
Osmy: A Tool for Periodic Software Vulnerability
Assessment and File Integrity Verification using

SPDX Documents
Rio Kishimoto∗, Tetsuya Kanda∗, Yuki Manabe†, Katsuro Inoue‡, Yoshiki Higo∗

∗Osaka University, Japan, {r-kisimt, t-kanda, higo}@ist.osaka-u.ac.jp
†The University of Fukuchiyama, Japan, manabe-yuki@fukuchiyama.ac.jp

‡Nanzan University, Japan, inoue599@nanzan-u.ac.jp

Abstract—Libraries have become integral to modern software
development, yet their management often falls short, resulting
in issues such as delayed responses to vulnerabilities. To address
these issues, the use of a Software Bill of Materials (SBOM)
is recommended. Despite the recommendation, there is a lack
of tools supporting software management using SBOM. In this
paper, we present “Osmy”, a tool designed to facilitate effective
software management using SBOM in the SPDX format—one
of the major SBOM formats. Osmy is designed to simplify and
streamline SBOM-based software management for end users. It
automates vulnerability assessment and file integrity verification,
operating periodically to ensure continuous protection. Users
receive timely notification of any identified issues, ensuring a
proactive approach to software security. Osmy is available at
https://github.com/higolab/Osmy.

Index Terms—SBOM, SPDX, vulnerability

I. INTRODUCTION

In modern software development, developers use third-party
libraries to efficiently reuse common functionalities between
software projects. While the use of a library has the advantage
of shortening development time and reducing development
costs, it also has the disadvantage of incorporating defects con-
tained in the library [10], [18]. Defects affecting the security
of software are called vulnerabilities. When a vulnerability
is discovered, it is necessary to quickly update software to
a non-vulnerable version. However, delays and omissions in
responding to vulnerabilities have become a problem because
the management of third-party libraries used in the project
is not enough [1], [7]. Taking the popular Java-based logging
library Log4j as an example, a serious vulnerability was found
in 2021 [4]. As of the November 2023 statistics, approximately
20% of Log4j downloads in the past month across multiple
countries still comprised outdated versions, persisting with this
identified vulnerability [11].

To address these problems, the use of a Software Bill of
Materials (SBOM) is recommended [17]. An SBOM is a
document that describes the elements such as packages and
documentation that make up a particular piece of software,
their licenses, and the relationships among the elements.
SPDX [12] is one of the open standards for SBOM, and

an SBOM described according to SPDX is called an SPDX
document. Utilizing the information described in an SPDX
document, we can scan vulnerabilities in a piece of software
and the libraries where it depends. Additionally, we can verify
the integrity of its files to ensure the validity of the vulnera-
bility assessment based on the SPDX document. Thus, SPDX
documents are valuable for effective software management.

However, despite the benefits of utilizing SPDX documents
for software management, there is currently a lack of tools
to support this process [20]. In particular, tools for software
end users are lacking. In this paper, we present a tool
called “Osmy”, which makes vulnerability assessment and
file integrity verification based on the information on SPDX
documents easier and more labor-saving for software end
users.

II. OSMY: OVERVIEW

Osmy is a tool that performs periodic vulnerability as-
sessment and file integrity verification of software based on
SPDX documents as shown in Fig. 1. Osmy consists of a
server program and CLI/GUI clients. The server program has
a list of software that is managed by Osmy using SPDX
documents. It performs a vulnerability assessment and a file
integrity verification periodically based on the information
in SPDX documents. It also notifies users of those results
by e-mail. The CLI/GUI clients provide a user interface to
register/update SPDX documents that are used to perform
vulnerability assessments and file integrity verifications. They
also provide a user interface to check those results.

In the following, we explain the methods of vulnerability
assessment and file integrity verification on the server side, and
how to notify users of those results. Client-side functionality
is described in Section III along with a usage scenario.

A. Vulnerability Assessment

Osmy performs vulnerability assessment in two steps: 1)
identification of dependent packages, 2) retrieval of vulnera-
bility information.

Osmy Client

Package
Information

User

Software
List

File Integrity

Verification

Vulnerability
Assessment

OSV
（Vuln DB）

Vulnerability
Information

Automatic Periodic
Execution

Notification

SPDX

Osmy Server

Add

Software

Software
Information

Check

Results

Result

Results

Fig. 1. Overview of Osmy

Package A

Package B

Package E Package C

Package D

Package F

Package G

eab

ebe ebc

ecd

edb

efg

egd

Fig. 2. Example of a dependency graph

1) Identification of dependent packages: Software depen-
dencies consist of runtime dependencies and development-
time dependencies (e.g. packages that only a testing process
depends on). An SPDX document can include information
about packages that are development-time dependencies as
well as information about packages that are runtime depen-
dencies. Vulnerabilities within runtime dependencies impact
software vulnerabilities during runtime, whereas those within
development-time dependencies do not. Therefore, Osmy iden-
tifies runtime dependencies of a piece of software by utilizing
a dependency graph.

A dependency graph is a directed graph representing depen-
dencies between packages. A vertex represents a package and
a directed edge represents dependency between two packages.
An example of a dependency graph is shown in Fig. 2. When
one package directly or indirectly depends on another package,
there is a path between two packages in a dependency graph.
For example, in Fig. 2, there is a directed edge eab from
Package A to Package B, and it means Package A directly
depends on Package B. Also, since there is no path from
Package A to Package G, Package A does not depend directly
or indirectly on Package G.

Osmy creates a dependency graph from relationship infor-
mation described in an SPDX document. Code. 1 shows an
example of a part of an SPDX document in JSON format
that describes relationships between elements. In this exam-
ple, the relationships shown in Fig. 3 are described. In an
SPDX document, a relationship is described using the type of
relationship and the IDs of the two elements involved. The
relationship described in lines 1 through 5 of the Code. 1 says
a package (SPDXRef-RootPackage) depends (DEPENDS) on
another package (SPDXRef-Package-log4net). Lines 6 through
10 indicate that the package (SPDXRef-Package-log4net) de-
pends (DEPENDS) on another package (SPDXRef-Package-

Code. 1
EXAMPLE OF RELATIONSHIPS INFORMATION BETWEEN SPDX ELEMENTS

1 {
2 "relationshipType": "DEPENDS_ON",
3 "spdxElementId": "SPDXRef-RootPackage",
4 "relatedSpdxElement": "SPDXRef-Package-log4net"
5 },
6 {
7 "relationshipType": "DEPENDS_ON",
8 "spdxElementId": "SPDXRef-Package-log4net",
9 "relatedSpdxElement": "SPDXRef-Package-System.Xml.Xml

Document"
10 }

Depends onSPDXRef-
RootPackage Depends onSPDXRef-

Package-log4net

SPDXRef-
Package-System.
Xml.XmlDocument

Package Package Package

Fig. 3. Relationship described in Code. 1

System.Xml.XmlDocument). Using this information, Osmy
creates a dependency graph in two steps. First, it adds all
packages whose information is described in an SPDX doc-
ument as vertices of a graph. Next, it adds edges to the
graph based on relationship information in the document.
In this step, only relationships whose types indicate runtime
dependencies are processed, and relationships whose types
indicate development-time dependencies are ignored. The
types of relationships that indicate runtime dependencies are
shown in Table I, Table II, and Table III. Dependent packages
are identified in the graph by a depth-first search from the
software’s own package (hereafter simply referred to as a root
package). Packages visited during a search are identified as
software’s runtime dependencies because they have paths from
a root package.

2) Retrieval of vulnerability information: For each iden-
tified package that is a runtime dependency, Osmy checks
whether the package contains a vulnerability or not by query-
ing the OSV database [5], which is a database that stores
OSS vulnerabilities. The OSV database is queried via HTTP
communication with the officially provided OSV API. Osmy
fetches vulnerability information of packages by sending a
request to the OSV batch execution API, which performs up to
1000 vulnerability information queries at once, with the name

TABLE I
RELATIONSHIPS THAT A MAY INHERIT A VULNERABILITY THAT B

CONTAINS

Relationship Description

CONTAINS A contains B
DYNAMIC LINK A dynamically links to B
EXPANDED FROM ARCHIVE A is expanded from the archive B
FILE ADDED A is a file that was added to B
GENERATED FROM A was generated from B
PATCH FOR A is a patch file for B
STATIC LINK A statically links to B
HAS PREREQUISITE A has as a prerequisite B
DEPENDS ON A depends on B

TABLE II
RELATIONSHIPS THAT B MAY INHERIT A VULNERABILITY THAT A CONTAINS

Relationship Description

CONTAINED BY A is contained by B
DISTRIBUTION ARTIFACT distributing A requires that B also be distributed
GENERATES A generates B
OPTIONAL COMPONENT OF A is an optional component of B
PATCH APPLIED A is a patch file that has been applied to B
PREREQUISITE FOR A is a prerequisite for B
DEPENDENCY OF A is a dependency of B
OPTIONAL DEPENDENCY OF A is an optional dependency of B
RUNTIME DEPENDENCY OF A is a dependency required for the execution of B

TABLE III
RELATIONSHIPS THAT IF ONE IS VULNERABLE, THEN THE OTHER MAY

ALSO BE VULNERABLE

Relationship Description

COPY OF A is an exact copy of B
PACKAGE OF A is used as a package as part of B
VARIANT OF A is a variant of B

and version of the packages. In addition, since popular libraries
appear in multiple SPDX documents, queries for packages
with the same name and version are combined into a single
query to reduce the number of queries.

B. File Integrity Verification

Osmy checks for tampering and corruption in software files
by verifying the checksum of each file. This ensures the
content of an SPDX document matches the information of
the corresponding installed software.

Osmy verifies the checksum of each file using the infor-
mation described in a file information section of an SPDX
document. This section lists the files composing a piece
of software, along with the name and checksum for each
file. Code. 2 shows an example of the section in an SPDX
document in JSON format. This example shows the informa-
tion of a file whose name is log4net.dll, and the checksum
calculated with SHA-1 is written. The SPDX format permits
the inclusion of multiple hash values, computed using different
algorithms, as the checksum of a file. Specifically, the SHA-1
hash value must be specified. Osmy verifies the integrity of a
file by comparing the SHA-1 hash value recorded in the file
information of an SPDX document with the one calculated
from the actual file on the system. A mismatch indicates
potential tampering or corruption.

C. Notification to Users

Osmy conducts periodic vulnerability assessments and file
integrity verifications, saving the results in a database. Users
can customize the execution intervals for these processes
in Osmy’s configuration file. If the user configures e-mail
notification settings, Osmy sends results to the user by e-mail
when a vulnerability or file integrity error is detected. The
e-mail message provides a summary of the vulnerability as-
sessment or the file integrity verification. When Osmy detects

Code. 2
EXAMPLE OF FILE INFORMATION

1 {
2 "fileName": "./log4net.dll",
3 "SPDXID": "SPDXRef-File--log4net.dll",
4 "checksums": [
5 {
6 "algorithm": "SHA1",
7 "checksumValue": "40fdba136f864c8a2f3e3f9c9e3949

f7582a6077"
8 }
9],

10 "licenseConcluded": "NOASSERTION",
11 "licenseInfoInFiles": ["NOASSERTION"],
12 "copyrightText": "NOASSERTION"
13 }

a vulnerability, the message includes the number and names of
vulnerable software, and when it detects a file integrity error,
the message includes the number and names of software with
file integrity errors. By notifying users when a problem is
found, Osmy helps the user to respond to the problem as soon
as possible.

III. ILLUSTRATIVE USAGE SCENARIO

In this section, we present a usage instance of Osmy to
detect vulnerabilities and file integrity errors in software.
Additionally, we describe the functionality of Osmy’s client
programs along with a usage scenario. As detailed in Sec-
tion II, Osmy has two client programs: a GUI client and a
CLI client. Users have the flexibility to utilize either or both
to add software for management within Osmy. In this scenario,
the user uses the GUI client.

A. Usage Scenario

First, the user configures Osmy. The user sets automatic ex-
ecution intervals of vulnerability assessment and file integrity
verification and e-mail notification settings in the configuration
file of Osmy. After configuration, the user starts the server
program of Osmy.

Next, the user adds software to the list of managed software.
The user uses a client program of Osmy to add software to
the list. The GUI client is shown in Fig. 4. The user can add
software to the list by clicking the “Add” button in the lower-
left corner of the window. When the user clicks the “Add”
button, a dialog to enter software information is displayed
(Fig. 5). The user enters a display name of the software, a

Fig. 4. GUI client

Fig. 5. Dialog to add software

path to an SPDX document of the software, and a path to the
directory where the software is located in the dialog. After
filling in the dialog, the user clicks the “OK” button to add
the software to the list. In this use case, the user adds five
software (ILSpy1, jellyfin2, ScreenToGif3, ShareX4, v2rayN5).
Added software is displayed in the software list on the left
side of the window, and Osmy executes initial vulnerability
assessment and file integrity verification for them.

B. Detected Vulnerabilities and File Integrity Errors

In this section, we illustrate some instances of detected
vulnerabilities and file integrity errors. Fig. 4 shows the client
when Osmy manages the five software. On the left side of the
window, the list of software displays a red bug icon next to the
name of vulnerable software. Similarly, if a piece of software
has file integrity errors, a yellow file icon is shown next to its
name. In this case, the user can see that three software contain
vulnerabilities and one software has file integrity errors. By
selecting a piece of software in the list, the user can check
detailed information about it.

1) Vulnerabilities: Fig. 6 shows the client after selecting the
software with vulnerabilities. In the “Packages” tab, packages
containing vulnerabilities are highlighted in red in the list of
packages. In this example, one of the dependent packages of
ScreenToGif: System.Data.SqlClient with version 4.8.3 con-

1https://github.com/icsharpcode/ILSpy/tree/2ef324515
2https://github.com/jellyfin/jellyfin/tree/cc3d087
3https://github.com/NickeManarin/ScreenToGif/tree/867c5f6
4https://github.com/ShareX/ShareX/tree/d491b1f
5https://github.com/2dust/v2rayN/tree/5ceb638

tains a vulnerability whose IDs are GHSA-8g2p-5pqh-5jmc
and CVE-2022-41064.

2) File Integrity Errors: Fig. 7 shows the client after select-
ing the software with file integrity errors. In the “Files” tab,
the status of a file is indicated by an icon next to the file name.
The green file icon means that the file checksum matches
the legitimate checksum written in the SPDX document. The
yellow file icon means that the file checksum does not match
it, and the dotted file icon means that the file does not exist
nevertheless the SPDX document contains its information. In
this example, ILSpy.dll is corrupted and AvalonDock.dll is
missing.

IV. RELATED WORK

OSV-Scanner [6] and spdx-to-osv [13] are command line
tools to perform vulnerability assessment based on informa-
tion in SPDX documents, which can be easily incorporated
into CI/CD pipelines. Dependency-Track [14] is a software
composition analysis tool, which leverages SBOMs written in
CycloneDX [9] format. These tools are designed for software
developers to manage dependent packages of their software
projects in their development process. In this paper, we de-
scribed Osmy, which is designed for software end users and
provides features for them such as GUI, periodic execution,
and notifications. SBOM’s states of practice and challenges
have been investigated in [3], [8], [15], [16], [20], and Balliu et
al. have investigated the maturity of SBOM producers for Java
projects in [2]. Wermke et al. have discussed security chal-
lenges introduced by adopting open-source components [19].

V. SUMMARY

In this paper, we presented “Osmy”, which automatically
performs software vulnerability assessment and file integrity
verification using SPDX documents periodically. We demon-
strated the use of Osmy to detect vulnerabilities and file
integrity errors in software. We have future work to assess
the effectiveness of Osmy by evaluating its performance and
usability when managing a larger number of SPDX documents
and to improve the user interface to help users prioritize
vulnerabilities.

Acknowledgements

This work was supported by JSPS KAKENHI Grant
Numbers JP23H03375, JP21K02862, JP19K20239,
JP20H04166, JP21K18302, JP21K11829, JP21H04877,
JP22H03567, JP22K11985, and Nanzan University Pache
Research Subsidy I-A-2 for the 2023 academic year.

REFERENCES

[1] M. Alfadel, D. E. Costa, and E. Shihab, “Empirical Analysis of Security
Vulnerabilities in Python Packages,” in Proceedings of the 2021 IEEE
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), 2021, pp. 446–457.

[2] M. Balliu, B. Baudry, S. Bobadilla, M. Ekstedt, M. Monperrus, J. Ron,
A. Sharma, G. Skoglund, C. Soto-Valero, and M. Wittlinger, “Challenges
of Producing Software Bill of Materials for Java,” IEEE Security &
Privacy, pp. 2–13, 2023.

Fig. 6. Packages Tab

Fig. 7. Files Tab

[3] T. Bi, B. Xia, Z. Xing, Q. Lu, and L. Zhu, “On the Way to
SBOMs: Investigating Design Issues and Solutions in Practice,” 2023,
arXiv:2304.13261.

[4] CISA, “Mitigating Log4Shell and Other Log4j-Related Vulnerabilities,”
2021, accesed on 4 November 2023. [Online]. Available: https:
//www.cisa.gov/news-events/cybersecurity-advisories/aa21-356a

[5] Google, “OSV: Open source vulnerability DB and triage service,” https:
//osv.dev/.

[6] ——, “OSV-Scanner,” https://github.com/google/osv-scanner, accesed
on 4 November 2023.

[7] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies?” Empirical Software
Engineering, vol. 23, no. 1, pp. 384–417, Feb. 2018. [Online].
Available: https://doi.org/10.1007/s10664-017-9521-5

[8] S. Nocera, S. Romano, M. D. Penta, R. Francese, and G. Scanniello,
“Software Bill of Materials Adoption: A Mining Study from GitHub,”
in Proceedings of the 2023 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2023, pp. 39–49.

[9] OWASP Foundation, “OWASP CycloneDX Software Bill of Materials
(SBOM) Standard,” https://cyclonedx.org/.

[10] O. P. N. Slyngstad, A. Gupta, R. Conradi, P. Mohagheghi, H. Rønneberg,
and E. Landre, “An Empirical Study of Developers Views on Software

Reuse in Statoil ASA,” in Proceedings of the 2006 ACM/IEEE Inter-
national Symposium on Empirical Software Engineering (ISESE), 2006,
pp. 242–251.

[11] Sonatype, “Log4j Updates and Vulnerability Resources,” accesed on
4 November 2023. [Online]. Available: https://www.sonatype.com/
resources/log4j-vulnerability-resource-center

[12] SPDX Workgroup, “About - Software Package Data Exchange (SPDX),”
https://spdx.dev/about.

[13] ——, “spdx-to-osv: Produce an Open Source Vulnerability JSON file
based on information in an SPDX document,” https://github.com/spdx/
spdx-to-osv, accesed on 4 November 2023.

[14] S. Springett, “Dependency-Track: an intelligent Component Analy-
sis platform that allows organizations to identify and reduce risk
in the software supply chain,” https://github.com/DependencyTrack/
dependency-track.

[15] T. Stalnaker, N. Wintersgill, O. Chaparro, M. D. Penta, D. M. German,
and D. Poshyvanyk, “BOMs Away! Inside the Minds of Stakeholders:
A Comprehensive Study of Bills of Materials for Software Systems,”
2023, accepted to ICSE2024.

[16] The Linux Foundation, “The State of Software Bill of Materials
(SBOM) and Cybersecurity Readiness,” 2022, accesed on 4 November
2023. [Online]. Available: https://www.linuxfoundation.org/research/
the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness

[17] The White House, “Executive Order on Improving the Nation’s
Cybersecurity,” 2021, accesed on 4 November 2023. [Online]. Avail-
able: https://www.whitehouse.gov/briefing-room/presidential-actions/
2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

[18] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu,
and Y. Liu, “An Empirical Study of Usages, Updates and Risks of
Third-Party Libraries in Java Projects,” in Proceedings of the 2020
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2020, pp. 35–45.

[19] D. Wermke, J. H. Klemmer, N. Wöhler, J. Schmüser, H. S. Ramulu,
Y. Acar, and S. Fahl, ““Always Contribute Back”: A Qualitative Study
on Security Challenges of the Open Source Supply Chain,” in 2023
IEEE Symposium on Security and Privacy (SP), 2023, pp. 1545–1560.

[20] B. Xia, T. Bi, Z. Xing, Q. Lu, and L. Zhu, “An Empirical Study on
Software Bill of Materials: Where We Stand and the Road Ahead,” in
Proceedings of the 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), 2023, pp. 2634–2646.

