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Abstract—The generalizability of Deep Learning (DL) models
is a significant challenge, as poor generalizability indicates
that the model has overfitted to the training data and is not
able to generalize to new data. Despite numerous DL-based
clone detectors emerging in recent years, their generalizability
has not been thoroughly assessed. This study investigates the
generalizability of three DL-based clone detectors (CCLearner,
ASTNN, and CodeBERT) by comparing their detection accuracy
on different training and testing clone benchmarks. The results
show that all three clone detectors do not generalize well to new
data and there is a strong relationship between clone types and
generalizability for CCLearner and ASTNN.

Index Terms—code clone, deep learning, generalizability

I. INTRODUCTION

Code clones (in short, clones) are similar or identical
code fragments in the source code. Generally, they can be
categorized into the following four types based on different
levels of similarity [1]. Type-1 (T1) clones are identical
code fragments except for variations in whitespace, layout,
and comments. Type-2 (T2) clones are syntactically identical
fragments except for variations in identifiers, literals, types,
whitespace, layout, and comments. Type-3 (T3) clones are
copied fragments with further modifications such as changed,
added, or removed statements. Finally, Type-4 (T4) clones are
two or more code fragments that perform the same computa-
tion but are implemented by different syntactic variants. The
detection of clones plays a significant role in reducing the
cost of software maintenance. To achieve this, various clone
detectors based on their definitions of similarities have been
proposed [1]. Traditional clone detectors, such as CCFinder
[2], identify T1 and T2 clones with high accuracy. Meanwhile,
they struggle to accurately identify T3 and T4 clones.

In recent years, Deep Learning (DL) has become the pre-
dominant approach for various software engineering tasks,
including clone detection. DL-based clone detectors use DL
models to learn the inherent similarities of clones in clone
benchmarks [3]. These detectors are capable of accurately de-
tecting all clone types, including T3 and T4 clones. However, a
significant challenge in these detectors is their generalizability
[4].

Poor generalizability means that the model has overfitted
the training data and is not able to generalize to new, unseen
data. If the generalizability of DL-based clone detectors is
low, these detectors have a high possibility of inaccurately

identifying clones in a software project that differ from the
ones in the training dataset. This can negatively impact soft-
ware maintenance, as incorrect information about clones may
lead to wrong decisions about code refactoring or removal.
The primary objective of DL-based clone detectors is to
accurately detect previously unseen clones during training. Liu
et al. studied the generalizability of current DL-based clone
detectors and found that these detectors cannot generalize well
[5]. However, their findings may have been impacted by the
use of a single dataset for both training and testing, as this
could have resulted in the presence of similar functionalities
in both the training and testing benchmarks, thereby affecting
the validity of their results.

To mitigate these problems, in this paper, we investigated
the generalizability of DL-based clone detectors to answer the
following two research questions:

RQ1. How accurate are DL-based clone detectors when
different benchmarks are used for training and test-
ing?

RQ2. Is there any relationship between clone types and
detection accuracy when different benchmarks are
used for training and testing?

In this paper, we compared the detection accuracy of DL-based
clone detectors namely, CCLearner [6], ASTNN [7], and
CodeBERT [8] using different clone benchmarks for training
and testing. The results indicate that (1) the generalizability
of CCLearner, ASTNN, and CodeBERT are not high, and
(2) there is a strong relationship between the clone types and
the generalizability for CCLearner and ASTNN.

II. CLONE DETECTION

A. Clone Benchmarks

Several clone benchmarks have been generated and used to
evaluate the accuracy of clone detectors [3]. BigCloneBench
(BCB) [9], which has several versions1, is a widely used clone
benchmark that was built by mining clones of frequently im-
plemented functionalities from Open Source Software (OSS)
projects. Furthermore, it categorizes T3 and T4 clones accord-
ing to their syntactic similarity as follows: Very-strongly type-
3 (VST3) clones that have syntactic similarity [90% 100%),
Strongly Type-3 (ST3) clones when similarity is in [70%-

1https://github.com/clonebench/BigCloneBench



90%), Moderately Type-3 (MT3) clones when similarity is in
[50% - 70%), and finally, Weakly Type-3/Type-4 (WT3/T4)
clones when similarity is [0%-50%).

Other clone benchmarks, such as Google Code Jam (GCJ)
and CodeNet (CN) [10], are generated by collecting the same
solutions of the programming competitions as clones. GCJ is a
benchmark collected from an online programming competition
held annually by Google. It consists of 1,669 Java files,
275,570 true cloned pairs, and 1,116,376 non-cloned pairs
from 12 different competition problems. CN is a benchmark
collected from competitive programming sites such as AIZU
Online Judge2 and AtCoder3. It contains approximately 14
million total solutions in 55 programming languages.

B. Clone Detectors

To accurately detect T3 and T4 clones, over the past decade,
several DL-based clone detectors have been proposed. DL-
based clone detectors find out clones by capturing similarities
of source code using the clone benchmarks. Li et al. proposed
CCLearner [6], a token-based clone detector using a deep
neural network (DNN). CCLearner tokenizes the input source
code and then classifies tokens into eight categories. Given
a code pair, it computes the similarity score based on their
token frequencies. The similarity score is then fed to the
DNN model to classify the cloned and non-cloned pair and
detects clones using the DNN model. Zhang et al. proposed
ASTNN [7], a code representation learning approach for clone
identification tasks. ASTNN splits the abstract syntax tree into
a sequence of small statement trees and encodes them into
lexical and syntactical vectors. Finally, it generates the vector
representation of source code, using a bidirectional gated
recurrent, based on the sequence of statement vectors. Feng et
al. proposed CodeBERT, a bimodal pre-trained mode model
based on RoBERTa [11]. CodeBERT utilizes both bimodal
instances of programming language and natural language pairs
and a large number of programming language pairs by using
masked language modeling and replaced token detection. After
pre-training, fine-tuning is applied on the labeled data.

C. Generalizability of existing DL-based clone detectors

The goal of the DL-based models is to generalize well
from the training data to any data from the problem domain.
However, the accuracy of the DL-based models is low when
the testing data is different from the training data. In many
literatures, DL-based clone detectors are trained and tested
by splitting the single benchmark into training and testing
benchmarks. The accuracy of DL-based clone detectors is also
decreased when they detect clones in unseen data [4], [5].
Detection of clones can help to reduce the cost of software
maintenance. Therefore, using clone detectors with high accu-
racy is relevant for developers to maintain software effectively.
However, developers sometimes need to detect clones from a
new system, which is different from the training dataset. In this
case, the DL-based clone detector might provide inaccurate

2https://judge.u-aizu.ac.jp/onlinejudge/
3https://atcoder.jp

clone information. Various factors, such as coding conventions
and token similarity, can affect the generalizability of DL-
based clone detectors. However, it is still unclear what factors
affect the generalizability of the DL-based clone detectors.

III. INVESTIGATIONS

To mitigate the problems described in Section II-C, we
investigated the generalizability of DL-based clone detectors
by answering the following two Research Questions (RQ)s :

RQ1. How accurate are DL-based clone detectors when
different benchmarks are used for training and testing?
To answer RQ1, we first investigated the generalizability
of DL-based clone detectors by comparing the accuracy of
detectors that were trained and tested on the same benchmark
to those that were trained and tested on different benchmarks.
If the accuracy of DL-based clone detectors trained and
tested on different benchmarks is lower than that of detectors
trained and tested on the same benchmark, it indicates that
the generalizability of the DL-based clone detector is poor.
Therefore, developers need to pay attention to inaccurate clone
information provided by DL-based clone detectors when using
them for a new software system.

RQ2. Is there any relationship between clone types and
detection accuracy when different benchmarks are used for
training and testing? By answering RQ2, we can understand
the relationship between the generalizability of DL-based
clone detectors and different clone types. If the generalizability
of DL-based clone detectors is related to the specific clone
type, it emphasizes the importance of improving the accuracy
of DL-based clone detectors for each specific clone type.

To answer RQ1 and RQ2, using three famous clone bench-
marks (Section III-A), we investigated the generalizability of
the DL-based clones detectors (Section III-B).

A. Clone benchmarks

In this study, we used three representative clone bench-
marks, namely BCB, GCJ, and CN. To accurately compare
the detection accuracy, in RQ1, we utilized the BCB versions
that were used in each paper, BCB v1 for CCLearner and BCB
ERA v1 for ASTNN. For CodeBERT, we adopted a version
of BCB, CodeXGlue [12]. In RQ2, we used the BCB ERA v1,
which was used in [7]. Same as in the paper, we computed the
accuracy of clone detection by weighted sum result according
to the percentage of various clone types. From GCJ, we chose
275,570 true cloned pairs and randomly selected the same
number of non-cloned pairs. To consolidate the detection of
method-level clones, callees are inlined into the main method.
Additionally, the source code that handles input/output is
removed because it frequently appears in programming contest
solutions. If a method is called recursively, it is inlined only
once. Moreover, only user-defined methods are inlined. In CN,
at first, we chose the Java250 dataset from the CN and selected
the same number of cloned and non-cloned pairs as GCJ. To
this end, we sorted the questions based on the ascending order
of the problem ID and removed files with a single line and
code that required significant changes for the inline. Then,
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Fig. 1. Overall of the investigations of the generalizability of the DL-based
clone detectors

275,570 cloned pairs from the top 12 sets of questions, and
the same number of non-cloned pairs were selected. We also
inlined callees into the main method by adopting the same
approach as GCJ.

B. Investigation Methodology

Investigations: In this study, we assumed that GCJ and
CN are similar to each other as they were both derived from
data collected from the programming competitions. In contrast,
BCB was created by mining clones from OSS, making it
dissimilar to the GCJ and CN. Based on these assumptions, we
investigated the generalizability of DL-based code detectors
using GCJ, CN and BCB. The overall investigations to answer
RQ1 and RQ2 are shown in Figure 1. As can be seen in this
figure, to answer RQ1, we trained CCLearner, ASTNN and
CodeBERT on BCB and tested them on GCJ or CN, and vice
versa. We then compared these detection results with ones
obtained from training and testing on the same benchmark.
To answer RQ2, we calculated the clone detection accuracy of
each clone type by training clone detectors on GCJ or CN and
testing on each clone type in BCB. Furthermore, we examined
the correlation between the median of Jaccard index for each
clone type and the detection accuracy.

Parameters: CCLearner and ASTNN detect clones based
on threshold values. In this study, we set threshold values as
0.98 and 0.5 for CCLearner and ASTNN, respectively, the
same values as those used in their papers when trained on BCB.
However, when we used the same threshold values for training
on GCJ and CN, the clone detection accuracy of CCLearner
and ASTNN were very low. Thus, we set the threshold through
a grid search to identify the best-performing model. We set
respectively 0.17 and 0.01 for training CCLearner on GCJ
and CN and 1.1× 10−4 and 2.8× 10−4 for training ASTNN
on GCJ and CN.

Evaluation Measurements: We used F1 and Matthews
Correlation Coefficient (MCC) to evaluate the detection ac-
curacy of the clone detectors. F1 is the harmonic mean of
precision and recall. MCC is one of the famous measurements
to evaluate performance on classically unbalanced data [13].
The MCC is defined as below:

MCC =
(tp× tn)− (fp× fn)√

(tp+ tn)(tp+ fn)(fp+ tn)(fp+ fn)
(1)

where tp is true positive, tn is true negative, fp is false
positive, and fn is false negative. If the MCC value is 1,
the detection is accurate. If it is −1, the detection accuracy
is exactly opposite, while 0 means that the detectors returns
only a forecast no better than a random one.

IV. INVESTIGATION RESULTS

A. Results of RQ1

Table I shows the F1 and MCC values for CCLearner,
ASTNN, and CodeBERT using different clone benchmarks
and the same benchmark. In this table, the values in the
‘SAME’ column were computed using the same benchmark
for both training and testing, while the values in the ‘DIF-
FERENT’ column were computed using different benchmarks
for training and testing. Higher values between these columns
are highlighted in bold. Furthermore, the F1 values achieved
by training and testing using BCB computed by the authors [6].
As we can see in Table I, for CCLearner, when trained and
tested on BCB, its F1 value is 0.93. However, when trained on
BCB and tested on GCJ and CN, F1 value drops to 0.109 and
0.357, respectively. When CCLearner is trained and tested
on GCJ or CN, F1 is approximately 0.55 and MCC ranges
from 0.3 to 0.35. Meanwhile,when it trained on GCJ or CN
and tested on BCB, the F1 and MCC values significantly
decreases to 0.1 and from 0.05 to 0.1, respectively. For
ASTNN, when trained and tested on BCB, is F1 value is
0.939 and MCC value is 0.891. Meanwhile, when trained
on BCB and tested on GCJ or CN, F1 is approximately 0.66
and the MCC is approximately ranging from 0.01 to 0.03.
When trained and tested using GCJ or CN, F1 and MCC
is approximately 0.5 and 0.45, respectively. Meanwhile, when
trained on GCJ and tested on BCB, F1 and MCC is 0.372
and 0.001, respectively. Moreover,when trained on CN and
tested on BCB, F1 and MCC is 0.09 and −0.15, respectively.
Finally, for CodeBERT, when trained and tested on BCB F1

and MCC is 0.896 and 0.881, respectively. Meanwhile, when
trained on BCB and tested on GCJ or CN, both F1 and MCC
significantly decrease (F1 is approximately 0.65 and MCC
is approximately 0.1). When trained and tested on GCJ or
CN, both of F1 and MCC are approximately 1. However, F1

drops significantly to 0.6 when trained on GCJ and tested on
BCB, and to 0.65 when trained on CN and tested on BCB. In
addition, MCC also drops to approximately 0.004.

From our investigations, we can state that the clone de-
tection accuracies of CCLearner, ASTNN, and Code-
BERT decrease when they are trained and test on
different clone benchmarks, compared to when they
are trained and tested on the same clone benchmark.

B. Results of RQ2

Table II shows MCC values for different clone types, which
are achieved by training on GCJ or CN and testing on BCB.
In the case of CCLearner, MCC values for the T1 clones are
the highest compared to other types, while MCC of WT3/T4



TABLE I
CLONE DETECTION ACCURACY USING THE SAME AND DIFFERENT CLONE BENCHMARKS

CCLearner ASTNN CodeBERT
training benchmark SAME DIFFERENT SAME DIFFERENT SAME DIFFERENT

F1

BCB 0.93 0.109 (GCJ)
0.357 (CN) 0.939 0.667 (GCJ)

0.663 (CN) 0.896 0.630 (GCJ)
0.651 (CN)

GCJ 0.566 0.116 (BCB) 0.522 0.372 (BCB) 0.998 0.608 (BCB)
CN 0.572 0.0874 (BCB) 0.481 0.0900 (BCB) 0.999 0.651 (BCB)

MCC
BCB – 0.159 (GCJ)

0.296 (CN) 0.891 0.0275 (GCJ)
0.0129 (CN) 0.881 0.0988 (GCJ)

0.0612 (CN)
GCJ 0.340 0.0847 (BCB) 0.463 0.00101 (BCB) 0.997 0.00429 (BCB)
CN 0.318 0.0500 (BCB) 0.434 −0.150 (BCB) 0.998 0.00432 (BCB)

TABLE II
MCC ACHIEVED BY TRAINING AND TESTING USING DIFFERENT CLONE BENCHMARKS FOR EACH CLONE TYPE

CCLearner ASTNN CodeBERT
Type GCJ CN GCJ CN GCJ CN
T1 0.961 0.967 0.713 0.851 0.000266 -0.00114
T2 0.853 0.911 0.517 0.687 0.00156 0.0166

ST3 0.626 0.699 0.518 0.456 0.00390 0.0000778
MT3 0.462 0.281 0.174 0.0129 -0.00144 0.000612

WT3/T4 0.0745 0.0408 -0.00596 −0.159 0.00438 0.00438

clones are the lowest. As you can see in the table, MCC
values decrease as the dissimilarity of clones increases. The
correlation coefficient between the median of the Jaccard
index and MCC for each clone type is 0.982 when trained
on GCJ and 0.997 when trained on CN. Similarly, MCC
values of ASTNN show the similar tendencies to CCLearner,
MCC values decreases with the increasing dissimilarities of
clones, regardless of whether they are trained on GCJ or CN.
The correlation coefficient between the median of the Jaccard
index and MCC for each clone type is 0.970 when trained
on GCJ and 0.995 when trained on CN. Finally, CodeBERT
exhibited low MCC values (approximately 0) when trained
on either GCJ or CN. The correlation coefficient between the
median of the Jaccard index and the MCC for each clone
type is −0.308 when trained on GCJ and 0.217 when trained
on CN.

From our investigations, we can conclude that
CCLearner and ASTNN show a strong relationship
between clone types and generalizability, while Code-
BERT shows a weak relationship between clone types
and generalizability.

V. DISCUSSIONS

From the results of RQ1 and RQ2, we observed that the
generalizability of CCLearner, ASTNN, and CodeBERT is
not high and clone detection accuracy of CCLearner and
ASTNN have a strong relationship with clone types. Mean-
while, the clone detection accuracy of CodeBERT shows a
weak relationship with clone types. Based on these results, we
suggest the following when developers detect clones from a
software project that is distributed differently from the training
benchmark by using CCLearner, ASTNN, and CodeBERT:

(1) Developers must check detected clones, as the generaliz-
ability of these clone detectors is low. (2) If developers trained
CCLearner or ASTNN on a clone benchmark containing
lower similar clones, such as T3 and T4 clones, the detector
accurately detects T1 and T2 clones. However, since the
generalizability of T3 and T4 clones is low, developers need
to check the accuracy of the detected T3 and T4 clones.

Threats to Validity: The results of the investigation are
highly dependent on the clone benchmarks and DL-based
clone detectors used in this study. In the investigation, we
selected BCB, GCJ, and CN because they are widely used
clone benchmarks. Regarding BCB, we used the version of
BCB used in the papers because we believe that they were
trained on BCB for the best accuracy. Similarly, F1 has
been commonly used in clone research for evaluating clone
detection accuracy, and MCC is a commonly used evaluation
measurement in several fields such as machine learning, thus
we believe that these evaluation measurements do not affect
the results of these investigations.

VI. CONCLUSION

In this study, we investigated the generalizability of
CCLearner, ASTNN, and CodeBERT. The results show that
the generalizability of CCLearner, ASTNN, and CodeBERT
are not high. There is a strong relationship between clone types
and generalizability for CCLearner and ASTNN, and a weak
relationship for CodeBERT.
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