
Multilingual Detection of Code Clones
Using ANTLR Grammar Definitions

Yuichi Semura∗, Norihiro Yoshida†, Eunjong Choi‡ and Katsuro Inoue∗
∗Osaka University, Japan, {y-semura, inoue}@ist.osaka-u.ac.jp

†Nagoya University, Japan, yoshida@ertl.jp
‡Nara Institute of Science and Technology, Japan, choi@is.naist.jp

Abstract—So far, many tools have been developed for the
detection of code clones in source code. The existing clone
detection tools support only a limited number of programming
languages and do not provide any easy extension mechanism to
handle additional language. However, from our experience in in-
dustry/university collaboration, we found that many practitioners
need to analyze source code written in various languages. In this
paper, we propose an approach for the multilingual detection of
code clones using grammar files for a parser generator ANTLR.
We extended a clone detection tool CCFinderSW with the
proposed approach and then apply the extended CCFinderSW
to ANTLR grammar files for 43 languages. As a result, the files
for 39 out of the 43 languages can be analyzed correctly by the
extended CCFinderSW.

Index Terms—code clone, lexical analysis, parser generator,
ANTLR

I. INTRODUCTION

Programmers often copy and paste code so that they can

reuse existing code fragments. This causes code clones (i.e,

code fragments that are identical or similar code fragments

to each other). Generally, a code clone is regarded as one

of the factors that hinder software maintainability [1], [2],

[3]. For instance, when a cloned code fragment contains a

bug, a programmer should check all of its cloned fragments

for the same bug. If the cloned fragments contain the same

bugs, they should be modified for the same bug. To that end,

he/she should know locations of all code clones in the source

code. However, it is difficult for developers to recognize all

code clone from large-scale software systems. To alleviate this

problem, a multitude of code clone detection tools have been

developed [4], [5], [6]. For example, Kamiya has developed a

token-based code detection tool CCFinderX [4] that is widely

used in academic research as well as industries [7], [8].

The existing clone detection tools support only a limited

number of programming languages and do not provide any

easy extension mechanism to handle additional language [4],

[5], [6]. From our experience in industry/university collabora-

tion, we found that many practitioners need to analyze source

code written in various languages [9]. Such an extension

mechanism to handle additional language saves effort and time

for practitioners and tool developers [10].

A clone detection tool CCFinderSW has an extension

mechanism to handle additional language on demand from

practitioners. It enables practitioners to easily change the

lexical mechanism for comment elimination and identifier

replacement. This mechanism saves practitioners from troubles

during the implementation of lexical analyzers. When users

apply CCFinderSW to an additional language, they should

prepare two files to define comment rules and reserved words

of the language. However, in order to prepare a description file

of comment rule definitions, it is necessary for users to learn

grammars of the description file. Moreover, it is troublesome

to create a description all reserved words of a target language.

An extension mechanism to save these troubles is required

CCFinderSW.

A parser generator is a programming tool that creates a

lexer, parser or compiler based on the grammar definitions of

the target language. Since such grammar definition file of a

programming language has lexical information in the source

code, by choosing what is necessary for code clone detection

from among them and applying it to the tool, it is possible

to create any easy extension mechanism to handle additional

language. Regarding ANTLR, there is a Github repository

‘grammars-v4’1 which contains over 150 grammar definition

files. Therefore, practitioners of a code clone detection tool

can easily get a grammar definition file from the repository

and give it to the tool.

In this paper, we propose an approach to automatically ex-

tract lexical information necessary for token-based code clone

detection from grammar definitions of the parser generator.

Besides, we extended a clone detection tool CCFinderSW that

has a lexical information extractor from grammar definitions

of a parser generator ANTLR.

II. CLONE DETECTORS: CCFINDERX AND CCFINDERSW

To introduce the mechanism of a token-based clone detec-

tion tool, we briefly explain CCFinderX and CCFinderSW.

They identify not only Type-1 clones [11] (i.e. identical code

fragments except for variations in whitespace, layout and com-

ments) but also Type-2 clones [11] (i.e. syntactically identical

fragments except for variations in identifiers, literals, types,

whitespace, layout and comments.) by replacing identifiers

related to types, variables, and constants with a special token.

Kamiya has developed a token-based code detection tool

CCFinderX [4] that is widely used in academic research

as well as industries. Practitioners can replace its lexical

analyzer with another one depending on a target language.

1https://github.com/antlr/grammars-v4

673

2018 25th Asia-Pacific Software Engineering Conference (APSEC)

978-1-7281-1970-0/18/$31.00 ©2018 IEEE
DOI 10.1109/APSEC.2018.00088



In other words, when we apply CCFinderX to additional

languages, they should implement lexical analyzers. However,

this implementation requires users’ plenty of knowledge and

takes more time and effort.

We developed CCFinderSW [9], a code clone detection

tool based on CCFinderX. It contains a mechanism to tokenize

source code written in many languages and to detect code

clones and requires comment rules and reserved words as the

input. This mechanism saves the time and effort of imple-

mentation of lexical analyzers of new languages. The code

clone detection process of CCFinderSW is comprised of four

steps, which are lexical analysis, transformation, detection, and

formatting. Additionally, lexical analysis is comprised three

detailed steps, which are comment elimination, tokenization,

and identifier distinction.

The following subsections describe the detail of lexical

analysis and transformation, and problems of CCFinderSW.

With respect to the detection and formatting, please refer to

[9].

A. Comment Elimination

The lexical analysis of CCFinderSW eliminates comments

in the source code according to the type-1 and type-2 code

clone definition. This tool requires comment rules and reserved

words as the input. The user creates a description file of

comment rule definitions and gives it to CCFinderSW at

runtime. There are five kinds of configurable comment rules,

that are line comment, multi-line comment, full line comment,

full multi-line comment and string literals.

B. Tokenization

After the comments are eliminated from the source code

based on the defined comment styles, each line of the source

code is divided into tokens based on a lexical rule. The

following four lexical rules are used for the tokenization. Note

that a rule with a low number has a higher priority.

1) Each character literal or string literal corresponds to one

token, respectively.

2) White spaces and line breaks are delimiters.

3) Each symbol is one token.

4) Other consecutive alphabetic or numeric strings are

identified as one token.

C. Identifier Distinction and Transformation

In the identifier distinction process, the token generated by

the tokenization process is distinguished between an identifier

or a reserved word as preprocessing of transformation. The

user creates a description file of reserved words and gives it

to CCFinderSW at runtime.

In the transformation process, the token sequence is trans-

formed in order to detect meaningful code clones. In detail, all

the identifiers representing variable names and function names

are replaced by the same token. Reserved words are character

strings that are reserved by the programming language and

cannot be used for variable and function names.

TABLE I
MAIN TOKENS USED IN ANTLR

Token Description

‘literal’ Match that character or sequence of characters.
[char set] Match one of the characters specified in the character

set.
. The dot is a single character wildcard that matches any

single character
˜x Match any single character not in the set described by

x. In this paper, we call this token a NOT operator.
x* Match zero or more occurrences of x.
x? Match zero or one occurrences of x.

x*? Match the shortest occurrences of x.
x|y Match either x or y.

D. Problems of CCFinderSW

When users apply CCFinderSW to an additional language,

they should prepare two files to define comment rules and

reserved words of the language. However, in order to prepare

a description file of comment rule definitions, it is necessary

for users to learn grammars of the description file. Moreover,

it is troublesome to create a description all reserved words

of a target language. An extension mechanism to save these

troubles is required CCFinderSW.

III. A PARSER GENERATOR: ANTLR

This section describes grammar definitions in ANTLR. The

following example is a grammar definition file which repre-

sents a grammar of arithmetic operation. In line 1, grammar
Prog defines the name of this grammar as Prog. From line

2, each line represents a rule that constitutes this grammar

tree. There are two kinds of grammar rules, namely lexer rule

and parser rule. The lexer rules define tokens that appear in

source code. The parser rules define syntax grammars. In this

example, INT and WS are lexer rules. prog, expr, term, and

factor are parser rules.

1 grammar Prog;
2 prog: expr;
3 expr: term ((’+’|’-’) term)*;
4 term: factor ((’*’|’/’) factor)*;
5 factor: INT | ’(’ expr ’)’;
6 INT: [0-9]+;
7 WS: [ \t\r\n]+ -> skip;

Listing 1. An example of an ANTLR grammar file

Parr publishes documents of the lexical representation used

in ANTLR [12]. Table I shows parts of the documents that are

important to understand Section IV.

IV. IMPLEMENTATION OF A LEXICAL INFORMATION

EXTRACTOR FROM GRAMMAR DEFINITION

In this section, we propose an approach to automatically ex-

tract lexical information necessary for token-based code clone

detection from grammar definitions of the parser generator.

Besides, we extended a clone detection tool CCFinderSW
that had a lexical information extractor from grammar defi-

nitions of a parser generator ANTLR. We used Java for this

development.

674



��������	�
���

��
����������
��
�������	�

���

��		��
����	���
���

�������
����
�������
��
���������
���
���

��������
��������������� ���

������!�"#����

�����$%������������$!�
�

��������	�
�������!�"#����

�������	
��
�����
�	

�������
�

! �
���������
���

��		��
������ ��


!
�������
����������

��������	
����
�

��������	
����
�

!�#���������

Fig. 1. An overview of the original and the extended versions of CCFind-
erSW

CCFinderSW detects code clones using lexical information

extracted from grammar definitions. This section describes the

implementation method of a new module, which is a lexical

information extractor, and some of the changes in the existing

processes.

Figure 1 depicts an overview of extended CCFinderSW.

Areas highlighted in light yellow represents modules that we

newly develop or extend.

A new module extracts lexical information from grammar

definitions of ANTLR and outputs three Regular Expressions

(RegExes) which represent comments, string literals, and re-

served words. A RegEx of comments and a RegEx of string

literals are used in the comment elimination process, and a

RegEx of reserved words is used in the identifier distinction

process. Therefore, we needed to extend the two process and

enable them to accept RegExes as inputs.

Because of the online repository ‘grammars-v4’, practition-

ers can easily obtain a grammar definition and give it to

CCFinderSW. From an overall point of view, practitioners

should give CCFinderSW source files and grammar definition

of a target language. Also, they can choose between the

existing and the new process flow.

We explain an overview of the processes in a lexical

information extractor. A lexical information extractor contains

a parser for grammar definitions of ANTLR that generates

syntax trees.

First, it analyzes the tree of grammar definitions and extracts

lexical information from the tree. Second, it transforms lexical

definitions into RegExes of comment rules, string literals,

and reserved words. Finally, it gives the three RegExes to

the comment elimination process and the identifier distinction

process.

The reason for transforming lexical definitions into a RegEx
is as follows: A RegEx resembles a grammar definition in

ANTLR, and is often used for search and replacement of

character strings [13]. Therefore, comment elimination with a

RegEx is suitable for this study. In addition to this, comment

elimination with a RegEx allow CCFinderSW to handle more

comment rules than the five existing comment rules.
Section IV-A describes the transformation of comment defi-

nitions into a RegEx, Section IV-B describes the transformation

of string literal definitions, and Section IV-C describes the

transformation of reserved words definitions.

A. Transformation of comment rule definitions into a RegEx
This section describes the implementation to extract com-

ment rule and to transform them into a RegEx.

The process of transformation of comment rule into a RegEx
is comprised of the following four steps:

Step A: Choose grammar definitions of comment rules

from all rules.

Step B: Apply other grammar definitions to references in

chosen definitions.

Step C: Transform applied definitions into RegExes in

available in Java.

Step D: Combine all transformed RegExes into one RegEx.

Details of each step are as follows.

Step A First, the lexical information extractor chooses

grammar definitions of comment rules. For this process, we set

4 standards so as to identify grammar definitions of comment

rules based on our investigation. When a definition applies at

least one of the standards, it is identified as a comment rule

by this extractor. The standards are listed below.

1) A name of a definition contains ‘comment’, ‘COM-

MENT’ and so on.

2) A definition is linked to a ‘skip’ command.

3) A definition is linked to a ‘channel(HIDDEN)’ com-

mand.

4) A definiton is linked to a ‘channel(X)’ command. More-

over, X contains ‘comment’, ‘COMMENT’, and so on.

The following listing shows four grammar definitions of

comment rules which are applied to standards. Also, they

correspond to a multi-line comment written in C/C++.

1 Comment:’/*’.*?’*/’;
2 Block1:’/*’.*?’*/’->skip;
3 Block2:’/*’.*?’*/’->channel(HIDDEN);
4 Block3:’/*’.*?’*/’->channel(BComment);

Listing 2. Notations for defining comments

Step B Second, the extractor applies recursively other

grammar definitions to references in chosen definitions. In

an example of a grammar definition file in Section III, the

‘term’ definition refers to the ‘factor’ definition. In such cases,

the extractor applies a definition a reference destination to a

reference source.

Step C Third, the extractor transforms applied definitions

to RegExes available in Java. As a reason for that, there

is some difference between descriptions of RegExes in Java

and descriptions of grammar definitions in ANTLR. There

are 3 patterns of descriptions in ANTLR which the extractor

transforms into RegExes.
The first one is a single quotation. In grammar definitions

in ANTLR, a literal appearing in the source code are enclosed

675



����������	������

	�����
����������

����������	��� ��

	�����
����������

������
����������	������

������
������������	������  �����
����� ��!�"����
���

 �����
��������"����
���

��������#��#�

������#��#�

�� ��!��#��#�

���$��

���$��

���$��

���$��

Fig. 2. An example of the transformation of comment rule definitions into a
RegEx

in single quotations. In a RegEx, this single quotations is

unnecessary and the extractor eliminates them.

The second one is a NOT operator. In grammar definitions

in ANTLR, a ‘˜x’ matches any single character not in the set

described by x, that is, ‘˜’ has a function of a NOT operator.

In RegExes, there is no expression corresponding to a NOT

operator. Accordingly, the extractor transforms a ‘˜x’ into a

RegEx with the negative lookahead.

The third one is a dot. In grammar definitions in ANTLR,

a dot is a single character wildcard that matches any single

character. However, in RegEx used in Java, a dot matches any

single character except the newlines. Because of the difference

between two definitions of a dot, the extractor transforms a ‘.’

into a ‘[\s\S]’.

Step D Finally, the extractor combines all transformed

RegExes into one RegEx. That is, it outputs a logical sum

of all generated RegExes with ‘|’. At the end of Step D, the

transformation of comment grammar definitions into RegExes
is completed.

Figure 2 is an example of the transformation of comment

rule definitions into a RegEx. In Figure 2, the extractor

chooses two definitions, which is labeled ‘BCOMMENT’ and

‘LCOMMENT’, and transforms them into a RegEx,

B. Transformation of string literal definitions into a RegEx

This section describes an approach for extract string literal

and to transform them into a RegEx.

A string literal is a type of literal in programming for the

representation of a string object within the source code, respec-

tively. For instance, in Java program, characters enclosed in

double quotes are identified as a string literal. CCFinderSW
defines a string literal as one of the configurable comment

rules. Also in this expansion, to implement similar the com-

ment elimination process, it is necessary to give string literal

grammar to CCFinderSW. Therefore, the lexical information

extractor extracts string literal definitions and transforms them

into a RegEx. Finally, it gives the RegEx to the comment

elimination process of CCFinderSW.

In order to implement a lexical information extractor, we

investigated notations of grammar definitions corresponding to

string literals. The following listing shows notations of string

literals which frequently appear in our investigation.

1 StringLiteral: QUOTE StringCharacters? QUOTE;
2 STRING : ’string’;

Listing 3. notation for defining string literals

The grammar definition in line 1 represents a string literal

grammar. The grammar definition in line 2 represents a

reserved word ‘string’ which appears in the source code, al-

though its name contains ‘STRING’. Considering the notations

of string literal definitions, we set a standard for extraction of

string literal definitions. The standard defines a string literal

definition which is not a reserved word definition and whose

name contains ‘string’, ‘STRING’ and so on.

Then, the extractor identifies string literal definitions ac-

cording to the standard and transforms them into a RegEx.

The transformation of string literals is the same as comment

rules, therefore detailed explanation is omitted.

C. Transformation of reserved word definitions into a RegEx

This section describes an approach to extract reserved words

and to transform them into a RegEx. In the same as the

others, we investigated notations of grammar definitions corre-

sponding to reserved words. The following listing shows two

different notations for defining a reserved word ’while’. Both

of them are frequently appear in our manual investigation.

1 WHILE:’while’;
2 WHILE:[wW][hH][iI][lL][eE];

Listing 4. Two different notations for defining a reserved word ’while’

In line 1 of this example, the definition which is named

‘WHILE’ links a string literal ‘while’. This notation is widely

used in grammar definitions which we investigate. In line

2 of this example, the definition is composed of character

sets such as ‘[wW]’. This character set ‘[wW]’ matches

both uppercase and lowercase letter of ‘w’. Hence, a RegEx
‘[wW][hH][iI][lL][eE]’ matches ‘while’ and ‘WHILE’ and

‘WhIlE’, and so on. According to two notation of grammar

definitions, we implement the extraction process of reserved

words. A character set used in ANTLR is also used in a RegEx.

Consequently, it transforms reserved word definitions into a

RegEx.

Before our investigation, we defined that a reserved word

contains only alphabets. However, since we found some re-

served words which contain symbols such as ‘ ’ and ‘@’, we

add an option which designates characters composing reserved

words.

After the extraction process, it transforms definitions of

reserved words into a RegEx. The transformation of reserved

words is the same as the others, therefore detailed explanation

is omitted.

V. EVALUATION

As an evaluation, we applied the proposed approach to

a collection of ANTLR grammar files and confirmed the

accuracy of the proposed approach. After that, we extended

CCFinderSW with the proposed approach. And then, we

676



applied it to a collection of source files written in several

different languages and checked the detected code clones.

A. Result of analyzing grammar files

We investigated how many grammar files in an ANTLR

grammar repository ‘grammars-v4’2 are correctly analyzed.

This repository contains over 150 grammar definition files.

For the evaluation, we selected 43 of 154 languages which

are available in the advanced search3 of the code search engine

at GitHub because impractical languages such as esoteric lan-

guages (e.g., Brainf*ck) should be excluded from the eligible

languages. And then, we manually identified the notations of

comments, string literals, and reserved words from each of the

grammar definition files of the 43 eligible languages. After

that, we applied the proposed approach to the 43 grammar

definition files. Finally, we checked whether the extracted

RegExes are correct as comments, string literals and reserved

words of each language based on the result of our manual

identification.

The result shows that the proposed approach successfully

extracted notations for comments, string literals, and reserved

words in 38, 36 and 37 out of the 43 eligible languages

respectively. As the total, all three RegExes are correctly

analyzed in 39 out of the 43 eligible languages.

The following listing shows the comment definitions in

a grammar file ’Lua.g4’. COMMENT defines a comment

notation of Lua and refers to NESTED STR. NESTED STR
refers to itself recursively. Therefore, comments used in Lua

is unable to be expressed by RegEx. Our method proposed in

this paper is unable to extract comment notations from such

grammar definitions.

1 COMMENT
2 : ’--[’ NESTED_STR ’]’ -> channel(HIDDEN)
3 ;
4 fragment
5 NESTED_STR
6 : ’=’ NESTED_STR ’=’
7 | ’[’ .*? ’]’
8 ;

Listing 5. The comment definitions in the grammar file ’Lua.g4’

Please note that several of the eligible languages do not have

any keyword/reserved word. The detailed result is available

online4.

B. Result of the detection of code clones

We used the extended CCFinderSW with the proposed

approach to a collection of source files written in several

different languages and checked whether the detection result

is correct.

For this evaluation, we selected c, cobol85, cpp14, ecmas-

ript, java9, python3 and visualbasic6 from the 39 correctly-

analyzed languages in Section V-A. Nowadays many of sys-

tems which written in each of the seven selected languages

have much legacy code.

2We collected ANTLR grammar files from ‘grammars-v4’ repository on
December 14, 2017.

3https://github.com/search/advanced
4https://sites.google.com/site/yoshidaatnu/APSEC2018ERAResult.pdf

We downloaded source files which are written in the se-

lected languages from Github repositories and then applied

the extended CCFinderSW to the source files. After that, we

randomly selected 20 pairs of code clones from the detection

result for each selected language and then manually confirmed

the all of the selected pairs for each language are correctly

pairs of code clones.

VI. SUMMARY

In this paper, we propose an approach to automatically ex-

tract lexical information necessary for token-based code clone

detection from grammar definitions of the parser generator.

Besides, we extend a clone detection tool CCFinderSW that

has a lexical information extractor from grammar definitions of

a parser generator ANTLR. In an evaluation, we indicate that

the lexical information extractor in CCFinderSW can extract

most rules of comment, string literals and reserved words in 43

languages. Also, we manually confirmed the all of the selected

pairs for each of seven languages are correctly pairs of code

clones.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-

bers JP25220003, JP18H04094 and JP16K16034.

REFERENCES

[1] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hudepohl,
“Assessing the benefits of incorporating function clone detection in a
development process,” in Proc. of ICSM, 1997, pp. 314–321.

[2] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: finding copy-paste
and related bugs in large-scale software code,” IEEE Transactions on
Software Engineering, vol. 32, no. 3, pp. 176–192, 2006.

[3] A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic
Debugging, 2nd ed. Morgan Kaufmann Publishers Inc., 2009.

[4] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[5] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proc. of ICSE, 2007,
pp. 96–105.

[6] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Proc. of
ICSE, 2016, pp. 1157–1168.

[7] K. Inoue, Y. Higo, N. Yoshida, E. Choi, S. Kusumoto, K. Kim, W. Park,
and E. Lee, “Experience of finding inconsistently-changed bugs in code
clones of mobile software,” in Proc. of IWSC, 2012, pp. 94–95.

[8] Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, and T. Sano, “Applying
clone change notification system into an industrial development process,”
in Proc. of ICPC, 2013, pp. 199–206.

[9] Y. Semura, N. Yoshida, E. Choi, and K. Inoue, “CCFinderSW: Clone
detection tool with flexible multilingual tokenization,” in Proc. of APSEC
2017, 2017, pp. 654–659.

[10] K. Sakamoto, K. Shimojo, R. Takasawa, H. Washizaki, and Y. Fukazawa,
“OCCF: A framework for developing test coverage measurement tools
supporting multiple programming languages,” in Proc. of ICST 2013,
2013, pp. 422–430.

[11] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[12] T. Parr, “antlr4/index.md at master antlr/antlr4,”
https://github.com/antlr/antlr4/blob/master/doc/index.md.

[13] J. E. Friedl, Mastering regular expressions. O’Reilly Media, 2002.

677


