
Cost-Benefit Analysis for Modernizing
a Large-Scale Industrial System

Kazuki Yokoi∗, Eunjong Choi†, Norihiro Yoshida‡, Joji Okada∗ and Yoshiki Higo§
∗NTT DATA Group Corporation, Japan, {Kazuki11.Yokoi, Joji.Okada}@nttdata.com

†Kyoto Institute of Technology, Japan, echoi@kit.ac.jp
‡Ritsumeikan University, Japan, norihiro@fc.ritsumei.ac.jp

§Osaka University, Japan, higo@ist.osaka-u.ac.jp

Abstract—Legacy systems pose significant challenges to com-
panies. Software modernization approaches have been proposed
to address this issue. However, a lack of standardization and
reliance on ad hoc processes often lead to software modernization
failures. Incremental modernization, a strategy that improves
software systems in a step-by-step manner rather than attempting
to simultaneously overhaul the entire system, aims to mitigate the
risk of failure. However, this approach can increase costs owing
to the complexity of integrating legacy and modernized products.
In this paper, we present a case study that employs a cost-
benefit estimation analysis in a large-scale industrial project that
underwent incremental modernization in the past. We compare
the actual and estimated cost-benefit values in the context of
incremental modernization. As a result, we confirmed that the
cost estimates were valid, but we could not judge whether the
benefit estimates were valid.

Index Terms—software maintenance, dependency analysis, cost
estimation

I. INTRODUCTION

Various software modernization approaches have been pro-

posed to address critical challenges posed by legacy systems

[1]. Many companies demonstrate a strong demand for soft-

ware modernization, motivated by the necessity of rejuvenat-

ing legacy systems for agile responses to business changes and

cost-effective maintenance. Frequently, the systems targeted

for modernization are critical, allowing for minimal tolerance

for failure. However, the lack of standardization and reliance

on ad-hoc processes often leads to failures in software mod-

ernization. Incremental modernization, which is an approach

that improves software systems in a step-by-step manner rather

than attempting to overhaul the entire system simultaneously,

aims to mitigate the risks of failure [2], [3].

Software modernization approaches can increase costs be-

cause of the complexity of integrating legacy and modernized

projects [2]. Therefore, estimating the cost-benefit at the plan-

ning phase of modernization is crucial, especially in industry.

However, it is challenging to estimate the cost-benefit of

incremental modernization in the planning phase. For example,

the lack of design documents hinders the accurate estimation

of development costs and benefits. Furthermore, it is difficult

to predict the main risk factors for incremental modernization

in the planning phase; as a result, the actual costs may

exceed the estimated costs. The first and fourth authors of

this study frequently encountered such scenarios when they

engaged in the modernization of real software projects in their

cooperation.

Although several studies have been conducted to estimate

the cost-benefit of refactoring [4]–[8], to the best of our knowl-

edge, the cost-benefit estimation for incremental moderniza-

tion has not yet been explored. To bridge this gap, we present

a case study that conducts a cost-benefit estimation analysis

on a large-scale industrial system, specifically focusing on

incremental modernization. The goal of this study is to present

a case study that estimates the cost-benefit of incremental mod-

ernization in a large-scale industrial system. To achieve this

goal, in the case study, we apply the cost-benefit estimation

approach, which employs dependency analysis, to a core sys-

tem within a financial institution. Then, we compare the actual

and estimated cost-benefit values in the context of incremental

modernization. Consequently, we confirm the effectiveness of

the cost-benefit estimation approach for estimating the cost-

benefit associated with incremental modernization.

The main contributions of this study are as follows:

• We have preliminary estimated cost-effectiveness, which

is essential in system modernization for a large-scale

financial system.

• We developed a model for calculating a cost-benefit for

incremental modernization for stable system moderniza-

tion.

• We have analyzed the difference between the pre-

estimated cost-benefit and the actual cost-benefit and

discussed why the difference occurred.

The remainder of this paper is organized as follows. Section

II presents the background of this study. Section III describes

a system that underwent incremental modernization, which is

the focus of this study. Section IV explains the estimation

approach used in this study. Section V presents the analysis.

Section VII introduces the related work. Finally, Section VIII

concludes the paper and discusses future challenges.

II. BACKGROUND

A. Modernization

Several modernization approaches have been proposed over

the years, including the “big bang” approach [1] and incre-

mental modernization [3]. Figure 1 shows the overview of

“big bang” and incremental modernization. The left side of

441

2023 30th Asia-Pacific Software Engineering Conference (APSEC)

2640-0715/23/$31.00 ©2023 IEEE
DOI 10.1109/APSEC60848.2023.00055

Fig. 1. “big bang” approach and incremental modernization

Figure 1 shows the “big bang” approach, which simultaneously

reconstructs the entire system. However, this approach carries

a significant risk of migration failure. To mitigate this risk,

server approaches including incremental modernization [3] and

the “Chicken-Little” strategy [2] have been proposed. These

approaches involve dividing the system improvement or migra-

tion process into smaller and more manageable components to

reduce the risk. The right side of Figure 1 illustrates the core

idea of the “Chicken-Little” strategy to construct a composite

system consisting of both legacy and modernized products.

Communication between these legacy and modernized prod-

ucts occurs through a gateway. In this strategy, a segment

of the legacy product is initially replaced by a modernized

product, and the gateway directs requests to the modernized

product. Over time, the proportion of the legacy product being

replaced by the modernized product gradually increases. This

process leads to a step-by-step expansion of the modernized

product.

While the “Chicken-Little” strategy mitigates the risk of

migration failure, it introduces increased risks due to the

complexity of integrating legacy and modernized projects.

These risks include:

1) Complex communication control between the legacy and

modernized products.

2) Ensuring data consistency between the legacy and mod-

ernized products becomes challenging.

To mitigate these risks, the integration of legacy and mod-

ernized products requires a shell API [9]. Shell API refers

to codes or scripts that enable interoperability between dif-

ferent software components or systems [9]. This enables the

collaboration between independently developed components or

systems. In the context of incremental modernization, integrat-

ing different technology stacks or platforms between legacy

and modernized products requires communication control and

data consistency management through a shell API. Conse-

quently, incremental modernization incurs additional costs for

developing shell API, resulting in an overall increase in the

development costs for the entire system.

B. Cost Estimation

Cost estimation is an empirical process used to estimate

the effort and time costs of any software project before its

development [10]. In software development, these estimated

costs are often inadequate, causing a discernible gap between

the estimated and actual effort. This gap tends to widen, par-

ticularly during the planning phase of software development,

owing to many ambiguous elements (e.g., requirements and

design). However, cost estimation during the planning phase

is crucial for many companies because it facilitates budget

allocation and overall planning. Therefore, it is necessary to

recognize inherent uncertainty embedded in the planning phase

of cost estimation, communicate this to all stakeholders, and

re-estimate the associated costs.

Several cost estimation approaches have been proposed,

including analogy-based, bottom-up, and parametric. An

analogy-based estimation was derived through comparison

with similar past projects. Although this approach is straight-

forward and suitable for early-stage system development es-

timates, its application becomes challenging when the back-

ground, constraints, and features of past project performances

are unclear.

Bottom-up estimation involves identifying the components

of a target project, aggregating the effort estimates for each

component, and calculating the estimated value for the entire

project. While this approach tends to be more accurate, it

requires breaking down a target project into smaller, more

manageable tasks using a structure such as a Work Breakdown

Structure (WBS) and pre-identifying components such as sub-

systems and components as part of the deliverables. Therefore,

adopting this method in the initial stages of a project is

challenging because of inherent ambiguity.

The parametric approach involves representing factors such

as effort as the dependent variable and attributes such as

size and factors as independent variables through mathemat-

ical functions. This approach primarily employs an equation

effort in which effort and size exhibit direct proportionality

(E = α × Size) or size is proportional through a power

function (E = α × Sizeβ). The latter, in which the effort

is proportional to the exponent of size, was also employed

in the COCOMO method [11]. In this study, we adopted this

approach for cost estimation.

III. TARGET PROJECT

In this section, we introduce the target project for incremen-

tal modernization in this case study. The target project was

the core project of a financial institution in Japan, and this

system has undergone incremental modernization. The project

was a COBOL core system, and the corporation where the first

and fourth authors of this paper are currently employed has

been responsible for maintaining and developing the project

for many years. A summary of the system is presented in Table

I. It was a substantial legacy system with inherent issues of low

maintainability prior to modernization. The primary objective

442

Fig. 2. Estimation approach overview

TABLE I
SUMMARY OF TARGET SYSTEM

System Overview Core System of financial institutions
System Type Batch and Online System
Language Open COBOL
Size About 4.6 MLOC (Only COBOL)

of the incremental modernization of the target system was to

enhance its maintainability.

Through the first incremental modernization, approximately

870 KLOC were extracted from the target system and re-

structured into Java programs. Unfortunately, the complexity

and potential risks associated with incremental modernization

were insufficiently considered during the planning phase of

modernization. Consequently, the actual size of the target

system exceeded the estimated size by 27.5%.

Although the primary objective of incremental modern-

ization was to improve maintainability, a comparison of the

development efforts before and after modernization revealed

an uncertain enhancement in maintainability. Moreover, owing

to the absence of defined metrics to measure this improvement,

it remains unclear whether the project yielded any benefits

after the modernization.

This experience indicates that the corporation, involving the

first and fourth authors of this paper, encountered challenges

in estimating the cost-benefit of incremental modernization

during the planning phase. Moreover, apart from the project

discussed here, the corporation is involved in several other

projects in which incremental modernization is being consid-

ered. Therefore, this issue is very relevant for the corporation.

However, even though several existing studies have estimated

the cost-benefit of refactoring [4]–[8], cost-benefit estimates

for incremental modernization have yet to be explored, to the

best of our knowledge. To bridge this gap, we propose the

following Research Questions (RQs):

RQ1 Is it possible to estimate more valid costs during the

planning phase of incremental modernization?

RQ2 Is it possible to estimate more valid benefits during

the planning phase of incremental modernization?

This study aims to present a case study estimating the cost-

benefit of incremental modernization in large-scale industrial

systems. To answer the above-mentioned RQs, we present an

approach for estimating the cost-benefit in the planning phase

of incremental modernization and assess the validity of the

estimation approach by applying it to the target project.

IV. ESTIMATION APPROACH

In this section, we introduce an approach for estimating the

cost-benefits of incremental modernization. Figure 2 presents

an overview of this estimation approach. As can be seen in the

figure, the approach employs a dependency graph constructed

through dependency analysis and then estimates the cost-

benefit of incremental modernization based on this graph. In

the following sections, we describe the dependency graph,

followed by explanations of cost and benefit estimations.

A. Dependency Graph

First, we discuss the dependency graph used in this ap-

proach. A dependency graph is a graph structure that rep-

resents the relationships among software components. In

this graph, the nodes depict code entities (e.g., methods or

functions) and data entities (e.g., database tables or global

variables). The relationships among these nodes are illustrated

as directed edges. These edges represent various dependencies

between the software components, including call dependen-

cies, where one method or function calls another, or data

dependencies, where a piece of code relies on a specific data

entity. These dependencies are categorized as “relation types”

[12]. These edges include various types of dependencies,

such as call dependencies and data dependencies, which are

referred to as ”relation types.” Figure 3 shows an example

of a dependency graph. In this figure, the nodes represent

functions and database tables, and the edges indicate call and

data dependencies.

B. Cost Estimation

The cost estimation calculates the person-hours for incre-

mental modernization. This involves determining the estimated

work hours by multiplying the calculated person-hours by the

monthly rate per person, resulting in a monetary value.

In the cost estimation, the size of the development for

incremental modernization was calculated. In the case of

modernization of the entire system, the effort is calculated

443

Fig. 3. Example of dependency graph

by multiplying the size of the entire system by productivity.

During incremental modernization, part of the system was

extracted and rebuilt. However, in some cases, by simply

multiplying the size of the extracted program by productiv-

ity, the estimated effort may be less than the actual effort.

This is because the estimate of the shell API effort was

missing. Therefore, we propose an approach for estimating

the development size of shell API to obtain the shell API

development effort. Dependency graphs are used to estimate

the development size of the shell API.

1) Procedure for Cost Estimation: The development effort

E for the shell API can be determined as follows:

E = α×
∑

d∈D

NdLd (1)

Here, Nd denotes the number of dependencies d spanning

the legacy and modernized products, Ld represents the shell

API implementation line number per dependency d, and

α signifies the productivity (person-months/size). These are

summed up for each type of dependency d.

When a modernized product is extracted from a legacy

product, the dependencies between the legacy and modern-

ized products are disconnected. For example, dependencies

connected by function calls before extraction change to com-

munication via the network after extraction. Therefore, the de-

velopment of components to convert communication systems

requires considerable time and effort.

The number of lines of the shell API implemented for each

type of dependency depends on the architecture of the legacy

and modernized products. Therefore, estimates of these values

are determined by analogy from past development results or

by developing a shell API as a proof of concept and collecting

data.

2) Example of Cost Estimate Calculation: As illustrated in

Figure 4, if only function B is decomposed from the others,

communication between functions A and B, functions B and

C, and function B and table 1 occurs via the shell API.

Therefore, for incremental modernization, the development of

a new shell API is necessary. From Table II, the number of

dependencies via the shell API is 20 for Call Dependency

and 10 for Data Dependency. Thus, the size to implement

one Call Dependency with the shell API is 40 LOC, and the

size to implement one Data dependency with the shell API is

Fig. 4. Examples of functions and tables used for cost estimation

TABLE II
EXAMPLE OF EFFORT ESTIMATION FOR EACH DEPENDENCY

Dependency Number of LOC per
Type Dependency Dependency Productivity Effort

Call 20 40 855 0.93
Data 10 100 855 1.17

Sum of Effort 2.10
Note1: LOC per dependency and productivity are tentative value.

Note2: Productivity is measured in LOC/person-month, and effort is
measured in person-month.

100 LOC, which are tentative values. When multiplied by the

inverse of productivity shown in Table II, the shell API effort

is estimated to be 2.10 person-months.

C. Benefit Estimation

Modernization has several benefits. In this study, however,

we estimated the benefit of the reduction in maintenance

effort. A reduction in maintenance effort results in shorter

maintenance periods and lower maintenance costs. As a result,

the maintenance period per project is shortened, and develop-

ment agility is improved. Furthermore, reducing maintenance

costs will promote investment in other areas, emphasizing the

benefits of modernization.

In this study, we estimated the benefits of a reduction in

maintenance effort per project after incremental moderniza-

tion.

Previous research has shown that software maintenance

requires significant effort to understand and test [13]–[15],

and it is evident that this effort is significantly influenced

by change impact [16], [17]. Therefore, the reduction rate of

maintenance effort can be affected by the reduction rate of the

change impact.

Impact scope refers to the range within which changes to a

part of a program can affect other programs. A broader change

impact means a more comprehensive range to understand

and test, increasing the maintenance effort. By decomposing

systems through incremental modernization, we estimated the

444

reduction rate of this change impact and its effect on reducing

the maintenance effort.
1) Procedure for Estimating Benefit: The reduction rate

of maintenance effort, R, is determined by the following

Equation:

R = 1−
∑

m∈M PmCI ′m∑
m∈M PmCIm

(2)

In this context, M represents the set of all modules in

the entire system. Pm denotes the probability that module

m (within the module set M) will be modified during a

maintenance activity. CIm and CI ′m denote the change impact

for module m before and after modernization, respectively.

The change impact for a module is measured by the lines of

code to be tested when the module is modified.

Equation (2) calculates the expected change impact across

the entire system by multiplying the change probability of a

module with its change impact. The expected change impact

was calculated because not all modules will be modified in a

single maintenance project. For instance, modules that are fre-

quently modified will have a higher effect when reducing their

change impact, whereas less-modified modules will have a

lesser effect. Therefore, Equation (2) considers the probability

of a change for each module. This study determines the change

probability Pm based on the proportion of the module m size

to the entire system size. This is based on the assumption

that larger modules have a higher likelihood of modification

and smaller modules have a lower likelihood. Furthermore,

the change impact CIm is calculated by summing the lines of

code for module m and all the modules that depend on module

m. This is because the modules that depend on the changed

module must be retested for change impact. These concepts

are supported by [4].

The expected change impact after modernization is cal-

culated by assuming that dependencies spanning legacy and

modernized products will be eliminated. For instance, if a

module had a dependency through a function call before

decomposition, but communicates via the network after de-

composition, the coupling between modules weakens, making

testing more accessible. Consequently, the expected change

impact is reduced.

Based on the above, we can estimate the maintenance effort

reduction rate from the reduction ratio of the expected change

impact between before and after modernization.
2) Example of Benefit Estimate Calculation: As shown in

Figure 5, if a maintenance activity modifies module D, all code

in modules A, B, C, and D must be retested. The probability

of a maintenance event changing module D is the ratio of the

code size to the total module size (40% from Table III). The

contribution to the mean system change impact is the sum of

the change impact of the module multiplied by the probability

of occurrence. The contributions from all modules were then

summed to provide the expected value of the change impact

for the system.

When modules C and D are decomposed from modules A

and B, communication between modules B and C occurs via

Fig. 5. Examples of modules used for benefit estimation

TABLE III
EXAMPLE OF EXPECTED CHANGE IMPACT BEFORE MODERNIZATION

Contrib. to
Module LOC Pm CIm Expected

A 10 10% 10 1
B 20 20% 30 6
C 30 30% 60 18
D 40 40% 100 40

Expected Change Impact 65

TABLE IV
EXAMPLE OF EXPECTED CHANGE IMPACT AFTER MODERNIZATION

Contrib. to
Module LOC Pm CIm Expected

A 10 10% 10 1
B 20 20% 30 6
C 30 30% 30 9
D 40 40% 70 28

Expected Change Impact 44

the shell API. Therefore, the shell API prevents the expansion

of the change impact. Tables III and IV show that the change

impact of module C was reduced from 60 to 30 and that of

module D from 100 to 70 before and after modernization.

Consequently, the expected change impact was reduced from

65 to 44, resulting in a 32.3% reduction in the maintenance

effort.

V. ANALYSIS

This analysis aimed to confirm the effectiveness of the

proposed estimation approach. In the following, we refer to

the estimation approaches described in Section IV as proposed

approaches.

A. RQ1

To address RQ1, we applied the cost estimation approach

to the target system described in Section III. We estimated the

development size and analyzed the gap from the actual value.

First, we analyzed the dependencies of the target system

and created a dependency graph. The vertices of the graph

represent the source files, and the edges represent the call

relationships. In general, COBOL programs are compiled

file-by-file, and other programs are called using the CALL

statement. Figure 6 shows an example of the COBOL call

dependency between two COBOL programs PRG001.cob

445

IDENTIFICATION DIVISION.
PROGRAM-ID. PRG001.

*> omit

PROCEDURE DIVISION.
CALL 'PRG002' USING VAR1 VAR2.

*> omit

IDENTIFICATION DIVISION.
PROGRAM-ID. PRG002.
DATA DIVISION.
LINKAGE SECTION.
01 PARAM1 PIC X(10).
01 PARAM2 PIC 9(5).

*> omit

Fig. 6. Example of COBOL call dependency

and PRG002.cob. By performing dependency analysis, prac-

titioners can determine which COBOL programs are called

from other programs.

After creating a dependency graph, the programs were cat-

egorized into those to be extracted and rebuilt as modernized

products, and those to be left as legacy products. Subsequently,

the number of dependencies between programs rebuilt for the

modernized product and those remaining in the legacy product

was tallied.

Finally, the overall development size of the system was de-

termined by summing the development sizes of the modernized

product, legacy product, and shell API (see Section II-A).

The development sizes of legacy and modernized products

reuse estimated results from the planning phase of the target

project. During the planning phase, developers were unaware

of the need to develop shell API in incremental modernization.

Consequently, the estimated size of the planning phase was

reused in this analysis. The development size for the shell

API was estimated using the formula described in Equation

(1) in Section IV-B. Note that productivity α is excluded from

the calculation in this analysis because we evaluated the size

estimation instead of the effort estimation.

The accuracy was evaluated by examining the deviation

of the cost model results from the actual development scale

of 3,691 KLOC. Compared to the 2,675 KLOC estimated at

the planning stage of the target system, we evaluated which

method had a lower deviation rate from the actual values,

the proposed approach, or the actual values. This gap was

calculated using the Magnitude of Relative Error (MRE), as

shown in the following Equation:

MRE =
|(actual)− (estimated)|

(actual)
(3)

B. RQ2

To answer RQ2, we applied the cost estimation approach

to the target system described in Section III. We estimated

the reduction in LOC to be tested and then analyzed its gap

from the actual values. Because the cost of the testing phase is

relatively high during the development process, reducing the

effort of the testing phase leads to a considerable reduction in

the overall effort. We estimated the reduction in the test scale

based on the assumption that the number of person-hours in

the testing process increases or decreases proportionally with

the test scale [16], [17].

First, a dependency analysis was performed on the target

system, a dependency graph was created, and programs were

classified into those extracted and reconstructed as modernized

products and those left as legacy products. This process was

the same as that described in Section V-A. We estimate the

expected change impact before and after modernization using

the formula denoted Equation (2).

This study presents the development performance statistics

before and after incremental modernization in Table V. We

focused on 21 cases of maintenance activity before mod-

ernization and 10 cases after modernization. We excluded

cases where the production size, test size, and development

productivity were incorrectly recorded.

For development performance, we aggregated both the mean

and median for the following three items:

• Code to be tested in IT1:

Lines of code to be tested in integration test 1 (IT1) phase.

IT1 is closer to a unit test as it is on a smaller level than

IT2.

• Code to be tested in IT2:

Lines of code to be tested in integration test 2 (IT2) phase.

IT2 is closer to a system test as it is on a larger level than

IT1.

• Productivity:

Development person-hours per production size. The unit

is KLOC/person-month. Development hours are the sum

of the hours from basic design to system testing.

A smaller line of code to be tested indicates a smaller change

impact and suggests improved maintainability. A more sig-

nificant value for the development productivity indicates that

the number of implementation lines per person-month is more

significant, suggesting improved maintainability. In addition,

the development requirements before and after modernization

did not match. Therefore, in this study, we compare the

development productivity by dividing the development hours

by the production size.

With the median of the IT2 Size showing a positive

change rate and both the mean and median of Productivity

showing negative change rates, we were unable to confirm

that maintainability necessarily improved due to incremental

modernization.

We analyzed the gap estimation from the development per-

formance shown in Table V. We estimated the performance af-

ter modernization by multiplying the reduction rate determined

by Equation (2). We then compared the actual development

performance after modernization with our estimates to assess

the degree of the gap. This gap was calculated using the same

formula for the cost estimation MRE.

VI. RESULTS AND LESSON LEARNED

A. RQ1

The number of call dependencies from the modernized

product to the legacy product was 3,431, and from the legacy

to the modernized was 80, totaling 3,511 inter-system call

relationships. The LOC size per program was 343.3 LOC.

446

TABLE V
DEVELOPMENT PERFORMANCE STATISTICS BEFORE AND AFTER INCREMENTAL MODERNIZATION

Before Modernization After Modernization Change Rate

Number of Cases 21 10 -
Mean Code to be tested in IT1 [KLOC] 22.75 21.24 -7%

Code to be tested in IT2 [KLOC] 24.04 23.28 -3%
Productivity [KLOC/person-month] 0.27 0.19 -30%

Median Code to be tested in IT1 [KLOC] 14.78 13.53 -8%
Code to be tested in IT2 [KLOC] 17.77 21.49 +21%
Productivity [KLOC/person-month] 0.24 0.19 -21%

TABLE VI
COST ESTIMATION: ACTUAL AND ESTIMATED DEVELOPMENT SIZE

Development Size MRE

Estimation in this analysis 3,880 KLOC 5.1%
Estimation at the planning phase 2,675 KLOC 27.5%
Actual Value 3,691 KLOC -

Therefore, the development size of the shell API was estimated

to be 1,205 LOC. By adding the estimated size of the shell

API to the previously estimated size in the planning phase

(excluding the shell API) of 2,675 KLOC, the estimated total

development size for the entire system was 3,880 KLOC.

A comparison between the estimated and actual values is

shown in Table VI. The development size estimated using

the proposed approach was 3,880 KLOC. Compared with the

actual development size of 3,691 KLOC, the MRE was 5.1%.

The estimation in the planning phase had a gap of 27% from

the actual value, suggesting that the proposed approach yielded

a closer estimation of the actual results. In the planning phase,

the factors contributing to the increased costs of incremental

modernization were unrecognized, and the development size of

the shell API was excluded from the estimation. Therefore, by

adding the development size of the shell API to the estimation

during the planning phase, we obtained an estimation closer

to the actual value.

Answer to RQ1� �
Cost estimation can provide more valid estimates because

they have fewer errors with actual values than estimates

made at the planning stage.

� �
The lesson learned from these results is that incremental

modernization, including shell API development size in the

estimate using dependency analysis, produces an estimated

result close to the actual development size. The development

size of the shell API accounts for a large percentage of the

entire system development size. Therefore, if the development

size of the shell API is excluded from the estimate, the effort

required exceeds the estimate. Before the analysis, we were

concerned that MRE would be little changed or be worse than

that in the planning phase. However, it improved by 22.4%,

that is, from 27.5% to 5.1%. This indicates that the proposed

approach is reasonable.

B. RQ2

In the target project, the expected change impact before

incremental modernization was 7.99 KLOC, whereas, after

incremental modernization, it became 6.99 KLOC. From

Equation (2), it is estimated that the maintenance effort could

be reduced by 13%.

Table VII compares the actual value after incremental mod-

ernization; the estimated value reduced by 13% from the actual

value before incremental modernization. From Table VII, the

estimated value displayed MRE ranging from 5% to 68%

compared to the actual values after incremental modernization.

Although the degree of MRE varied, the actual values were

more significant than the estimated values for the code tested

in IT1 and IT2. Furthermore, productivity had smaller actual

values. This indicates that no development performance was

as effective as estimated.
Answer to RQ2� �

It is impossible to determine whether the benefit estima-

tion is valid because the maintenance effort has remained

the same or increased since modernization.
� �

The lesson learned from these results is that incremental

modernization only occasionally improves maintainability. The

frequency of change requests, bugs, and future modifications

should be considered when extracting programs. Although the

benefits of performing incremental modernization have been

reported, these benefits are only fully realized if the appro-

priate functionality is extracted. Therefore, an approach to

quantitatively estimate the effect of improved maintainability

in modernization is still needed in the future. In addition,

using the proposed estimation formula, the estimated result

of maintenance effort after restructuring was always smaller

than the maintenance effort before. Therefore, it is necessary to

study a model to estimate the deterioration in maintainability.

C. Threats to Validity

In the cost-benefit calculation model, this analysis estimated

the lines of code to implement per dependency from the

average number of lines per program. By conducting proof

of concept (PoC), it is possible to determine the lines of

code to implement each dependency more precisely. However,

conducting PoC during the planning phase is challenging. As

shown in Table VI, even with the estimation approach used

in this analysis, the MRE is smaller than the estimates at the

447

TABLE VII
BENEFIT ESTIMATION: ACTUAL AND ESTIMATED DEVELOPMENT PERFORMANCE

Actual Value Estimated Value MRE
(After Modernization)

Mean Code to be tested IT1 [KLOC] 21.24 19.79 7%
Code to be tested IT2 [KLOC] 23.28 20.91 10%
Productivity [KLOC/person-month] 0.19 0.32 68%

Median Code to be tested IT1 [KLOC] 13.53 12.86 5%
Code to be tested IT2 [KLOC] 21.49 15.46 28%
Productivity [KLOC/person-month] 0.19 0.27 42%

planning phase, indicating that the estimation accuracy using

the average size per program is acceptable.
The benefit estimation has no baseline for setting a threshold

for the MRE. Therefore, no upper or lower limit of the

MRE can be considered to indicate the accuracy of the effect

estimation model. Therefore, determining whether the benefit

estimation is accurate is challenging.
Moreover, other metrics exist for evaluating the accuracy

of the estimates apart from the MRE. In this study, we

answered the RQ based on the MRE from the actual values.

However, different results could be obtained if other metrics

were adopted.
In this analysis, we analyzed just a single case. All that

became established was that the estimated cost of this project

was close to the actual cost. From this, we determined that

the cost estimate was valid. However, increasing the number

of systems under analysis and conducting cross-validation to

enhance the reliability of the analysis is necessary.
Additionally, as seen in Table V, the change rate for the code

to be tested in IT2 (median) is positive, and productivity (both

mean and median values) is negative. This implies that the

situation worsened after incremental modernization. Hence,

despite the expected reduction in test scope and maintenance

effort, we are concerned that expectations will fail after the

incremental modernization. This suggests the possibility of

validating from the premises.

VII. RELATED WORK

Leitch et al. proposed a method for estimating the cost-

benefit of refactoring using dependency analysis [4]. Their

approach calculates the possible maintenance cost savings

from refactoring based on control and data dependencies and

uses COCOMO II [11] to estimate the implementation cost of

refactoring. However, Leitch et al. focused only on evaluating

the cost-benefit of refactoring within a system, differentiating

it from incremental modernization.
Cai et al. developed a framework for evaluating the cost-

benefit of refactoring based on the source code, architectural

information, and version histories [7]. Although their frame-

work shares similarities with the proposed approach, they

did not detail the exact estimation techniques. Their effect

estimation also diverges from the proposed approach because it

does not focus on the change impact and relies on correlations

with past refactoring tasks.
Cui et al. investigated the correlation between methods of

modifying dependencies and the costs of these modifications

[5]. Their findings enabled estimations of modification work

costs for each type of dependency. However, their method did

not consider system extraction, which distinguishes it from the

cost estimation in this study.

Xiao et al. investigated the correlation between architectural

technical debt and maintenance development costs [8]. Their

findings enable the estimation of increased maintenance costs

owing to existing technical debt. Nevertheless, they did not

estimate the reduction in maintenance effort owing to system

extractions, setting their method apart from the cost estimation

in this study.

Rebêl et al. explored the relationship between design stabil-

ity and maintenance tasks by contrasting aspect-oriented ex-

tractions with object-oriented designs [6]. Their work allowed

for the estimation of maintenance cost reductions owing to

aspect-oriented extractions. However, their focus on aspect-

oriented extractions instead of incremental modernization dis-

tinguishes their benefit estimation from the benefit estimation

in this study.

Kobayashi et al. proposed a metric to quantify the propaga-

tion model of changes to improve system failure prediction

accuracy [12]. They used dependency graphs to judge the

change impact, similar to the proposed method. However,

their primary focus on enhancing failure prediction accuracy,

rather than estimating the reduction in development effort,

distinguishes their approach from the benefit estimation in this

study.

VIII. CONCLUSION

Adopting an incremental modernization strategy can reduce

the risk of software system modernization failures. However,

modernization costs tend to increase compared to the estimated

costs in the planning phase. Furthermore, quantifying the

benefits of incremental modernization is challenging, leading

to delayed decisions to invest in modernization.

In this study, for systems in which incremental modern-

ization was conducted, we applied a cost-benefit estimation

approach using dependency analysis and compared the gap

with the actual value. As a result of this analysis, we confirmed

that the cost estimates are valid estimates, but we cannot judge

whether the benefit estimates are valid.

Future works include the following three points:

• Improving the reliability of analysis results: In this

analysis, the analysis has been conducted on just a single

case. Increasing the number of systems under analysis

448

and conducting cross-validation to enhance the reliability

of the analysis is future work.

• Expansion of dependency relationships: In this anal-

ysis, we analyzed only the call dependencies, but other

dependencies exist (e.g., access to databases). Expanding

the dependency types and analyzing whether the accuracy

of the estimated improves is future work.

• Application to other languages: In this analysis, estima-

tions were conducted targeting the COBOL language. In

this analysis, we performed our estimation on COBOL

programs. We are applying the proposed approach to

languages other than COBOL and analyzing whether

accurate estimation results can be obtained in future work.

ACKNOWLEDGMENT

This study benefited greatly from discussions with Katsuro

Inoue (Nanzan University, Japan), Makoto Matsushita (Osaka

University, Japan), and Eiju Ueda (NTT DATA Group, Japan).

REFERENCES

[1] J. Bisbal, D. Lawless, R. Richardson, D. O’Sullivan, B. Wu, J. B.
Grimson, and V. P. Wade, “A survey of research into legacy system
migration,” in Proc. of the International Conference on Informatics and
Analytics, 2007.

[2] M. L. Brodie and M. Stonebraker, “Darwin: On the incremental migra-
tion of legacy information systems,” GTE Laboratories, Inc, Tech. Rep.,
1993.

[3] S. Comella-Dorda, G. Lewis, P. Place, D. Plakosh, and R. Seacord,
“Incremental modernization of legacy systems,” Carnegie Mellon Uni-
versity, Software Engineering Institute’s Digital Library, Tech. Rep.,
2001.

[4] R. Leitch and E. Stroulia, “Assessing the maintainability benefits of
design restructuring using dependency analysis,” in Proc. of METRICS,
2003, p. 309.

[5] D. Cui, L. Fan, S. Chen, Y. Cai, Q. Zheng, Y. Liu, and T. Liu, “Towards
characterizing bug fixes through dependency-level changes in apache
java open source projects,” Science China Information Sciences, vol. 65,
2022.

[6] H. Rebêl, R. M. F. Lima, U. Kulesza, M. Ribeiro, Y. Cai, R. Coelho,
C. Sant’Anna, and A. Mota, “Quantifying the effects of aspectual
decompositions on design by contract modularization: a maintenance
study,” Int. J. Softw. Eng. Knowl. Eng., vol. 23, no. 7, pp. 913–942,
2013.

[7] Y. Cai, R. Kazman, C. V. Silva, L. Xiao, and H.-M. Chen, “Chapter 6
- a decision-support system approach to economics-driven modularity
evaluation,” in Economics-Driven Software Architecture. Morgan
Kaufmann, 2014, pp. 105–128.

[8] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Detecting the lo-
cations and predicting the maintenance costs of compound architectural
debts,” IEEE Trans. Softw. Eng., vol. 48, no. 9, pp. 3686–3715, 2022.

[9] H. Michael Ayas, P. Leitner, and R. Hebig, “An empirical study of the
systemic and technical migration towards microservices,” Empir. Softw.
Eng., vol. 28, no. 85, 2023.

[10] A. Arifoglu, “A methodology for software cost estimation,” SIGSOFT
Softw. Eng. Notes, vol. 18, no. 2, p. 96–105, 1993.

[11] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark,
E. Horowitz, R. Madachy, D. J. Reifer, and B. Steece, Software Cost
Estimation with COCOMO II. Prentice Hall, 2000.

[12] K. Kobayashi, A. Matsuo, K. Inoue, Y. Hayase, M. Kamimura, and
T. Yoshino, “Impactscale: Quantifying change impact to predict faults
in large software systems,” in Proc. of ICSM, 2011, pp. 43–52.

[13] T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Syst.J., vol. 28, no. 2, pp. 294–306, 1989.

[14] C. L. McClure, The three Rs of software automation : re-engineering,
repository, reusability. Prentice Hall, 1992.

[15] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi, “Regression test selection
for java software,” in Proc. of OOPSLA. Association for Computing
Machinery, 2001, p. 312–326.

[16] A. Ko, H. H. Aung, and B. Myers, “Eliciting design requirements for
maintenance-oriented ides: a detailed study of corrective and perfective
maintenance tasks,” in Proc. of ICSE, 2005, pp. 126–135.

[17] L. Briand, Y. Labiche, and G. Soccar, “Automating impact analysis and
regression test selection based on uml designs,” in Proc. of ICSM, 2002,
pp. 252–261.

449

