
Clone Notifier: Developing and Improving the
System to Notify Changes of Code Clones

Shogo Tokui∗, Norihiro Yoshida†, Eunjong Choi‡, and Katsuro Inoue∗
∗Osaka University, Japan, {s-tokui, inoue}@ist.osaka-u.ac.jp

†Nagoya University, Japan, yoshida@ertl.jp
‡Kyoto Institute of Technology, Japan, echoi@kit.ac.jp

Abstract—A code clone is a code fragment that is identical or
similar to it in the source code. It has been identified as one of the
main problems in software maintenance. When a developer fixes
a defect, they need to find the code clones corresponding to the
code fragments. In this paper, we present Clone Notifier, a system
that alerts on creations and changes of code clones to software
developers. First, Clone Notifier identifies creations and changes
of code clones. Subsequently, it groups them into four categories
(new, deleted, changed, stable) and assigns labels (e.g., consistent,
inconsistent) to them. Finally, it notifies on creations and changes
of code clones along with the corresponding categories and labels.
Clone Notifier and its video are available at: https://github.com/
s-tokui/CloneNotifier.

Index Terms—code clone, tracking clone, software maintenance

I. INTRODUCTION

A code clone is a code fragment that is identical or similar
to it in the source code. It has been identified as one of the
main problems in software maintenance [1]. When a developer
fixes a defect, they have to find the code clones corresponding
to the code fragment.

Simultaneous modification is needed in maintenance for
clone sets (i.e., sets of code clones in which all pairs of the
code clones are identical or like each other) [2]. However,
consistent modification of all code clones is an error-prone
task. Therefore, tool-based management is required for simul-
taneous modification of code clones.

Our research team has developed a Clone Notifier, which
enables consistent modification of code clones by automat-
ically alerting developers of changes in the information of
code clones [3]. Clone Notifier detects code clones using
a token-based code clone detector named CCFinderX [4].
Furthermore, it provides the change information (i.e., changed,
deleted, new, and stable) of clone sets based on the changes
between two revisions. Clone Notifier continuously detects
the change information of code clones and sends an e-mail
about the change to the developers.

However, it is difficult for developers to maintain many code
clones suggested by Clone Notifier consistently. Specifically,
there are many inconsistent changes to code clones, and some
of them contain bugs [5], [6], [7]. To mitigate this problem,
we improved the Clone Notifier in the following four ways
to show developers the areas where they should focus (e.g.,
inconsistent changes).

VCS
Detecting
clone sets

Detecting
clone sets

Commit

Current
source code

Previous
source
code

STEP 1

STEP1
Tracking

&
Categorizing
clone sets

Current
clone set list

Previous
clone set list

STEP 2

Categorized
clone set list

Notifying
developers

&
Generating
result files

STEP 3

Detail
results

Result
summary

HTML
files

Check
the results

Developer

Fig. 1. An overview of Clone Notifier

• Classification of changed clone sets into refined cate-
gories

• Addition of two code clone detectors SourcererCC [8]
and CCVolti [9]

• Change of the definition of a clone set
• Improving the method of tracking of code clones [10]

These improvements make it possible to notify developers of
inconsistent changes.
In this paper, we demonstrate how Clone Notifier supports

developers, such that they can fix defects in clone sets con-
sistently. In this paper, we illustrate the use of Clone Notifier
using open source software PostgreSQL1 from 23rd June 2018
to 22nd June 2019.

II. CLONE NOTIFIER: OVERVIEW

Clone Notifier is a system used to generate HTML files
with the change information of code clones from the source
code of two revisions as shown in Figure 1. Moreover, Clone
Notifier notifies developers of the summary of the change
information. It performs three steps: 1) detecting the clone
sets in each revision, 2) tracking and categorizing clone sets
between two revisions, and 3) notifying developers of the
change information of code clones.

A. Detect Code Clones

Clone Notifier defines a clone set as a set of code clones
in which all pairs of code clones are identical or similar to

1https://github.com/postgres/postgres

978-1-7281-5143-4/20/$31.00 c© 2020 IEEE SANER 2020, London, ON, Canada
Tool Demonstrations

642

TABLE I
CATEGORIES OF CLONE SETS

Stable clone sets
that were not changed.

New clone sets
that did not exist
in the previous version
but the current version.

Deleted clone sets
that existed in the previous
version and removed.

Changed clone sets
that include edited, added,
or deleted code clones.

TABLE II
LABELS OF CHANGED CLONE SETS

Label Definition
Add An added code clone exists.
Subtract A deleted code clone exists.
Shift A code clone which is moved

from another clone sets exists.
Consistent All code clones were done same edit.
Inconsistent At the same time, an edited code

clone and a stable code clone exist.

each other. Code clone detectors output clone pairs (pairs of
code clones) from each revision of source code. Clone Notifier
detects the clone pairs in the source code using the three code
clone detectors SourcererCC [8], CCFinderX [4] and CCVolti
[9]. The supported languages of Clone Notifier depend on the
code clone detectors.

After detecting the clone pairs, Clone Notifier constructs
clone sets from the clone pairs. When the syntax code clone
detector (e.g., CCFinderX), detects two clone pairs (c1, c2) and
(c2, c3), the clone c1 is exactly similar to the clone c3 because
the relationship preserves the transitive property. When the
near-miss code clone detector (e.g. SourcererCC and CCVolti),
detects two clone pairs (c1, c2) and (c2, c3), clone c1 may be
different from clone c3.

When developers use the near-miss code clone detector,
Clone Notifier constructs clone sets from clone pairs of
JGraphT2 for solving the maximal clique problem. A clique
is a subset of vertices of an undirected graph, such that edges
exist between two different vertices in the clique. A maximal
clique is a clique that does not exist exclusively within the
vertex set of a larger clique. For example, there are four code
fragments c1, c2, c3, c4. When detecting the four clone pairs
(c1, c2), (c2, c3), (c3, c1) and (c3, c4), Clone Notifier detects
(c1, c2, c3) and (c3, c4) as the clone sets. As clone sets are
maximal cliques of JGraphT, clone sets can be included in
code clones that may need simultaneous modification without
a surplus or deficiency.

B. Track and Categorize Clone Sets

After detecting clone sets, Clone Notifier tracks from the
clone sets in the old revision to the clone sets in the new
revision with the position of the code fragments in each source
code. To track code clones between two revisions, Clone
Notifier calculates the overlapping location of code clones,

2https://jgrapht.org/

Fig. 2. Configuration GUI

based on the location overlapping function of Kim et al. [10].
Location overlapping measures how much two locations l1 and
l2 overlap each other (0 ≤ LO(l1, l2) ≤ 1). Clone Notifier
uses the difference between files of the same name in each
revision, without the added and deleted lines. It computes the
relative proportion of an overlapped region between l1 and the
calibrated l2.

LO(l1, l2) =
min(ne, oe)−max(ns, os)

ne − ns
(1)

where l1 in the old revision spans from the line os to the line
oe, and the calibrated location of l2 in the new revision spans
from the line ns to the line ne. If the location overlapping
between the two code clones is 70% or more, Clone Notifier
tracks from the code clone at the old revision to the code
clone at the new revision. If a code clone exists only in
either revision, it is defined as a deleted/added code clone
or is included as a subtract/add clone set, as shown in Table
II. The condition to track a clone set in the new revision is
that the clone set must contain the largest number of code
clones tracked from the code clones of the clone set in the old
revision.
After tracking the clone sets, Clone Notifier classifies the

clone sets into four categories (stable, changed, new, and
deleted) as shown in Table I [3]. According to the type of
editing of the code clones included in the changed clone
set, Clone Notifier gives the changed clone sets any of five
labels as shown in Table II. The labels are add, subtract, shift,

643

Fig. 3. Home page

Fig. 4. Clone set information

consistent, and inconsistent [10]. Clone Notifier can notify the
developers of the clone set information in more detail.

C. Notify Developers and Show the Change Information

After categorizing the clone sets, Clone Notifier outputs
the result file about the change information of the clone sets
and sends an e-mail to developers. The extension of the result
file is HTML. If developers set up their e-mail information,
they can receive an e-mail consistently with a summary of the
results and a link to the result file. The e-mail messages are a
summary of the results, which have four pieces of information:
number of clone sets, number of code clones, number of
files containing code clones, and a link to the home page for
the result in a browser. Developers can analyze the change
information of the code clones.

Figure 3 shows the home page of the result files in a
browser. Developers click the ‘Changed clone set’ and check
the clone setlist page to examine the details of the changed
clone sets. In Figure 4, the clone setlist page shows the details
information of the clone sets. The several pieces of information
are the labels, categories of the code clones shown in section
II-B, file containing the code clone, and line number of the
code clone in the new revision. Notably, the clone sets are
sorted by the same label, and the inconsistent changes in the
clone sets are at the top of the list. Developers click the ID
of the code clone 0.0 on the clone setlist page and check the
source code page. As shown in Figures 5, 6 and 7, the source

code pages are written based on the difference between two
revisions, and developers can easily check how the code clone
changed.

III. ILLUSTRATIVE USAGE SCENARIO

In this section, we demonstrate a usage instance of Clone
Notifier to detect the inconsistent change clone sets. Moreover,
we examine the results to uncover the code clone which should
be fixed.

A. Usage Scenario

First, the developer sets the configurations of the Clone
Notifier. After downloading Clone Notifier, the developer
executes setting.jar and write (e.g., the code clone detection
tool, two versions of the directory path, email address, and
configuration file name) to generate the configuration file. Fig-
ure 2 shows the input form of the configuration settings. Next,
the developer executes Clone Notifier with the configuration
file as an argument. Finally, after completing the execution,
the developer receives an email from Clone Notifier with a
summary of the results. In this use case, one inconsistent
changed clone set has been detected. To investigate whether
any defect exists in the code clone, the developer accesses the
URL written in the email and checks the results.
When accessing the URL, the home page is displayed, as

first shown in Figure 3. If the developer clicks a clone set
category name, he can check the detailed information about
that category. On the Clone Set page, as shown in Figure 4,
the developer can confirm the change information of the code
clone for each clone set. The information includes whether
the code clone has been modified, is containing a file, and the
line location in the source code. When the developer clicks
the code clone ID, he can see more detailed information about
changes. In the source code page, as shown in Figures 5, 6, and
7, the code clone in the source code is displayed. If changes
have been made, the changes are colored.

B. Findings

In this section, we illustrate three instances of inconsistent
changes detected by the Clone Notifier.
The first instance of inconsistent change on 29th Dec 2018

is the clone set of three code fragments, as shown in Figure
5. These code fragments are in the same file. Although, it
was necessary to refactor the other two same code clones, the
modified one was refactored. The commit message includes
that the modified coding is too convoluted and hard to follow.
Approximately two weeks before this commit, the committer
discussed with PostgreSQL developers and improved the read-
ability of this code by e-mail3. When a code clone in a clone
set was very convoluted, the other code clones are considered
to be convoluted. Thus, they should be identified as refactoring
candidates.
The second inconsistent change on 5th Apr 2019 is the clone

set of three code fragments, as shown in Figure 6. These code

3https://www.postgresql.org/message-id/20181206222221.
g5witbsklvqthjll@alvherre.pgsql

644

File: src/backend/executor/execMain.cFile: src/backend/executor/execMain.c

Stable Code Clone Modified Code Clone

Fig. 5. Inconsistent change (previoius commit ID: f7ea1a4233, current commit ID: e8b0e6b82d)

File: src/backend/utils/cache/lsyscache.cFile: src/backend/utils/cache/lsyscache.c

Stable Code Clone Modified Code Clone

Fig. 6. Inconsistent change (previoius commit ID: 82150a05be, current commit ID: edda32ee25)

fragments are in the same file. Although, it was necessary
to refactor the other two same code clones, the modified
one of these code fragments was refactored, such that the
condition statement changes to the condition negative form.
The commit message indicates that “the developer rewrites
get attgenerated() to avoid compiler warning if the compiler
does not recognize that error log does not return”. Therefore,
to avoid the compiler warning with the other code clones in the
clone set, these code clones should be modified with the same
change. If Clone Notifier is constantly used, the developer can
consistently refactor.

The third inconsistent change on 17th Apr 2019 is the
clone set of two code fragments, as shown in Figure 7.
These code fragments are in the same file. One of these code

fragments was refactored, such that it added a NULL return if
DataChecksumsEnabled is false. Although, it was necessary to
refactor the other code clone in the same way as the refactored
code fragment. The commit message includes that ‘returning
0 could falsely indicate that there is no problem, but returning
NULL correctly indicates that there is no information about
potential problems’.

IV. RELATED WORK

Our research team has developed CCEvovis [11], which
is a system that visualizes the evolution of code clones [3].
It highlights and visualizes the clone change for developers
to understand. Saha et al. described the design and imple-
mentation of a near-miss clone genealogy extractor, gCad

645

File: src/backend/utils/adt/pgstatfuncs.c File: src/backend/utils/adt/pgstatfuncs.c

Stable Code Clone Modified Code Clone

Fig. 7. Inconsistent change (previoius commit ID: 9010156445, current commit ID: 252b707bc4)

[12], which can extract and classify both exact and near-
miss clone genealogies. In this paper, we described the Clone
Notifier that constantly notifies about the inconsistent changes,
including the changes in the information of the code clones.

Other studies have existed on detection code clones [13],
[14], [15], and code clones evolution [16], [17], [18]. Also,
Mondai et al. have found that the percentage of severe bugs is
significantly higher in micro-clones than regular clones [19],
[20].

V. SUMMARY

In this paper, we presented a Clone Notifier that auto-
matically alerts about changes in the information of code
clones. We demonstrated the use of Clone Notifier to detect
such changes. We found using improved Clone Notifier that
there were code clones that did not change consistently in the
changed clone set. And, we have future work to implement
incremental clone detection because the detection tools used
by Clone Notifier detect code clones for each revision, and
this treatment costs a lot for large software projects.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant Num-
bers JP18H04094, JP19K20240. We would like to thank
Editage (www.editage.com) for English language editing.

REFERENCES

[1] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools,” Science of Computer
Programming, vol. 74, no. 7, pp. 470–495, 2009.

[2] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[3] Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, and T. Sano, “Applying
clone change notification system into an industrial development process,”
in Proc. ICPC, 2013, pp. 199–206.

[4] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 18, no. 7, pp. 654–670,
2002.

[5] K. Inoue, Y. Higo, N. Yoshida, E. Choi, S. Kusumoto, K. Kim, W. Park,
and E. Lee, “Experience of Finding Inconsistently-Changed Bugs in
Code Clones of Mobile Software,” in Proc. IWSC. IEEE, 2012, pp.
94–95.

[6] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-related
bugs,” in Proc. ESEC. ACM, 2007, pp. 55–64.

[7] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do Code
Clones Matter?” in Proc. ICSE. IEEE, 2009, pp. 485–495.

[8] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“SourcererCC: Scaling code clone detection to big-code,” in Proc. ICSE,
2016, pp. 1157–1168.

[9] K. Yokoi, E. Choi, N. Yoshida, and K. Inoue, “Investigating vector-based
detection of code clones using bigclonebench,” in Proc. APSEC, 2018,
pp. 699–700.

[10] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study
of code clone genealogies,” in Proc. ESEC/FSE, 2005, pp. 187–195.

[11] H. Honda, S. Tokui, K. Yokoi, E. Choi, N. Yoshida, and K. Inoue,
“CCEvovis: A Clone Evolution Visualization System for Software
Maintenance,” in Proc. ICPC, 2019, pp. 122–125.

[12] R. K. Saha, C. K. Roy, and K. A. Schneider, “gCad: A Near-Miss Clone
Genealogy Extractor to Support Clone Evolution Analysis,” in Proc.
ICSM, 2013, pp. 488–491.

[13] F. Farmahinifarahani, V. Saini, D. Yang, H. Sajnani, and C. V. Lopes,
“On precision of code clone detection tools,” in 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2019, pp. 84–94.

[14] L. Büch and A. Andrzejak, “Learning-based recursive aggregation of
abstract syntax trees for code clone detection,” in 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2019, pp. 95–104.

[15] C. K. Roy and J. R. Cordy, “Benchmarks for software clone detection:
A ten-year retrospective,” in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2018, pp. 26–37.

[16] E. Duala-Ekoko and M. P. Robillard, “Clonetracker: tool support for
code clone management,” in Proceedings of the 30th international
conference on Software engineering. ACM, 2008, pp. 843–846.

[17] G. Zhang, X. Peng, Z. Xing, S. Jiang, H. Wang, and W. Zhao, “Towards
contextual and on-demand code clone management by continuous moni-
toring,” in 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2013, pp. 497–507.

[18] E. Duala-Ekoko and M. P. Robillard, “Clone region descriptors: Repre-
senting and tracking duplication in source code,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 20, no. 1, p. 3,
2010.

[19] J. F. Islam, M. Mondal, and C. K. Roy, “A comparative study of
software bugs in micro-clones and regular code clones,” in 2019 IEEE
26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2019, pp. 73–83.

[20] M. Mondai, C. K. Roy, and K. A. Schneider, “Micro-clones in evolving
software,” in 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2018, pp. 50–
60.

646

