
Comparison and Visualization of
Code Clone Detection Results

Kazuki Matsushima
Graduate School of Information Science and Technology

Osaka University
Osaka, Japan

k-matusm@ist.osaka-u.ac.jp

Katsuro Inoue
Graduate School of Information Science and Technology

Osaka University
Osaka, Japan

inoue@ist.osaka-u.ac.jp

Abstract—Many techniques for code clone detection have been
proposed and implemented as clone detectors in the past. These
studies show that a result of code clone detection changes
drastically for different tools and/or their detection parameters.
Therefore, it is important to apply different clone detectors or
different parameters and to identify the different or common
parts of the obtained detection results. In this paper, we propose
a method for comparison and visualization of detection results
based on the correspondence of clone pairs. It enables developers
to compare detection results by different tools and/or their
detection parameters. Using this method, we will show the
comparison results of an OSS using two code clone detectors,
CCFinderX and NiCad.

Index Terms—Code Clone, Visualization, Software Mainte-
nance

I. INTRODUCTION

Code clones are some fragments of source code which are
identical or similar to each other. One of the factors of the
appearance of code clones is copying and pasting existing code
[2], [7]. For instance, when a cloned code fragment contains a
bug, it is highly likely that all of its cloned fragments contain
the same bug [6] [10] [11]. Developers must check all of them
for the bug and it takes a high cost. Therefore, it has been
pointed out that code clone is one of the factors of increasing
cost of software maintenance [5], [9], [15].

Managing and modifying code clones lead to prevent fault-
proneness of systems and to decrease the number of lines of
code [1]. Therefore, developers can keep high maintainability
of systems. For this reason, it is important that developers
identify and understand information on code clones.

Today, many techniques for automatic code clone detection
have been proposed and implemented as code clone detectors.
However, according to studies conducted by Roy et al. [14]
and Wang et al. [20], a result of code clone detection changes
drastically for different tools and/or their detection parameters.

Therefore, it is important to apply different clone detectors
or different parameters and identify the different or common
part of the obtained detection results. Although code clone
detection results have been compared in view of recall and
precision in these studies, few studies have focused on the
different or common part of obtained detection results.

In this paper, we propose a method for comparison and
visualization of clone detection results based on the corre-

Fig. 1. Example of a scatter plot generated by CCFinderX

spondence of clone pairs. Also, we conducted an experiment
to apply our method to JEdit source code [23] using two code
clone detectors, CCFinderX [22] and NiCad [13] with their
default parameters. From the result of the comparison, 63%
of the clone pairs detected by CCFinderX is not detected by
NiCad. Conversely, 43% of the clone pairs detected by NiCad
is not detected by CCFinderX. In addition, we found a clone
pair which was detected by CCFinderX but not detected by
NiCad contains a bug.

This paper is organized as follows. In Section II, we
introduce background and motivation of this research. Section
III describes a method to compare and visualize code clone de-
tection results. In Section IV, we show a conducted experiment
and discuss its result. Section V discusses on our approach
with other works, and Section VI mentions limitations and
threats to validity. Finally, we summarize this study in Section
VII.

II. BACKGROUND

A. Visualization of a Code Clone Detection Result

One of the popular methods for visualization of a code clone
detection result is the scatter plot (dot plot) [19]. A scatter plot
is a figure which shows the location of code clone in source
code.

Fig. 1 shows an example of a scatter plot generated by
CCFinderX with an associated GUI GemX [19]. Both X and

978-1-7281-6269-0/20/$31.00 c© 2020 IEEE IWSC 2020, London, ON, Canada45

TABLE I
PARAMETERS FOR CCFINDERX

Minimum Clone Length 50
Minimum TKS(Token Kinds) 12
Shaper Level 2 - Soft shaper
P-match Application Use P-match

Y axes in this figure represent the sequence of tokens of source
code, and dots are plotted if tokens on X and Y axes are the
same. By looking at a scatter plot, developers can comprehend
the location and length of code clones in source code easily.

B. Problems on Code Clone Analysis

Analyzing code clone detection results and performing
maintenance activities enable developers to improve the qual-
ity of their software [4]. However, existing studies show
that a code clone detection result changes drastically based
on characteristics of code clone detectors or its detection
parameters [14], [18].

For instance, Bellon et al. [3] compared two code clone
detection results, one by the default parameters and the other
by the optimized parameters of CCFinder [8] with respect to
the recall and precision for the reference set of code clones.
The result showed that the precision of the detection result by
the optimized parameters was three times or higher than the
one by the default parameters. In contrast, there is no change
in the recall.

Wang et al. [20] also compared the six code clone detection
results from different six code clone detectors line by line.
The result showed that the lines reported as cloned by a code
clone detector were not reported as cloned by most other code
clone detectors. Furthermore, the number of lines reported as
cloned by just six code clone detectors was about one-tenth of
the number of lines reported as cloned by one or more code
clone detectors.

In addition to the difference of clone detectors, we experi-
ence the difference of parameter setting for a clone detector.
For example, for Apache Ant [21] 1.9.14 as a target system and
CCFinderX as a code clone detector, we confirm substantial
difference of the code clone detection results by difference
of the parameters. With the parameters shown in Tab. I,
CCFinderX reports 579 clone sets and generated the scatter
plot shown in Fig. 2. Next, we altered the Minimum TKS
(the number of different kinds of token in a detected clone)
parameter from 12 to 20 and detected clones. CCFinderX
reports 154 clone sets and generated the scatter plot shown in
Fig. 3. Comparing these detection results, the drastic reduction
in the number of clone sets reported by CCFinderX was caused
by an increase in the Minimum TKS parameter. The number
of files containing any code clones also decreased.

Thus, developers may miss important code clones by ana-
lyzing only a single code clone detection result. If important
code clones are not included in it, it is difficult for developers
to consider and perform appropriate maintenance activities.

Fig. 2. Detection result of Apache Ant

Fig. 3. Detection result of Apache Ant with the altered parameters

III. PROPOSED METHOD

In this section, we describe an overview of the proposed
method.

As shown in Fig. 4, our proposed method is realized in
the following four steps; (A) Detect code clones, (B) Map
clone pairs, (C) Calculate mismatch rate, (D) Visualize the
difference. We explain these steps in more detail.

A. Step A: Detect Code Clones

First, code clones are detected from a target system. Devel-
opers can configure multiple detectors to use with and multiple
sets of parameters of each detector at the same time.

Here, a fragment f of source code is formally denoted by a
tuple 〈file, begin, end〉 where file represents the name of the
source file containing the fragment, start represents the start
position of the fragment in the file, and end represents the end
position of the fragment in the file. NiCad outputs code-clone
fragments consisting of the name of the source file, the start
line, and the end line. In contrast, CCFinderX outputs code
clone fragments consisting of the ID of the source file, the ID
of the start token, and the ID of end token.

46

Target System

0.5 0.0

0.0 1.0 0.2

1.0

0.2

Mapping
Result

Step C Step D

Step A

Detect
Code Clones

Map
Clone Pairs

Calculate
Mismatch Rate

Visualize
the Difference

Detection Result

Clone DetectorParameters

Clone DetectorParameters

Detection Result

Step A

Detect
Code Clones

Map
Clone Pairs

Fig. 4. Overview of our proposed method

Thus, all code clone detection results obtained are converted
into a standard format where any code fragment consists of
the ID of the source file, the start line number, and the end
line number. Furthermore, we introduce an order relation on
two code fragments f1 and f2 as follows:

f1 < f2 ⇐⇒ (f1.fileId < f2.fileId)∨
(f1.fileId = f2.fileId∧
f1.beginLine < f2.beginLine)∨
(f1.fileId = f2.fileId∧
f1.beginLine = f2.beginLine∧
f1.endLine < f2.endLine)

This means that f1 precedes f2 if the file name of f1
precedes f2, or so if the start line or end line of f1 precedes
f2 when they are in the same file. Thus, we assume that two
code fragments of any single clone pair p satisfy p.f1 < p.f2.
In case that there is a clone pair not satisfying this order, we
swap the order in p.

B. Step B: Map Clone Pairs

Secondly, we map clone pairs between different code clone
detection results.

To identify clone pairs to map, we use the method of
matching two code fragments based on two metrics, ok-value
and good-value, proposed in [3], instead of using a perfect
matching of fragments of each clone pair. This is because
we frequently experience difference of handling of comments,
empty lines, or braces of code clone detectors, and so the
fragments of clone pairs do not match exactly with each other.
Matching based on ok-value and good-value allows mapping
of slightly different clone pairs.

Hereinafter, for any code fragment f , lines(f) denotes a set
of lines contained in f . Also, |lines(f)| denotes the number
of lines in f .

We define two functions overlap and contained used for
measuring ok-value and good-value as follows:

Definitions of overlap and contained� �
For any two code fragments f1 and f2,

overlap(f1, f2) =
|lines(f1) ∩ lines(f2)|
|lines(f1) ∪ lines(f2)|

contained(f1, f2) =
|lines(f1) ∩ lines(f2)|

|lines(f1)|� �
Function overlap measures the ratio of a code fragment
overlapping to another one. Function contained measures the
ratio of a code fragment containing another one.

Now we define functions good and ok as follows:
Definitions of good and ok� �

For any two clone pairs p1 and p2,

good(p1, p2) = min(overlap(p1.f1, p2.f1),

overlap(p1.f2, p2.f2))

ok(p1, p2) = min(max(contained(p1.f1, p2.f1),

contained(p2.f1, p1.f1)),

max(contained(p1.f2, p2.f2),

contained(p2.f2, p1.f2)))� �
Intuitively, good indicates an overlap degree of a clone pair

(not a fragment pair), and ok means its containment degree.

Algorithm 1 Map clone pairs in r into those in r′

for each clone pair q in r′ do
for each clone pair p in r do
ok max⇐ ok(p,mapped[p])
good max⇐ good(p,mapped[p])
ok ⇐ ok(p, q)
good⇐ good(p, q)
if better then
mapped[p]⇐ q

end if
end for

end for

Algorithm 1 is an algorithm for mapping clone pairs from
a code clone detection result r to r′ [3]. However, in our

47

𝑎

𝑓1 𝑓2

𝑏

𝑓1 𝑓2

𝑥

𝑓1 𝑓2

𝑦

𝑓1 𝑓2

𝑟1

𝑟2

𝑜𝑘 = 0.8
𝑔𝑜𝑜𝑑 = 0.8

𝑜𝑘 = 0.8
𝑔𝑜𝑜𝑑 = 0.9

𝑜𝑘 = 0.5
𝑔𝑜𝑜𝑑 = 0.6

𝑜𝑘 = 0.9
𝑔𝑜𝑜𝑑 = 0.9

Black edge: possible mapping
Blue arrow: resulting mapping

Fig. 5. Example of mapping clone pairs

method, we have slightly simplified the condition better from
the original one. The definition of the condition better in our
method is as follows:

better =(good ≥ t ∧ good > good max)∨
(ok ≥ t ∧ ok > ok max)

We use 0.7 as a threshold t in the condition better, which is
the same as [3].

Now mapping Map(r1, r2) between two code clone detec-
tion results r1 and r2 is determined by the following three
steps.

(a) Map clone pairs from r1 to r2 by Algorithm 1.
(b) Map clone pairs from r2 to r1 by Algorithm 1.
(c) Calculate the union of the mapping results by the step

(a) and step (b).

Fig. 5 is an example of mapping clone pairs. A code clone
detection result r1 includes two clone pairs a and b. Also,
another detection result r2 includes two clone pairs x and y.

First, clone pairs are mapped from r1 to r2 by following
step (a). By ok-value and good-value, a is mapped to x and b
is mapped to y.

Then, clone pairs are mapped from r2 to r1 by following
step (b). By ok-value and good-value, x is mapped to b and y
is mapped to b.

Finally, calculate the union of correspondence of clone pairs
obtained with step (a) and step (b) by following step (c). In
this step, a is mapped to x, b is mapped to x and y, x is
mapped to a and b, and y is mapped to b.

C. Step C: Calculate the Mismatch Rate

Next, mismatch rate is calculated. Mismatch rate for results
r and r′ represents the difference of r′ from r. The definition
is as follows:

(c)

(b)

(d)

(a)

Fig. 6. Example of a scatter plot generated through our proposed method

Definition of the mismatch rate of r′ for r� �
Pall(r, s1, s2) is a set of clone pairs between two source
files s1 and s2, which generate code clone detection result
r.
Pmapped(r, r

′, s1, s2) is a set of clone pairs which are in-
cluded in r′ and are mapped from r into r′ by Map(r, r′).
When comparing r and r′ based on r, mismatch rate
m(r, r′, s1, s2) is

m(r, r′, s1, s2) = 1− |Pmapped(r, r
′, s1, s2)|

|Pall(r, s1, s2)|� �
The mismatch rate is calculated for each pair of source files.

D. Step D: Visualize the Difference

Finally, the difference between two code clone detection
results is visualized by colorizing each point depending on
its mismatch rate. Here r and r′ are code clone detection
results and s1 and s2 are target source files, and the rule of
colorization at the point (s1, s2) is as follows:

1) When Pall(r, s1, s2) equals to zero (meaning no clones
in r), the point is white (as shown in Fig. 6 (a).

2) When m(r, r′, s1, s2) equals to zero (meaning perfect
matching), the point is green (b).

3) The other cases, the higher mismatch rate is the redder
the point is. Conversely, the lower mismatch rate is the
yellower the point is (c, d).

By colorizing each point depending on its mismatch rate,
developers can comprehend the difference between code clone
detection results intuitively.

IV. EXPERIMENT

In this section, we show the comparison results of an OSS
using two code clone detectors and discuss it.

We used an open-source software JEdit [23] Revision
r24577 as a target system. Some existing studies targeted JEdit
as well [5] [11] [20]. The size of the target is 113,826 Loc
in Java. We also used two code clone detectors, NiCad and
CCFinderX as code clone detectors. We have used default

48

TABLE II
PARAMETERS FOR CCFINDERX

Minimum Clone Length 50
Minimum TKS (Token Kinds) 12

TABLE III
PARAMETERS FOR NICAD

granularity blocks rename blind
threshold 0.3 filter none
minsize 10 abstract none
maxsize 2,500 normalize none
transform none

parameters of NiCad and CCFinderX for this experiment,
which are shown in Tab. II and III.

We have compared two code clone detection results with
our proposed method.

A. Overview

First, we look over two code clone detection results before
comparison. The number of the detected clone pairs and
execution time on a workstation with Xeon E5-1620 3.60GHz
4 cores CPU and 32 GB memory are presented in Tab. IV.

We show the scatter plot of the detection result of CCFind-
erX generated by GemX in Fig. 7. Scatter plot from the
NiCad’s detection result cannot be presented here because
GemX does not support NiCad’s output format.

Now we compare these two detection results. It took about
10 milliseconds for the mapping clone pairs (Step B), 4
milliseconds for calculating mismatch rate (Step C), and 0.01
millisecond for visualizing the difference (Step D).

Fig. 8 shows the scatter plot of the comparison result based
on the code clone detection result of NiCad. Also, Fig. 9 shows
the scatter plot of the comparison result based on the one of
CCFinderX. CCFinderX reports 2,771 clone pairs and 63% of
them are not mapped to ones reported by NiCad. On the other

Fig. 7. Scatter plot of the detection result of CCFinderX generated by GemX

TABLE IV
NUMBER OF DETECTED CLONE PAIRS AND EXECUTION TIME

Detector # Clone Pairs Detection Exe. Time (sec.)
CCFinderX 2,771 72
NiCad 2,518 28

Fig. 8. Scatter plot of the comparison result based on the detection result of
NiCad

hand, NiCad reports 2,518 clone pairs and 43% of them are
not mapped to ones reported by CCFinderX.

As you can see and identify easily, both figures contains
many red points meaning existence of high rate of mismatch-
ing, and also there are smaller number of green points showing
complete matching. This means that, although the number of
the detected clone pairs are similar around 25 hundreds, there
are a lot of clone pairs in both results, which cannot be mapped

Fig. 9. Scatter plot of the comparison result based on the detection result of
CCFinderX

49

210 String checkMarginsMessage = pageSetupPanel.recalculate();
211 if (checkMarginsMessage != null)
212 {
213 JOptionPane.showMessageDialog(

230 PageRanges pr = (PageRanges)PrinterDialog.this.attributes.get(PageRanges.class);
231 try
232
233
234 {
235 pr = mergeRanges(pr);
236 PrinterDialog.this.attributes.add(pr);
237 }
238 catch (PrintException e)
239 {
240 e.printStackTrace();
241 JOptionPane.showMessageDialog(PrinterDialog.this, jEdit.getProperty("print-error.message", new
 String[]{e.getMessage()}), jEdit.getProperty("print-error.title"),JOptionPane.ERROR_MESSAGE);
242 return;
243 }

Fig. 10. Buggy code fragment included in JEdit

Fig. 11. Partially enlarged figure within the blue box Fig. 8

each other are needed to be analyzed further.

B. Details of the Comparison Result

Next, we investigated the comparison result focusing on
small areas with red points.

Fig. 11 extends the blue square area of Fig.
8. The black-edged point located in the center of
Fig. 11 represents the mismatch rate at the point
(PrinterDialog.java, PrinterDialog.java) and its color
is green. The meaning of this is that all of clone pairs which
are composed of two code fragments in PrinterDialog.java
detected by NiCad are also detected by CCFinderX. At this
point, NiCad reported one clone pair and it was also reported
by CCFinderX

Fig. 12 extends the blue square area of Fig. 9.
The black-edged point located in the center of Fig.
12 also represents the mismatch rate at the point
(PrinterDialog.java, PrinterDialog.java) and its color is

Fig. 12. Partially enlarged figure within the blue box in Fig. 9

red. The meaning of this is that almost all clone pairs which
are composed of two code fragments in PrinterDialog.java
detected by CCFinderX are not detected by NiCad. At this
point, CCFinderX reported 20 clone pairs and only one of
them was also reported by NiCad.

By investigating remaining 19 clone pairs, we have found
that one of them contained a buggy code fragment as shown in
Fig. 10. Due to the reuse of variables and the lack of a check
for a null parameter, the code fragment causes NullPointerEx-
ception. Actually, the code fragment and its code clone were
fixed simultaneously at Revision r24578 which is the next to
the target revision in this experiment.

Through this investigation, we have recognized importance
of analyzing code clone differences in detail.

V. RELATED WORKS

As presented in Section II, Bellon et al. [3] have investi-
gated the results of various code clone detectors. They have

50

introduced the mapping algorithm we have used here, and
calculated the recall and precision values for the reference
set, which would help to evaluate the detectors quantitatively.
We have taken a similar approach, but our goal is to identify
difference of code-clone pairs for different detectors or param-
eters, and visualize the difference for intuitive understanding
of the risk of the detection results.

Wang et al. [20] presented a search-based approach to find a
better configuration of clone detection techniques. They have
developed a system named EvaClone, and have performed a
large-scale experiment with 6 detectors and 8 subject systems.
Their objectives are also quantitative evaluation of detection
results and improvement of configuration with respect to
the fitness function. On the other hand, we are interested
in intuitive understanding of the difference of the detection
results at the levels of file to file or clone to clone mapping
and matching.

Stephan et al. [16] presented methods for assessment of
model clone detectors and techniques. They have created rules
which convert a tool’s native output format into a normalized
format as we did and their rules are for models. In contrast, our
rules are for codes and intended for visualization of detection
results.

Svajlenko et al. [17] evaluated the recall of 11 clone
detectors using 4 benchmark frameworks. They have extended
the definition of the recalls of Murakami’s type 3 aware one
[12], and applied it to those benchmarks, finding anomalies
in Bellon’s benchmark [3]. These suggest important improve-
ment of our mapping method based on the original Bellon’s
approach, and we will further elaborate more accurate and
practical mapping as future studies.

VI. LIMITATION AND THREATS TO VALIDITY

In the experiment, we have conducted a very limited anal-
ysis. We have found a bug-prone clone in a red point, but
further investigate is needed for interpreting the meaning of
the red points. Also, We need to apply our approach with
various clone detectors, parameters, and targets, to understand
the risks of the red, yellow, and other points.

We have proposed the mismatch rate based on one of two
clone detection results. This approach generates two different
scatter plots of the mismatching rate as shown in Figure
8 and 9. Since the interpretation of two plots might not
be straightforward, we would need to consider a method of
merging them.

We have used 0.7 as threshold value t, but further investi-
gation is needed for a better value.

VII. CONCLUSIONS

In this paper, we have presented a method for comparison
and visualization of different code clone detection results,
focusing on the mapping of clone pairs. Developers can
identify different or common parts of the obtained clone
detection results intuitively with scatter plots generated by
our method. We have conducted an experiment to apply our
method to JEdit using CCFinderX and NiCad. From the result

of the comparison, we have confirmed that a large number of
clone pairs reported by one tool is not reported by the other
one.

We will extend the comparison method to allow more than
two clone detection results for different tools or parameters.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber JP18H04094.

REFERENCES

[1] L. Barbour, F. Khomh, and Y. Zou, ”An empirical study of faults in
late propagation clone genealogies,” Journal of Software: Evolution and
Process, vol. 25, pp. 1139-1165, 2013.

[2] I. D. Baxter, A. Yahin, L. Moura, M Sant’Anna, and L. Bier, ”Clone
detection using abstract syntax trees,” in Proc. ICSM 1998, pp. 368-377,
1998.

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, ”Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
Software Engineering, vol. 33, No. 9, pp. 577-591, 2007.

[4] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, ”Refactoring support
based on code clone analysis,” Product Focused Software Process
Improvement, pp. 220-233, 2004.

[5] J. F. Islam, M. Mondal, C. K. Roy, and K. A. Schneider, ”A comparative
study of software bugs in clone and non-clone code,” in Proc. SEKE
2017, pp. 436-443, 2017.

[6] P. Jablonski and D. Hou, ”CReN: a tool for tracking copy-and-paste
code clones and renaming identifiers consistently in the IDE,” in Proc.
ETX 2007, pp. 16-20, 2007.

[7] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, ”Do code
clones matter?,” in Proc. ICSE 2009, pp. 485-495, 2009.

[8] T. Kamiya, S. Kusumoto, and K. Inoue, ”CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, pp. 654–670, 2002.

[9] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hudepohl,
”Assessing the benefits of incorporating function clone detection in a
development process,” in Proc. ICSM 1997, pp. 314-321, 1997.

[10] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, ”CP-Miner: A tool for finding
copy-paste and related bugs in operating system code,” in Proc. OSDI
2004, vol. 6, pp. 289-302, 2004.

[11] M. Mondal, C. K. Roy, and K. A. Schneider, ”Bug propagation through
code cloning: An empirical study,” in Proc. ICSME 2017, pp. 227-237,
2017.

[12] H. Murakami, Y. Higo, and S. Kusumoto, “A dataset of clone references
with gaps,” in Proc. MSR 2014, pp. 412–415, 2014.

[13] C. K. Roy and J. R. Cordy, ”NICAD: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in Proc. ICPC 2008, pp. 172-181, 2008.

[14] C. K. Roy, J. R. Cordy, and R. Koschke, ”Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, No. 7, pp. 470–495, 2009.

[15] N. Saini, S. Singh, and Suman, ”Code clones: Detection and manage-
ment,” Procedia Computer Science, vol. 132, pp. 718-727, 2018.

[16] M. Stephan and J. R. Cordy, ”MuMonDE: A framework for evaluating
model clone detectors using model mutation analysis,” Software Testing
Verification and Reliability, vol. 21, no. 1-2, p. e1669, 2018.

[17] J. Svajlenko and C. K. Roy, ”Evaluating modern clone detection tools”,
in Proc. ICSME 2014, pp. 321-330, 2014.

[18] J. Svajlenko and C. K. Roy, ”Evaluating clone detection tools with
BigCloneBench,” in Proc. ICSME 2015, pp. 131-140, 2015.

[19] Y. Ueda, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, ”Gemini:
Code clone analysis tool,” in Proc. ISESE 2002, pp. 31-32, 2002.

[20] T. Wang, M. Harman, Y. Jia, and J. Krinke, ”Searching for better config-
urations: a rigorous approach to clone evaluation,” in Proc. ESEC/FSE
2013, pp. 455-465, 2013.

[21] Apache Ant. https://ant.apache.org/.
[22] CCFinderX. http://www.ccfinder.net/ccfinderxos.html.
[23] JEdit. http://www.jedit.org/.

51

