engineering 10, 3 (2005), 311–341.
[42] Gerald S Leventhal. 1976. The distribution of rewards and resources in groups

and organizations. Advances in experimental social psychology 9 (1976), 91–131.
[43] Gerald S Leventhal. 1980. What should be done with equity theory? Springer.
[44] Susan A. Lynham. 2002. The General Method of Theory-Building Research in

Applied Disciplines. Advances in Developing Human Resources 4, 3 (2002),
221–241.

[45] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2015.
An Empirical Study of the Impact of Modern Code Review Practices on Software
Quality. Empirical Software Engineering (EMSE) 21, 5 (2015), 1–44.

[46] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2016. An
empirical study of the impact of modern code review practices on software quality.
Empirical Software Engineering 21, 5 (2016), 2146–2189.

[47] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. 2014. Security and
Emotion: Sentiment Analysis of Security Discussions on GitHub. In Proc. of the

11th Working Conf. on Mining Software Repositories (MSR 2014). 348–351.
[48] Teade Punter, Marcus Ciolkowski, Bernd Freimut, and Isabel John. 2003. Conduct-

ing on-line surveys in software engineering. In Empirical Software Engineering,

2003. ISESE 2003. Proc.. 2003 Intl. Symp. on. IEEE, 80–88.
[49] Uzma Raja and Marietta J Tretter. 2012. Defining and evaluating a measure of

Open Source project survivability. IEEE Transactions on Software Engineering

38, 1 (2012), 163–174.
[50] Peter C. Rigby and Christian Bird. 2013. Convergent contemporary software peer

review practices. In Proc. of the 9th Joint Meeting on Foundations of Software

Engineering (FSE ’13). ACM, 202–212.
[51] Peter C. Rigby, Daniel M. German, Laura Cowen, and Margaret-Anne Storey.

2014. Peer Review on Open-Source Software Projects: Parameters, Statistical
Models, and Theory. Transactions on Software Engineering Methodologies 23, 4,
Article 35 (Sept. 2014), 33 pages.

[52] Peter C. Rigby, Daniel M German, and Margaret-Anne Storey. 2008. Open source
software peer review practices: a case study of the apache server. In Proc. of the

30th Intl. Conf. on Software engineering. ACM, 541–550.
[53] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting

case study research in software engineering. Empirical software engineering 14,
2 (2009), 131.

533



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden German, Robles, Poo, Yang, IIda, and Inoue

[54] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. 2012. Case Study

Research in Software Engineering: Guidelines and Examples. Wiley Blackwell,
Hoboken, New Jersey, USA. 256 pages.

[55] Daniel Schneider, Scott Spurlock, and Megan Squire. 2016. Differentiating
Communication Styles of Leaders on the Linux Kernel Mailing List. In Proc. of

the 12th Intl. Symp. on Open Collaboration (OpenSym ’16). ACM, New York, NY,
USA, Article 2, 10 pages.

[56] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on software engineering 25, 4 (1999), 557–572.

[57] Sarah Sharp. 2015. Closing a door. Online. (2015). http://sarah.thesharps.us/
2015/10/05/closing-a-door/ Visited 2017-08-23.

[58] Janice Singer, Susan E. Sim, and Timothy C. Lethbridge. 2008. Software En-
gineering Data Collection for Field Studies. In Guide to Advanced Empirical

Software Engineering. Springer, London, UK, 9–34.
[59] Megan Squire and Rebecca Gazda. 2015. FLOSS as a Source for Profanity and

Insults: Collecting the Data. In Proc. of the 48th Hawaii Intl. Conf. on System

Sciences, Vol. HICSS ’15. IEEE, 5290–5298.
[60] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and

David F Redmiles. 2015. A systematic literature review on the barriers faced by
newcomers to open source software projects. Information and Software Technology

59 (2015), 67–85.
[61] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. 2012.

How do software engineers understand code changes?: an exploratory study in
industry. In Proc. of the ACM SIGSOFT 20th Intl. Symp. on the Foundations of

Software Engineering. ACM, 51.
[62] The OpenStack Foundation. 2012. Companies Supporting The OpenStack Founda-

tion. Online. (2012). https://www.openstack.org/foundation/companies/ Visited
2017-08-23.

[63] The OpenStack Foundation. 2012. The OpenStack Foundation. Online. (2012).
https://www.openstack.org/foundation/ Visited 2017-08-23.

[64] The OpenStack Foundation. 2017. OpenStack community contribution in all
releases | Lines of code. Online. (2017). http://stackalytics.com/?release=all&
metric=loc Visited 2017-08-23.

[65] The OpenStack Foundation. 2017. OpenStack com=munity contribution in all
releases | Reviews. Online. (2017). http://stackalytics.com/?release=all&metric=
marks Visited 2017-08-23.

[66] John W Thibaut and Laurens Walker. 1975. Procedural justice: A psychological

analysis. L. Erlbaum Associates.
[67] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan, and Hajimu Iida.

2016. Revisiting code ownership and its relationship with software quality in

the scope of modern code review. In Proc. of the 38th Intl. Conf. on Software

Engineering (ICSE ’16). IEEE, 1039–1050.
[68] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan, and Hajimu Iida.

2017. Review participation in modern code review. Empirical Software Engineer-

ing 22, 2 (2017), 768–817.
[69] Parastou Tourani and Bram Adams. 2016. The Impact of Human Discussions

on Just-In-Time Quality Assurance. In Proc. of the 23rd Intl. Conf. on Software

Analysis, Evolution, and Reengineering (SANER ’16). 189–200.
[70] Parastou Tourani, Bram Adams, and Alexander Serebrenik. 2017. Code of Conduct

in Open Source Projects. In Proc. of the 24th Intl. Conf. on Software Analysis,

Evolution, and Reengineering (SANER ’17). IEEE, 24–33.
[71] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s talk about it: evaluat-

ing contributions through discussion in GitHub. In Proc. of the 22nd Intl. Symp.

on Foundations of Software Engineering (FSE ’14). ACM, 144–154.
[72] Tom R. Tyler. 1994. Psychological models of the justice motive: Antecedents of

distributive and procedural justice. Journal of Personality and Social Psychology

67, 5 (1994), 850 – 863.
[73] Georg Von Krogh, Sebastian Spaeth, and Karim R Lakhani. 2003. Commu-

nity, joining, and specialization in open source software innovation: a case study.
Research Policy 32, 7 (2003), 1217–1241.

[74] Jing Wang, Patrick C Shih, Yu Wu, and John M Carroll. 2015. Comparative case
studies of open source software peer review practices. Information and Software

Technology 67 (2015), 1–12.
[75] Howard M. Weiss and Russell Cropanzano. 1996. Affective Events Theory: A

theoretical discussion of the structure, causes and consequences of affective

experiences at work. Vol. 18. Elsevier, 1–74.
[76] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and

Anders Wesslén. 2012. Experimentation in software engineering. Springer.
[77] Xin Xia, David Lo, Xinyu Wang, and Xiaohu Yang. 2015. Who should review

this change?: Putting text and file location analyses together for more accurate
recommendations. In Software Maintenance and Evolution (ICSME), 2015 IEEE

Intl. Conf. on. 261–270.
[78] Xin Yang, Raula Gaikovina Kula, Norihiro Yoshida, and Hajimu Iida. 2016. Peer

Review Social Network (PeRSoN) in Open Source Projects. IEICE Transactions

on Information and Systems E99-D, 3 (2016), 661–670.
[79] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. 2016. Automati-

cally recommending peer reviewers in modern code review. IEEE Transactions

on Software Engineering 42, 6 (2016), 530–543.

534


