
Blanker: A Refactor-Oriented Cloned Source Code
Normalizer

Davide Pizzolotto
Osaka University, Japan

davidepi@ist.osaka-u.ac.jp

Katsuro Inoue
Osaka University, Japan
inoue@ist.osaka-u.ac.jp

Abstract—Refactoring is widely practiced by developers and
has become a key factor in order to increase the maintainability
of software. However, code clones pose a threat in any refactor
process due to the fact that a developer should edit identical
portions of code more than once. Despite the numerous researches
in this topic, most of the results are focused on discovering type-3
and type-4 clones, that require an higher effort to be refactored
and removed.

In this paper we present our tool, Blanker, that searches and
unifies equivalent statements available in the language before
feeding the source to an existing code clone detector limited to
type-2 clones. This step acts as a normalization step and produces
refactorable results without the error introduced by potentially
unrelated added statements (like in type-3 clones), that would be
unsuitable for refactoring purposes, and with added flexibility
compared to checking for identical code portions (like in type-2
clones).

We used NiCad to detect clones before and after our normal-
ization step and found up to 10% more type-2 clones after our
normalization, all of them being refactor candidates.

Index Terms—Semantic Similarity Detection, Code Normal-
ization, Source Transformation, Semantically Normalized Clones

I. INTRODUCTION

Refactoring is the process of changing the code struc-
ture without changing its behavior. One of the most widely
performed refactoring activity is the Extract Method, that
simplifies methods by moving existing portions of code into
a new method that can be reused [1]. This allows a developer
to resolve a detected code clone by extracting it into a method
and reusing it different times. For this reason, code clone
detectors invest an important role in this scenario, given their
ability to quickly identify a code portion that may be a
refactoring candidate.

However, not always the output of a code clone detector
can be used. In fact, a code clone detector usually categorize
clones into four categories: type-1 which are portions of
code completely identical, type-2 which are portions identical
except for the variable naming, type-3 almost identical except
for a few statements and type-4 which are different portions
of code but with the same behavior [2]. Considering these
categories, only the type-1 and type-2 can be easily and, almost
automatically, refactored. Instead, type-3 clones need to be
manually checked and require an effort by the programmer
that needs to check if the extra statements can be safely
removed or not. This is true also for type-4 clones that require

even more work by the programmer, in addition to being
extremely difficult to detect [2]. Our tool aims at normalizing
some features provided by the programming language without
changing the semantic, so a clone that would normally be
categorized as a type-3 or type-4 can be categorized as type-2
and thus easily refactored. As an example, Figure 1 shows a
snippet taken from the class XYBlockRenderer.java1 of
JFreeChart: we can note the missing else keyword on the
transformed version, that has been removed for consistency
while retaining the same semantic.

This study follows the work of Ragkhitwetsagul and Krinke
that showed how compiling and decompiling a source file can
greatly increase the amount of detected clones, given that
the compilation acts as a sort of “normalization step” [3].
However, the compilation/decompilation routine is not always
applicable and can introduce errors in languages like C or
could lead to false positives also in the Java language, as the
aforementioned authors already discovered (i.e. by replicating
some methods of the parent class of an inner class). To solve
the problem we propose Blanker, that aims at replacing this
compilation/decompilation routine with a plain code trans-
formation. We replicated the setup and analyzed the various
discoveries of Ragkhitwetsagul et al., then we manually im-
plemented the transformations performed by the compilation
step. Despite working with Java, in order to replicate the
original study, we also ensured that our tool can perform the
transformation on C source files.

Throughout the paper we will refer to easy-to-refactor
clones. With this name we intend type-2 clones that can
be solved by a simple Extract Method process, instead of
requiring an in-depth analysis of the extra statements like the
type-3 clones.

To evaluate Blanker we replicated their exact same scenario
by using the same three open source projects, namely JUnit,
JFreeChart and Apache Tomcat, and NiCad [4] as code clone
detector. We demonstrated that despite our tool missing a small
amount of clones, compared to the compilation/decompilation
approach, it has virtually no false positives and provides the
added flexibility of being applicable to languages where the
decompilation step may introduce errors.

In the reimained of the paper Section II shows our approach
at implementing Blanker along with the engineering aspects

1org/jfree/chart/renderer/xy/XYBlockRenderer.java



(a) Original Code (b) Transformed Code

Fig. 1. Example of transformation taken from JFreeChart

and Section III describes the evaluation of the tool. Section IV
describes related works and Section V closes the paper.

II. APPROACH

Blanker follows a linear workflow depicted in Figure 2 and
composed by the following phases:
Parse: The original source file is parsed and the position of

every semantic structure is recorded.
Categorize: The parsing result is analyzed in order to find

possible refactoring candidates.
Rewrite The possible normalizations highlighted in the pre-

vious step are applied to a new file.
Detect: The code clone detector is applied to the rewritten

file.
Remap: Possible discrepancies between the transformed file

and the original file are addressed in this step.
The following subsections explains every component in detail.
However, in order to better understand the following phases,
it is worth precising that we built Blanker upon the results
of Ragkhitwetsagul et al. [3]. In their previous results they
showed that most of the normalizations performed by the
compilation/decompilation process are applied to if-else state-
ments, so, naturally, throughout our entire analysis, we focused
greatly on those structures.

A. Parse

In order to transform a source code file, the first step
requires identifying the semantic structures composing it. We
built our tool aiming at negligible speed, so a single-pass
token parser using flex2 as lexer and bison3 as parser was
built. The great challenge imposed by this phase was the
creation of a grammar expressive enough to recognize the
required structures, namely if and else blocks, without
having to implement the entire java grammar. In order to
solve this problem we chose each semicolon as a statement
representation and recorded the position of if, else and
return keywords only. Additionally we used curly braces
to represent list of statements and let the lexer consume the
condition following every if keyword. This grammar assumes
the input file being a valid java file, a reasonable assumption
for our tool, and works fine without modifications also for the
C language, while avoiding having to deal with things such as
parentheses, assignments and operators.

2https://github.com/westes/flex
3https://www.gnu.org/software/bison/

B. Categorize

This phase is used to analyze the parsed data and discover
actual structures that could be refactored. After analyzing the
results of Ragkhitwetsagul et al. and replicating their experi-
ments we determined that the most prominent normalizations
performed by the compiler/decompiler combo were:

1) removal of else keyword after an if block terminating
with a return. An example of this can be seen in Fig-
ure 3 where the else keyword can be omitted and the same
logic is kept. It is worth noting that this particular check
is also part of LLVM’s coding standard recommendations
under the name of readability-else-after-return

2) Returning an equality or inequality between two variables
is transformed into an if block with the equality as the
condition and return true or return false as body

3) Returning a conjunctive boolean formula is splitted into
an “explicit short circuit evaluation”. In order words,
every variable is checked by itself in an if block and if the
variable does not hold, false is returned. An example of
the transformed code for return a && b; is shown
in Figure 4.

4) final keywords lacking consistency. Sometimes a vari-
able could be final but this keyword is not present, but it
is present in a cloned snippet somewhere else.

Another common normalization that, however, we did not
address was declaration and assignment of a variable in a
single line or in different lines, possibly interleaved by other
statements.

C. Rewrite

This phase is the actual transformation of the structure
described in Section II-B. A key requirement of this phase
was keeping as much as possible the file similar to the original
one, the reason being explained in Section II-D. In order to
accomplish this, we exploited several facts: firstly the whites-
paces and newlines being meaningless in both C and Java.
Moreover, these are ignored also by the code clone detector of
our choice. Given this we could easily transform categories 1)
and 4) described in Section II-B just by patching the redundant
parts with whitespaces. Additionally we exploited the fact that
also newlines are meaningless in both C and Java, allowing
us to write multiple statements in one line. Categories 2) and
3) in Section II-B requires replacing a single statement with
multiple ones, and this language feature allows us to maintain



Blanker NiCad

Blanker

Original
Source

parse

remap

categorize rewrite
Transformed

Source detect
Clone
Report

Fig. 2. Overall structure of Blanker

if (r == null) {
return null;

} else {
return new Range(...);

}

Fig. 3. Categorization 1). In this case the else keyword is redundant

if (!a) {
return false;

if (!b) {
return false;

}
return true;

Fig. 4. Categorization 3). This could be written as return a && b;

a one to one mapping between the original cloned lines and
the transformed ones.

D. Detect and Remap

At this point, the Detect phase applies the code clone detec-
tor to our transformed files. In our implementation, however,
the normalized files are not overwritten, so the report generated
by the code clone detector will present wrong paths. This is a
major problem nonetheless, given that the entire normalization
process should be invisible to the user, and thus the remap
phase is used to map every reference of the normalized files
in the code clone detector report back to the original files. This
also gives an indication why in Section II-C was important to
keep the file as similar as possible to the original one: replacing
a statement with one spanning more lines or less lines means
having to remap also every line reported by the code clone
detector.

III. EVALUATION

Being this study based on the results of the paper
Ragkhitwetsagul et al., we replicated their evaluation setup.
The same three open source project were considered for
this evaluation, namely JUnit v4.13, JFreeChart v1.5.0 and
Apache Tomcat v9.0. These projects are listed ordered by size,
spanning from 9.7k LoC of JUnit to 241.9k LoC of Tomcat.

The code clone detector used for this evaluation was NiCad
v5.2. Our tool can be used with any code clone detector, but
we decided to use NiCad in order to compare with the previous
study. Studying the effect on other code clone detectors,
especially the ones not using a token-based approach, will be
considered as future work. Unlike the previous study, however,
we did not analyze type-3 clones: our goal is providing an
easy-to-refactor clone, thus limiting the evaluation to type-1
and type-2. The type-3 clones with the noise generated by
the additional statements are considered as out-of-scope for
our purpose. The configurations used are thus the default of
NiCad named type1 and type2c, the latter being type 2 clones
with consistent naming.

The Research Questions we wanted to answer are the
following, similar to the ones of the original study:

• RQ1agreement: How many clone pairs are reported by both
approaches? How many are exclusive to the plain file and
to the normalized file?

• RQ2accuracy: How is the detection performance of our
tool compared to the compilation/decompilation approach
presented in the study of Ragkhitwetsagul et al.?

Despite not conducting a real performance study, we also
want to highlight that the processing time impact our tool is
negligible: in the three project we measured this time to be,
on average, half a millisecond per file, with every file being
independent of the others thus enabling multithread process-
ing. Also for big projects this translates in a normalization
step order of magnitude faster than the clone detection process
which usually requires several seconds.

A. Agreement

In order to answer RQ1 we ran NiCad with both type1
and type2c configurations on the testing repositories, firstly
without any normalization and then with normalizations ap-
plied. Table I depicts the results for type2c, despite, by nature,
these vary greatly depending on the considered project and
the coding style. type1 clones are not reported given that the
results are absolutely identical. This is expected, given that
is really unlikely that an user writes some code semantically
different and keeps the same variable naming. By analyzing
the type2c results instead, we can notice that the normalized
version reports more clones. We manually analyzed the nor-
malized clones reported and confirmed that they are a superset



TABLE I
COMPARISON OF THE AMOUNT OF DETECTED CLONES BY NICAD

WITHOUT AND WITH OUR NORMALIZATION APPLIED

Project Original clones Normalized clones Variation

JUnit 6 6 +0.0%
JFreeChart 373 397 +6.43%

Apache Tomcat 242 275 +13.64%

of the non-normalized version. Every clone pair reported is
actually refactorable, however, despite this, we have to precise
that the category 4) explained in Section II-B could in practice
produce unrefactorable results, given that we simply removed
every final keyword instead of performing a full constness
propagation analysis to ensure semantic preservation. How-
ever, this problem was not highlighted in the three projects
and requires further analyses. We can thus answer RQ1 as
follows:

Processing the files with Blanker helps the code clone
detector to find up to 10% more clones. In the case
studies no false positives and no false negatives were
detected compared to the original source detection.

B. Accuracy

In order to answer RQ2 we also ran the compilation/de-
compilation method and compared the original and normalized
clones against that. Our normalized method provides no false
positives, but, although not providing false negatives compared
to the original source code, the compilation/decompilation
provided some clone reports that both the original and our
normalized version failed to detect. In the case of JFreeChart
these comprise assignment and declaration of variables inter-
leaved by a different amounts of statements, swapped if-else
branches and a loop converted from while to for (done by
the decompiler normalization step). Although each of these
appearing only once, they are a clear sign that in order to
discover even more clones a flow analysis may be required.
On the other hand, the compilation/decompilation suffers from
false positives, in particular related to the duplication of inner
class methods that happens during compile time and not in the
code written by the user. We can thus answer RQ2 as follows:

Our tool provides virtually no false positives at the cost
of missing some clones. The compilation/decompilation
approach suffers both false positives and negatives but
provides a better spectrum of results if compared in
conjunction with the original source code

IV. RELATED WORKS

Clone detection is an active area in Software Engineer-
ing and several approaches have been proposed, ranging
from token-based techniques such as NiCad [4], Sourcer-
erCC [5] and CCFinder [6] to structure analysis tools such
as Deckard [7].

Multiple studies have been conducted on the compiled
version of a software: Selim et al. worked with an Intermediate

Representation of Java (Jimple) by adapting a token based
clone detector [8], Kononenko et al. used another adaptation
to work at bytecode level [9], Davis and Godfrey analized the
compiled assembly of a program using string matching [10].

Finally, Ragkhitwetsagul and Krinke used the compilation
to achieve normalization and decompilation to avoid adapting
existing clone detectors to work at a lower level [3].

V. CONCLUSION

In this paper we presented Blanker, a code normalization
tool useful to change some structures in order to detect more
easy-to-refactor clones. Blanker proved to be effective at
presenting a correct superset of type-2 clones, including clones
that resemble type-2 clones but are classified as type-3 due to
some extra keywords. This can thus be used as a better report
for refactorable type-2 clones.

Our tool in fact, provides a type-2 report with no drawbacks,
false positives or false negatives compared to running a code
clone detector on the original files. If a low false negative ratio
is required, the compilation/decompilation approach could
provide more results due to the flow analysis performed by
the compiler, even though a much higher effort is required to
actually intersect and analyze the results.

As future work we plan to conduct an extensive analysis
on the various categorization performed, and implement extra
ones in addition to flow analysis.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Num-
ber 18H04094.

REFERENCES

[1] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[2] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of computer programming, vol. 74, no. 7, pp. 470–495, 2009.

[3] C. Ragkhitwetsagul and J. Krinke, “Using compilation/decompilation to
enhance clone detection,” in 2017 IEEE 11th International Workshop on
Software Clones (IWSC). IEEE, 2017, pp. 1–7.

[4] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in 2008 16th iEEE international conference on program comprehension.
IEEE, 2008, pp. 172–181.

[5] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcer-
ercc: Scaling code clone detection to big-code,” in 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE). IEEE, 2016,
pp. 1157–1168.

[6] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[7] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the 29th
international conference on Software Engineering. IEEE Computer
Society, 2007, pp. 96–105.

[8] G. M. Selim, K. C. Foo, and Y. Zou, “Enhancing source-based clone
detection using intermediate representation,” in 2010 17th Working
Conference on Reverse Engineering. IEEE, 2010, pp. 227–236.

[9] O. Kononenko, C. Zhang, and M. W. Godfrey, “Compiling clones:
What happens?” in 2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 2014, pp. 481–485.

[10] I. J. Davis and M. W. Godfrey, “From whence it came: Detecting source
code clones by analyzing assembler,” in 2010 17th Working Conference
on Reverse Engineering. IEEE, 2010, pp. 242–246.


