
Towards Classification of Loop Idioms
Automatically Extracted from Legacy Systems

Joji Okada∗, Takashi Ishio†, Yuji Sakata∗, and Katsuro Inoue‡
∗System Engineering HQ, NTT Data Corporation, Tokyo, Japan

†Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
‡Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

Email: okadaju@nttdata.co.jp, ishio@is.naist.jp, sakatayu@nttdata.co.jp, inoue@ist.osaka-u.ac.jp

Abstract—Legacy systems are important in business but diffi-
cult to maintain. One of the causes of the difficulties is a large
number of code clones in the systems; Those clones implement
similar functionalities using common loop idioms in a company.
Since the loop idioms have been developed to implement popular
functionalities, most of them are likely to be translated into simple
SQL statements in a new, modernized version of a system. To
investigate the feasibility of the approach, we propose a method
to automatically extract cloned loop idioms embedded in COBOL
program files. We manually classified the extracted idioms and
labeled them according to their functionalities. We evaluated the
accuracy of our classification result with three experts.

Index Terms—Legacy Migration, Reverse Engineering, Pro-
gram Comprehension, Clustering, COBOL

I. INTRODUCTION

There are still many enterprise systems on mainframes
(hereinafter referred to as legacy systems) that are important
in business but difficult to maintain [1]. In order to respond
to business changes, companies need to keep legacy systems
updated. Rebuilding a legacy system using modern program-
ming languages and execution environments is an important
activity to reduce the future maintainance cost [2].

In legacy systems, many clones have almost the same
control structure of loops and conditional branches (hereinafter
referred to as loop idiom). Fig. 1 shows two example code
fragments. Both of them have a WRITE statement in an
IF statement in a LOOP statement and a READ statement
outside the IF statement. They select a subset of rows from an
input file and write the result into an output file. In a rebuild
process, developers replace those programs with SELECT
statements in SQL. In a software company, expert developers
often recognize the functionality of a program (i.e. a type of
SQL statement to replace the program) by such a loop idiom
used in the program. Based on the observation, we hypothesize
that two programs implement the same functionality if they
have the same loop idiom. By classifying program files into
functional groups using loop idioms, we enable developers to
efficiently rewrite similar programs with similar SQL state-
ments.

In this paper, we propose a method to automatically extract
cloned loop idioms from COBOL program files. We extract
frequent loop idioms from program files and manually label
them as a dicitionary of loop idioms. The dictionary enables
developers to obtain a functionality label for a program file.

���������	
������

�� ���������	
�
��
� 

�	

����
������

��
�������

�� ������
�
��
�


�	

����
������� ��
���
�����

��
�
���������	��
������ ���	

����
���������� ��
��������

�	����

���
� ���������

�	����

�	����

���� ����������

�	����������

���������	
������

�� ������
�
����	��� 

�	

����
�����	��
��
��	������	��

���
� ���	�������������

�	����

���� ����������

�	����������

������ � ���������������

������������
�
����	���

������ � ���������������

���������������	
�
��
� �� �������
�
��
�

Fig. 1. Example clones in legacy systems

���������	
����

�� � 

�	

���
���

�	����

������

�	����������

Fig. 2. A loop idiom extracted from the left program in Fig. 1

Those loop idioms representing the same functionality can be
considered as a kind of Type-4 clones.

To evaluate the accuracy of the method, we built a dictionary
of loop idioms in two legacy systems. We compared the
classification result of 100 samples with a manual result
created by three experts. As a result, 81% of the samples are
correctly labeled using the dictionary.

II. PROPOSED METHOD

Our method focuses on COBOL programs in a batch
processing system. A program reads input from one or more
files and writes some processed result to one or more files.
We extract a loop idiom involved in a program through the
following two steps.

First, we extract only the following statements using a
COBOL parser as the loop idiom of a file: (1) Input statement
(e.g. READ), (2) Output statement (e.g. WRITE), (3) Loop
statement enclosing input/output statements, and (4) Branch
statement enclosing input/output statements. We remove sub-
routine calls from a file by inlining the contents of the called
routines.

Next, we apply the following normalization rules to ignore
programming style differences.

• Replace identifiers and constants with anonymous tokens
• Replace nested branch statements with a single branch

statement



TABLE I
PROFILE OF TARGET LEGACY SYSTEMS

System Domain # All Files LOC # I/O Files LOC
A Insurance 3,051 2.3M 1,165 1.1M
B Finance 10,442 14.8M 7,988 13.3M

TABLE II
LABEL OF PROGRAM FILE

Label Meaning
Filter Output only a subset of rows that match an extraction

condition.
Split Split the content of an input file into multiple files

depending on conditions.
Grouping Classify rows into groups and calculate values for each

group, e.g. min/max values.
Match- Compare the contents of two input files and write
Filter the result to a single file.

Match- Compare the contents of two input files and write
Split the result to separated files depending on conditions.

Union Copy all rows of two input files to a single output file.
Report Insert additional lines such as headers and footers.

Edit Modify all lines of an input file.
Dump Generate a file without any input file.
Load Read a file and generate no output files.

Multiple Perform multiple functionalities.

• Replace consecutive IF-ELSE-IF statements having three
or more control-flow paths with a SWITCH statement

• Replace a repeated sequence of the same statements with
a single occurrence of the statements

The normalization steps translate a file into a loop idiom.
Fig. 2 shows a resultant idiom extracted from the left program
in Fig. 1. We classify files having the same loop idiom into
the same functionality. After that, we manually label the loop
idioms based on their functionalities. Different loop idioms
may have a common functionality label.

III. EVALUATION

To investigate the feasibility of the method, we built a
dictionary of loop idioms from two actual legacy systems.
The extraction of the loop idioms was automated while the
labeling was manually performed. During the labeling process,
we refer to only loop idioms. We did not refer to the contents
of program files.

Table I shows an overview of the two systems. Those
systems are still actively maintained in a software company.
The column # I/O Files indicates the numbers of program files
including at least one input/output statement. The remaining
program files include subroutines of the systems.

We have obtained 11 functionality labels from loop idioms.
Table II shows the labels and their meaning. In Table III, the
columns of System A and B show the numbers of files and
loop idioms for each functionality label in two systems. The
top 10% loop idioms cover 50% of program files.

To evaluate the accuracy of the dictionary, we applied our
dictionary-based labeling to sample program files. The ground
truth has been manually created by three experts; we explained
the functionality labels and their meaning, and then each expert
individually labeled programs. The experts decided answers
for each program by voting and discussion.

We extracted 100 program files from System A using the
stratified sampling method due to the limited time of experts.

TABLE III
RESULTANT LABELS (F=FILES, I=IDIOMS CLASSIFIED BY THE AUTHORS)

Label System A System B Accuracy (System A)
#F #I #F #I #F #correct

Filter 144 8 809 10 15 12 (80%)
Split 119 7 369 8 13 13 (100%)

Grouping 9 3 226 5 1 1 (100%)
MatchFilter 56 9 473 15 6 6 (100%)
MatchSplit 2 1 49 1 1 1 (100%)

Union 0 0 57 1 0 0 (N/A)
Report 56 5 24 5 6 6 (100%)

Edit 123 7 1,093 8 14 13 (93%)
Dump 52 1 366 1 5 0 (0%)
Load 42 1 1,048 1 4 1 (25%)

Multiple 562 402 3,474 2,359 35 28 (80%)
Total 1,165 444 7,988 2,414 100 81 (81%)

The number corresponds to a confidence level of 95% and
a sample error of 10%. The accuracy columns in Table III
show the numbers of sample files and correctly classified files
by the dictionary. For example, eight Filter idioms appear in
144 files of System A, we extracted 15 files from the 144
files randomely. Further 12 files are corrected. The accuracy
is higher than 80%. However, experts classified program files
having Dump and Load idioms into other groups such as Filter
and Report. This is because those program files included DB
access statements that were not taken into consideration in our
normalization rules.

IV. RELATED WORK

Balachandran [3] proposed a code search algorithm using
a structural similarity of abstract syntax trees. It enables a
user to search code examples using syntactic patterns ignoring
semantic differences such as data types and function names in
a query code fragment. Our approach takes a similar approach
to ignore semantic differences but uses heuristics tailored for
legacy systems.

Allamanis et al. [4] proposed a method of pattern mining
focusing on loops in the source code. While this method
focuses on variable reading and writing, our method deals with
file I/O in a system.

V. CONCULSION

We proposed a method to extract clones like loop idiom,
identify the functionality of a COBOL program based on its
loop idiom, and applied the method to actual legacy systems.
In the future work, we would like to extend the method to
support database I/O and perform an experiment.

REFERENCES

[1] Khadka, R., Batlajery, B. V., Saeidi, A. M., Jansen, S. and Hage, J.:
How do professionals perceive legacy systems and software modern-
ization?, Proceedings of the 36th International Conference on Software
Engineering, pp. 36–47, 2014.

[2] Ganesan, A. S. and Chithralekha, T.: A Survey on Survey of Migration
of Legacy Systems, Proceedings of the International Conference on
Informatics and Analytics, pp. 72:1–72:10, 2016.

[3] Balachandran, V.: Query-by-example in large-scale code repositories,
U.S. Patent No. 9,317,260. 2016.

[4] Allamanis, M., Barr, E. T., Bird, C, Devanbu, P., Marron, M. and Sutton,
C. Mining Semantic Loop Idioms, IEEE Transactions on Software
Engineering. vol. 44, no. 7, pp. 651–668, 2018.


