
Cloned Buggy Code Detection in Practice
Using Normalized Compression Distance

Takashi Ishio∗†, Naoto Maeda‡, Kensuke Shibuya‡, and Katsuro Inoue†
∗Nara Institute of Science and Technology, Nara, Japan

†Osaka University, Osaka, Japan ‡NEC Corporation, Tokyo, Japan
Email: ishio@is.naist.jp, n-maeda@bp.jp.nec.com, k-shibuya@bq.jp.nec.com, inoue@ist.osaka-u.ac.jp

Abstract—Software developers often write similar source code
fragments in a software product. Since such code fragments
may include the same mistake, developers have to inspect code
clones if they found a bug in their code. In this study, we
developed a tool to detect clones of a faulty code fragment for
a software company, since existing code clone detection tools
do not fit the requirements of the company. The tool employs
Normalized Compression Distance for source code comparison,
because its definition is understandable for developers, and
also it is easy to support multiple programming languages. We
conducted two experiments using an existing research dataset
and actual examples. Based on the evidence, the tool has been
deployed in several projects in the company.

I. INTRODUCTION

Software developers often write similar source code frag-
ments in a software product. Those code fragments may
have the same mistake [1], [2], [3]. Hence, developers have
to inspect similar code fragments if they found a bug in
their code. Code clone detection techniques are considered
important in industry, because it enables to fix the same bug
in multiple locations at once [4].

In this study, we developed a code clone detection tool for
NEC Corporation, a software company that employs more
than ten thousand developers. The tool detects clones of a
given faulty code fragment in a software product. Although
the company has already employed CCFinderX [5] to prevent
unnecessary code cloning, it does not fit bug fix tasks in the
company. This is because most of code clones are irrelevant
to a faulty code fragment of interest to a developer. In
addition, CCFinderX ignores code clones of a small faulty
code fragment, e.g. a single line of code.

We designed our new tool based on the company require-
ments as follows.
• Usability: The tool has a simple, easy-to-use interface.
• Understandability: A result of the tool is easy to under-

stand.
• Availability: The source code is publicly available.
• Accuracy: The tool detects clones of a faulty code frag-

ment as much as possible with less false positives.
• Efficiency: The tool completes a search in a practical

time.
The usability of the tool is important for the company so

that all the developers in the company can use the tool without
any special training. We adopt a grep-like command line

interface. The tool takes a query code fragment and reports
all the code fragments similar to the query in a product.

The understandability requirement is based on a past expe-
rience of the company on CCFinderX; a team who introduced
it received many questions about the definition of code clones
from users, because code fragments that look similar for the
users were undetected as code clones. A similar observation
has been reported in [6]. To address the understandability, we
adopt Normalized Compression Distance [7] as a similarity
metric for our tool. The distance regards two source code
fragments as similar if they are highly compressed by a
data compression algorithm; developers can easily analyze its
property using common utilities such as gzip and xz. Despite
of the simple definition, the distance is resilient to content
changes such as renaming and reordering [8], [9], [10]. The
resilience is important to detect code clones created by copy-
and-edit operations [11].

The source code availability is required for risk control.
An open-source tool can be improved by the company if
necessary. The availability also enables the company to verify
the safety of the tool. The safety is important for developers
whose source code involves a trade secret. To achieve the
availability, we implemented our tool using only open source
components and opened a git repository of the tool1. It
should be noted that the tool is accessible to their competing
companies. They are considered potential contributors to keep
the tool updated.

To evaluate the accuracy and efficiency of the tool, we have
conducted an experiment using an existing benchmark [12].
The company also evaluated the tool with two actual examples
of cloned bugs in their products. Based on the experiments,
the company deployed the tool in several ongoing projects.

II. RELATED WORK

The closest tool to our usage scenario is CBCD (Cloned
Buggy Code Detector) [13]. It detects code clones of a
small faulty code fragment by comparing context information
of code fragments using program dependence analysis [14].
While the tool seems very effective for our purpose, it is
hard to prepare for program dependence analysis for various
programming languages used in the company including C,
C++, Java, C#, and JavaScript.

1https://github.com/takashi-ishio/NCDSearch

ReDeBug [15] and CLORIFI [16] are also close to our
usage scenario. They take a bug fix patch as input and report
source code fragments where the patch has not been applied
yet. However, those tools are also unsuitable to the company.
The former tool detects source files including the entire patch
content. Its conservative analysis does not detect modified code
clones. The latter tool introduces constraints specialized for
security patches that are unavailable for general bugs.

Balachandran [17] proposed a code search algorithm using
a structural similarity of abstract syntax trees. It enables a
user to search code examples using syntactic patterns ignoring
semantic differences such as data types and function names in
a query code fragment. Our tool uses a textual similarity, since
clones of a buggy code fragment likely use similar functions
and variables.

III. CLONE SEARCH TOOL

Our tool takes a query code fragment q and a set of source
files F to be analyzed. The tool uses a sliding window to
extract a code fragment from F and then compares it with
the query. If they are similar to each other, the code fragment
is recognized as a code clone of the query code fragment.
Conceptually, the tool extracts a set of code clones S with
respect to a query q defined as follows.

S =
⋃
f∈F

{s ∈W (f, q) | NCD(q, s) ≤ th}

where W (f, q) is a sliding window, NCD(q, s) is a distance
function, respectively. The tool filters overlapping code frag-
ments in S and reports the resultant code fragments.

A. Sliding Window

A variable size sliding window W (f, q) extracts code
fragments from a source file f . It moves line by line
within a file and extracts code fragments of different
sizes. The size of the sliding window represents the
number of tokens ignoring comments and white space.
We experimentally determined the following window sizes:
{0.80|q|, 0.85|q|, 0.90|q|, 0.95|q|, |q|, 1.05|q|, 1.10|q|, 1.15|q|,
1.20|q|}, where |q| is the number of tokens in a query q.

B. Code Comparison

The tool compares two code fragments using Normalized
Compression Distance defined as follows [7]:

NCD(q, s) =
C(qs)−min{C(q), C(s)}

max{C(q), C(s)}

where C(qs) denotes the compressed size of the concatenation
of q and s, C(q) denotes the compressed size of q, and C(s)
denotes the compressed size of s. The NCD is a non-negative
number 0 ≤ r ≤ 1 + ε representing how different the two
token sequences are.

To apply a data compression algorithm, we translate to-
ken sequences q and s into byte sequences by concatenat-
ing null-terminated strings. For example, a token sequence
〈int,i,=,0,;〉 is translated into a byte sequence including

TABLE I
CLONED BUGGY CODE DETECTOR DATASET [12]

Projects #Queries #Bugs Median #Files Median LOC
PostgreSQL 14 34 1,058 277,959
Git 5 8 261 67,028
Linux 34 39 22,181 6,931,715
Total 53 81 792,432 241,074,652

"int NUL i NUL = NUL 0 NUL ; NUL ", where NUL is
the null character.

Our tool computes C(qs), C(q), and C(s) using Deflate
algorithm in zlib that is the most popular algorithm for
zip and gzip utilities. The algorithm detects and eliminates
duplicate strings in source code fragments to compute NCD.

C. Filtering

The tool may detect a number of overlapping code frag-
ments as code clones. To exclude such redundant reports, our
tool chooses the most similar code fragment (i.e. that has the
shortest distance) from the overlapping clones. If tied, the tool
chooses the shortest code fragment.

The tool reports code fragments in a CSV format. Each
code fragment has four attributes: the file name, the first and
last line numbers, and the distance from a query. A user can
easily sort the reported code fragments by the locations and
distances.

IV. BENCHMARK-BASED EVALUATION

A. Benchmark

To evaluate the accuracy and efficiency of the tool, we
employ a benchmark dataset for the CBCD tool [12]. The
dataset includes 53 cloned bugs extracted from issue tracking
systems of three OSS projects: PostgreSQL, Git, and Linux.
The main programming language of the projects is C/C++.
Each bug item comprises a query code fragment, a commit
ID of a product version, and a list of faulty code clones in
the version. Each clone is represented by a file name and the
first and last line numbers in the file. The queries have the
following properties:
• Most of queries include a few lines of code. The median

is 2. The longest query includes 14 lines of code.
• In case of 42 bugs, a single buggy clone is included in

source code. The maximum number of buggy clones of
a query is 13.

• In case of 25 bugs, the cloned fragments are type-1 clones
(i.e. exact copies). The other clones have some differences
from the query code fragments.

Table I shows the numbers of queries for each project and the
median size of C/C++ files in the analyzed versions of the
projects. The lines of code exclude comment and empty lines.

B. Tool Configurations

The normalized compression distance is dependent on a
compression algorithm. To evaluate the effect, we use Deflate,

TABLE II
ACCURACY OF THE TOOLS

Configuration #Report Precision Recall MAP
NCD (Deflate, th = 0.5) 8107 0.010 1.000 0.741
NCD (zstd, th = 0.5) 368355 <0.001 1.000 0.721
NCD (xz, th = 0.5) 46757797 <0.001 1.000 0.722
Normalized LD (th = 0.5) 712087 <0.001 0.988 0.742
CCFinderX (50 tokens) 70 0.629 0.728 N/A
CCFinderX (|q| tokens) 367021 <0.001 0.753 N/A
NiCad (Block, 3 lines) 19 0.632 0.3 N/A
NiCad (Block, 10 lines) 18 0.611 0.212 N/A
NiCad (Functions, 3 lines) 21 0.667 0.189 N/A
NiCad (Functions, 10 lines) 20 0.650 0.176 N/A

NCD−Deflate NCD−Zstd NCD−xz NLD

1

2

5

10

20

50

100

200

500

R
a

n
k

Fig. 1. Distributions of ranks of faulty code fragments

zstd, and xz with the tool. We sorted reported code fragments
by the ascending order of NCD.

As a baseline that simply compares code fragments with a
query, we use normalized Levenshtein distance between code
fragments (Levenshtein similarity [18]) defined as follows.

LDNormalized(q, s) =
LD(q, s)

max{|q|, |s|}

where LD(q, s) is the Levenshtein distance. It counts the
number of edit operations including insertion, deletion, and
modification of tokens between a query code q and a code
fragment s.

We also use CCFinderX and NiCad as baselines of code
clone detection techniques. The tools detect code clones be-
tween the source code of a product and a file including a query
code fragment. We filtered out clone pairs that include no lines
of a query code fragment. We consider a reported clone pair is
correct if the pair includes at least a single line of a query code
fragment and a single line of faulty code in the ground truth.
CCFinderX detects code clones having at least 50 tokens by
default. To analyze the effect of the default threshold, we also
extract code clones whose length is the same as a query. Since
CCFinderX does not complete a search for a low threshold,
we implemented a specialized tool that directly compares code
fragments obtained from the preprocessor of CCFinderX. In
case of NiCad, we tried four configurations comprising two
levels of code clones (block-level and function-level) and two
thresholds (3 lines and 10 lines of code).

C. Result

Table II summarizes the numbers of reported clones, pre-
cision, recall, and mean average precision (MAP) for each

TABLE III
PERFORMANCE OF THE TOOLS

Configuration Median Time (seconds) Total Time
Postgres Git Linux

NCD (Deflate, th = 0.5) 48 7 1,130 12h 26min
NCD (zstd, th = 0.5) 20 3 430 4h 35min
NCD (xz, th = 0.5) 830 224 20,170 176h 38min
Normalized LD (th = 0.5) 7 2 165 2h 45min
CCFinderX (50 tokens) 69 29 2,234 21h 30min
CCFinder (|q| tokens) 29 10 678 6h 22min
NiCad (Block, 3 lines) 117 59 2,498 24h 53min
NiCad (Block, 10 lines) 133 43 3,116 27h 24min
NiCad (Functions, 3 lines) 111 55 3,582 35h 53min
NiCad (Functions, 10 lines) 118 56 3,581 35h 14min

configuration. CCFinderX and NiCad have no MAP values
because they have no ranking features.

Our tool identified all the cloned faulty code fragments,
while it reports a large number of false positives. The MAP
column shows that cloned faulty code fragments are similarly
ranked, while the numbers of reported clones are different.
Fig.1 shows the distributions of ranks of faulty code fragments
in the results. It shows that the top-20 code fragments include
most of cloned bugs. Although the result of normalized
Levenshtein distance (NLD in Fig.1) is comparable to NCD,
it missed buggy clones using different variable names.

The default configuration of CCFinderX detected cloned
faulty code fragments, if they are included in large code clones.
A lower threshold does not improve a result. Some faulty code
fragments are missing because they have additional tokens
(i.e. type-3 clones) that could not be handled by CCFinderX.
Some other fragments are missing because the preprocessor
accidentally filtered out certain queries and their clones as
“uninteresting” code fragments.

NiCad reported a small number of code clones, while its
precision is similar to CCFinderX. This is because code clones
in the dataset are neither block-level nor function-level.

Table III shows the time performance to process all the
queries by a tool. The time has been measured on Windows
10 running on Xeon E5-2690v3 processor, 64 GB DRAM, and
a SSD. Each tool uses a single thread of control. The result
shows that our tool is comparable to existing clone detection
tools. The time is acceptable for the company.

V. EXAMPLE-BASED EVALUATION

The software engineering group in the company evaluated
the tool using two actual cases of cloned bugs. In those cases,
developers fixed faulty code fragments but missed their clones
at that time. The developers spent extra effort to fix the clones
later.

Fig.2 shows one of the examples. The identifiers in the
source code are anonymized. Given the original code of Fig.2,
the tool reported nine code fragments shown in Table IV. The
group confirmed that the most similar code to the query (#2 in
the table) is the source code that was not fixed in the product.
The group also confirmed that the #3 and #4 code fragments
are also relevant to the bug fix task, while the fragments are
correctly implemented.

for (var i=0; i < row.Cells.Count; i++)
{

if (row.Cells[i].Value == null)
{

- break;
+ continue;

}
ret.Add((string)row.Cells[i].Value);

}

Fig. 2. An actual bug fix in a product (written in C#). The identifiers are
anonymized. The bug fix replaced a break statement indicated by “-” with
a continue statement indicated by “+”.

TABLE IV
A SEARCH RESULT OF OUR TOOL FOR THE CODE FRAGMENT IN FIG.2

NCD Relevant? Description
1 0.067 Yes The query itself
2 0.182 Yes The cloned faulty code fragment
3 0.367 Yes A similar idiom correctly implemented
4 0.418 Yes Another similar idiom correctly implemented
5 0.455 No A similar loop using continue
6 0.455 No A similar loop using continue
7 0.491 No A loop structure without break statement
8 0.497 No A loop structure without Add
9 0.497 No A loop structure without (Same as #8)

Fig.3 shows the other bug fix example in another product.
The identifiers in the code are also anonymized. Given the
query, our tool reported three code fragments shown in Ta-
ble V. The most similar source code fragment to the query is
the clone that was not fixed in the product.

Based on the evaluation results, the software engineering
group recognized that the tool meets their requirements. They
decided to deploy the tool in the group themselves (around
23 developers working in two countries) and several ongoing
projects. They emphasized the usability of the tool. They
implemented a GUI in prior to the deployment so that users
can quickly execute the tool.

The group is also interested in deployment of the tool to
their standard development environment used by more than ten
thousand developers. Toward the deployment, they still have
concerns about best practices to use the tool, for example:
• How many lines of code should be included in a query?
• What is an appropriate threshold value?

Identifying best practices is crucial for developers to effec-
tively use the tool in their daily work. Since such aspects have
not been investigated in the experiments, our future work is a
long-term field study with the early adopters in the company.

VI. CONCLUSION

In this study, we developed a grep-like code clone detec-
tion tool for a software company using Normalized Compres-
sion Distance. The tool has been deployed in several projects
after the evaluation.

In future work, we will monitor the long-term effect in
projects so that the company can identify best practices to
use the tool. We are also planning to extend the tool to search
documents in addition to source files, as requested by the early
adopters.

if ((*list)->count > 0) {
iCount = (*list)->count - 1;
for (; iCount >= 0; iCount--) {

if ((*list)->filename[iCount] != NULL) {
free((*list)->filename[iCount]);

}
}

- free(*list);
}

+ free(*list);

Fig. 3. Another bug fix example in another product (written in Visual C++).
The identifiers are anonymized. The bug fix moved a function call free in
order to fix a memory leak.

TABLE V
A SEARCH RESULT OF OUR TOOL FOR THE CODE FRAGMENT IN FIG.3

NCD Relevant? Description
1 0.052 Yes The query itself
2 0.052 Yes The cloned faulty code fragment
3 0.482 No A similar loop without the outer if statement

REFERENCES

[1] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” in Proc. SOSP, 2001.

[2] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Detection
of recurring software vulnerabilities,” in Proc. ASE, 2010.

[3] R. Yue, N. Meng, and Q. Wang, “A characterization study of repeated
bug fixes,” in Proc. ICSME, 2017.

[4] Y. Dang, D. Zhang, S. Ge, R. Huang, C. Chu, and T. Xie, “Transferring
code-clone detection and analysis to practice,” in Proc. ICSE, 2017.

[5] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[6] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwe, “On the
use of clone detection for identifying crosscutting concern code,” IEEE
Transactions on Software Engineering, vol. 31, no. 10, pp. 804–818,
2005.

[7] M. Li, X. Chen, X. Li, B. Ma, and P. Vitanyi, “The similarity metric,”
IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 3250–
3264, 2004.

[8] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker, “Shared
information and program plagiarism detection,” IEEE Transactions on
Information Theory, vol. 50, no. 7, pp. 1545–1551, 2004.

[9] L. Zhang, Y. ting Zhuang, and Z. ming Yuan, “A program plagiarism
detection model based on information distance and clustering,” in Proc.
IPC, 2007.

[10] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “Similarity of source code
in the presence of pervasive modifications,” in Proc. SCAM, 2016.

[11] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: a qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[12] J. Li and M. D. Ernst, “CBCD: Cloned buggy code detector,”
University of Washington, techreport UW-CSE-11-05-02, 2012.
[Online]. Available: https://homes.cs.washington.edu/∼mernst/pubs/
buggy-clones-tr110502.pdf

[13] ——, “CBCD: Cloned buggy code detector,” in Proc. ICSE, 2012.
[14] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using

dependence graphs,” ACM Transactions on Programming Languages
and Systems, vol. 12, no. 1, pp. 26–60, 1990.

[15] J. Jang, A. Agrawal, and D. Brumley, “ReDeBug: Finding unpatched
code clones in entire OS distributions,” in Proc. IEEESP, 2012.

[16] H. Li, H. Kwon, J. Kwon, and H. Lee, “CLORIFI: software vulnerability
discovery using code clone verification,” Concurrency and Computation:
Practice and Experience, vol. 28, no. 6, pp. 1900–1917, 2015.

[17] V. Balachandran, “Query by example in large-scale code repositories,”
in Proc. ICSME, Sept 2015, pp. 467–476.

[18] M. M. Deza and E. Deza, Encyclopedia of Distances, 4th ed. Springer
Berlin Heidelberg, 2016.

