(P05) 深層学習を用いたソースコード分類手法の比較調査

藤原裕士 崔 恩瀞 吉田則裕 井上克郎 大阪大学 2京都工芸繊維大学 3名古屋大学

研究背景:ソースコード分類

- 既存ソースコードがあらかじめ分類されている 機能クラスに、入力されたソースコードを自動で分類 する技術
- 既存ソースコードの検索や再利用の効率化に貢献

研究背景:広く利用されているニューラルネットワーク

- 順伝播型ニューラルネットワーク (FNN)
 - ▶ ループ構造がない標準的なネットワーク
 - ▶ ソースコードのベクトルを学習させることが 可能[1][2]
- 再帰型ニューラルネットワーク (LSTM)
 - ▶ 入力の値だけでなく入力の順番も出力に影響 するネットワーク
 - ▶ トークン列などを学習させることが可能[3][4]
- グラフ畳み込みネットワーク (GCN)
 - ▶ グラフの特徴抽出が可能なネットワーク
 - ▶ 抽象構文木などを学習させることが可能[5]

様々なニューラルネットワークを組み合わせたり, 複数のソースコード表現を学習させる場合もある[3]~[5]

研究動機

<u>どのニューラルネットワークやソースコード表現の</u> 組み合わせが高精度なソースコード分類の実現に 有効か明らかでない

- 無駄な学習に計算資源を利用するのは良くない
- 分類精度に良い影響を与えるニューラルネットワークや ソースコード表現を学習に利用すべき

調査概要:深層学習を用いたソースコード分類手法の比較

RQ:高精度なソースコード分類を実現できる ニューラルネットワークとソースコード表現の 組み合わせは何か

<u>ニューラルネットワークとソースコード表現を組み合わせ、</u> 6種類のソースコード分類手法を作成し、分類精度を比較

(P05) 深層学習を用いたソースコード分類手法の比較調査

データセット:BigCloneBench[6]

- 各メソッドが果たす機能に基づき、43種類の機能クラスにメソッドが分類されているデータセット
- 本研究では 学習データ:評価データ=8:2

評価尺度:Top-k

メソッドに対して機能クラス毎の分類確率を計算し、 その確率が高いクラス順にランキングにしたとき、 正解クラスがk位以内に含まれる割合

LSTMを用いた手法は 平均的に高い分類精度

調査結果

分類手法	Top-1	Тор-3	Тор-5	Top-10
FNN+Token	0.575	0.766	0.830	0.911
FNN+AST	0.644	0.803	0.853	0.922
LSTM+Token	0.943	0.980	0.985	0.991
LSTM+AST	0.939	0.977	0.981	0.991
GCN+Token	0.772	0.927	0.967	0.989
GCN+AST	0.803	0.948	0.972	0.993

RQへの回答:LSTMとトークン列の組み合わせが、最も高い精度のソースコード分類を実現できる LSTMとASTの組み合わせやGCNとASTの組み合わせも、比較的高い精度のソースコード分類を実現できる

(P05) 深層学習を用いたソースコード分類手法の比較調査

今後の課題

- 他に比較対象として適当なニューラルネットワークやソースコード表現があれば比較を行いたい
 - ▶ 他にソースコード分類に適用できそうなニューラルネットワークがあるか
 - ▶ 生成にコンパイル不要なソースコード表現があるか(BigCloneBenchのメソッドのコンパイルが難しいため)
- 他のデータセットを用いて本調査結果と同様の傾向があるか調べたい
 - ▶ LSTM+TokenがBigCloneBenchに適合しているだけの可能性があるため
 - ▶ コンパイル可能なデータセットを用意できれば、コンパイルが必要なソースコード表現について調査できる

謝辞

本研究は JSPS 科研費 18H04094, JP19K20240, JP20K11745 の助成を受けたものです。

参考文献

- [1] V. Saini et al., "Oreo: Detection of clones in the twilight zone", Proc. ESEC/FSE 2018.
- [2] 藤原ら, "順伝播型ニューラルネットワークを用いた類似コードブロック検索の試み",SES2018.
- [3] J. Zhang et al., "A Novel Neural Source Code Representation based on Abstrace Syntax Tree", Proc. ICSE 2019.
- [4] M. White et al., "Deep learning code fragments for code clone detection", Proc. ASE 2016.
- [5] W. Hua et al., "FCCA: Hybrid Code Representation for Functional Clone Detection Using Attention Networks", IEEE Trans. Rel. pp.1-15, 2020.
- [6] J. Svajlenko et al., "Towards a big data curated benchmark of inter-project code clones", Proc. ICSME 2014.