
Distributed Process Management System
Based on Object-Centered Process Modeling

Makoto Matsushitay Makoto Oshitay

Hajimu Iidaz Katsuro Inouey

yOsaka University zNara Institute of Science and Technology

Abstract. Most of process-centered software engineering environments
and those languages focus on how to produce the product. However, re-
cent software development tend to require to focus on what should be
made, because of emergence of various types of software developments;
e.g., software reuse, component-based composition, and so on. To achieve
this, we propose in this paper a new development environment named
MonoProcess/SME, which is based on an object-centered software pro-
cess model MonoProcess we also propose. MonoProcess consists of a set
of objects which represent artifacts and resources in the software devel-
opment. An object has attributes and methods, which represent charac-
teristics and operations of the object, respectively. MonoProcess/SME
is an software development environment for project management and
development support, using the idea of MonoProcess modeling. Mono-
Process/SME illustrates software development environment as it is, and
provides an environment for software process execution, management,
and improvement.

This paper is submitted to WWCA98.
Correspondence: Makoto Matsushita, Division of Software Science, Department of In-
formatics and Mathematical Science, Graduate School of Engineering Science, Osaka
University, 1-3 Machikayenama, Toyonaka, Osaka 560, Japan.
Phone: +81-6-850-6571, Facsimile: +81-6-850-6574, Email: matusita@ics.es.osaka-u.ac.jp

1 Introduction

Software process description and its enaction help the software development to
proceed e�ectively and to produce high quality software[16, 19, 21]. However,
most of process-centered software engineering environments tend to enforce spe-
ci�c types of development activities to the developer. Also, they require propri-
etary and exclusive systems/environments which are completely di�erent from
existing software development environment [3, 4, 5, 7, 23, 24, 25]. Therefore
those systems are not yet widely used in real software development.

Moreover, most of these software process languages[2] focus on the descrip-
tion of \how to produce a product"; i.e., a procedure of software develop-
ment. However, recent software development methods such as object-oriented
programming, software reuse, component-based programming mainly focus on
\what should be made"; i.e., artifacts in software development environment. In
process-centered software engineering environment, these artifacts-centered idea
of software development should be supported, to make more e�ective support
for software development.

In this paper, we propose a process management system, MonoProcess/SME,
based on our object-centered software process description model, MonoProcess.
We have developed a prototype system of MonoProcess/SME, which contains
essential features for representing and enacting ISPW-6 example problem[20].
The goal of MonoProcess is to illustrate software development environment as it
is, and provide a framework for software process description, management, and
improvement.

MonoProcess consists of a set of objects, which are artifacts and resources in
the software development. An object consists of attributes and methods. An at-
tribute represents characteristic of the object. A method is a function applied to
the objects. MonoProcess provides a feature of grouping any objects, which en-
ables to combine two or more objects into a single object. It also provides object
inheritance to share information between objects. Messages to objects, which
would activate the methods or attribute accesses are recorded automatically as
the operation history of the object. With these features, the status of the software
development environment is easily monitored, and thus MonoProcess/SME pro-
vides helpful information to the project manager. MonoProcess/SME assumes
that it runs under network-based software development environment, and is also
used by the developers to help their work.

The major contributions of MonoProcess and MonoProcess/SME are as fol-
lows:

{ Object-oriented analysis can be imported to process description.
{ Granularity of the object representation is easily managed by using the ob-
ject grouping and inheritance features. Multi-grained operations are estab-
lished straightforward.

{ Any partial information within an object easily extracted.
{ The representation of the objects is
exibly changed corresponding to the
change of the project structure.

{ MonoProcess/SME is easily installed to existing development environments.

This paper is organized as follows. In section 2, we will describe the de�ni-
tions and features of MonoProcess, and we compare our model to other software
process description languages. In section 3, we will explain an idea of MonoPro-
cess/SME, add-on type process management system. Finally, we conclude our
work in section 4.

2 MonoProcess

In this section, we introduce our process model namedMonoProcess. At �rst, the
de�nition of MonoProcess object is presented. Then we will see how the software
process is presented with this model. We also show the feature of MonoProcess.

2.1 Overview

All artifacts and resources in the software development environment is shown
as an Object. Software development environment is de�ned as a set of objects.
Object O is de�ned as fOl;A;Mg, where Ol is an object label, A is a set of
attributes, and M is a set of methods. Ol is a unique name of this object, used
to specify the object.

An attribute of an object is de�ned as fAl;Avg, where Al is an attribute label
and Av is an attribute value. An attribute label is a unique name for attribute
and it indicates what kind of information is needed to the object. Information
itself is represented by the attribute value. The type of the attribute values is
a number, string, label, or list of these types. Some attribute label is already
de�ned in MonoProcess to specify object grouping, etc.

A method is de�ned as fMl;Mvg, where Ml is a method label, and Mv is a
method function. The method label is a unique name for this method function,
showing what operation is done with this method. Actual operation is de�ned by
the method function: a mapping among sets of objects. Operations of the method
function are: to refer/change attribute values, to execute methods, to make new
objects, to get a list of object in the environment, to get a attribute/method list
of certain object, to search objects by attribute/method label/value, to invoke
tools or operations to out of the model, to execute numeric/literal/collection
operation found in common programming languages, and so on.

Figure 1 is an example of MonoProcess object. This description shows an
object of design document named \.Doc.Design".

In this example, four attributes (@Owner, @Type, @Input, and @Location)
are de�ned, to show information about this object. For example, an attribute
@Owner shows who is the responsible person of this document, and is de�ned as
the other object which represents the person. There are two methods, &Edit for
editing this document, and &View for viewing this document.

Object .Doc.Design def

Attribute @Owner .Person.Matsushita;

Attribute @Type "Design Document";

Attribute @Input (.Doc.Specification .Doc.Schedule);

Attribute @Location .ShareDisk.Document

Method &Edit def

$editor = .caller&GetEditor(@Type);

if ($editor) {

&View;

invoke($editor, @Location . "design.doc");

}

endMethod

Method &View def

$viewer = .caller&GetViewer();

if ($viewer) {

invoke($viewer, @Input);

}

endMethod

endObject

Fig. 1. Object sample

2.2 Software Development Process

Partial object Op can be de�ned with respect to a certain object O. Op con-
tains an object label whose pre�x is the same as O, and it includes subset of
attributes/methods of O. Op contains partial information of the target object O,
and it represents a typical characteristics of O, illustrating what we are interested
in.

Now we can de�ne a status object Os, the status of software development
environment, as the set of partial objects. We assume that a status in software
development environment can be illustrated with artifacts in an environment.
In MonoProcess, development process P is de�ned as a transition sequence of
those status objects.

Consider a simple example of three objects, named .SPEC, .CODE, and .TEST,
and these represent a speci�cation, source code, and test result respectively.
Each object has a same attribute label \@FINISHED", which indicates this object
has been completed or not. When we de�ne status object .SAMPLEOBJ as the
collection of attributes @FINISHED of .SPEC, .CODE, and .TEST, we can see the
process as the transition of .SAMPLEOBJ. At �rst, three of all attributes are set to
\false". Next, attribute of .SPEC is changed to \true", and then .CODE is changed
to \true". Finally all attributes are set to \true". Such sequence of .SAMPLEOBJ
instance is a process.

2.3 Features

MonoProcess has various features to support project management, software de-
velopment, and cooperation for developers. In this section, we show these features
with some examples.

Reference Scope of Objects In general, all objects can refer and/or can be
referred to/from other objects. However, each object can set a scope of reference
with object own attribute.

Restriction is speci�ed by \group" and \permitted operation". Group speci-
�es a set of objects, identi�ed by group name. Each object can join the group,
and it is represented as @GROUP attribute. Objects which have no @GROUP at-
tribute, or have an attribute but no values are de�ned, are considered not join
any groups de�ned in other objects.

@ACCESS attribute represents allow/deny operation to this object. There are
four types of operations, \read attribute", \change attribute", \execute method
", \allow inheriting".

@GROUP and @ACCESS are the access control for the object itself. Moreover,
MonoProcess provides par-attribute or par-method access control, in the same
manner of above.

Operation HistoryAn operation to an object such as referring attributes
is processed by sending a message to the object and activating a method of
the object. In the MonoProcess framework, any operation to all objects are
recorded as a history1. Operation history is stored in an attribute, labeled
@ATTRIBUTE.HISTORY or in a method, labeled &METHOD.HISTORY. The attribute
history records a list of labels of the object which operates the attribute, op-
eration time, and the contents of referenced value/changed value. The method
history records a list of labels of the object which executes the method, beginning
and ending time of the execution, and the results of execution.

These histories are automatically recorded, i.e., reading an attribute @X is
really achieved after recording history @X.HISTORY, and executing &Y is really
achieved after recording a history &Y.HISTORY.

Mapping Between a Model to Real Environment We need mapping be-
tween described process model with MonoProcess and the real software devel-
opment environment. The mapping is achieved by the MonoProcess/SME sys-
tem, a software development management environment based on MonoProcess
framework. User interface of MonoProcess/SME is provided to operate objects
themselves. With this interface, the developers can operate objects easily. Peri-
odical search mechanism to �les is used to synchronize automatically between

1 This is possible under our assumption of the granularity of the MonoProcess descrip-
tion. The process descriptions are generally not so in �ne granularity or they do not
create and delete objects seriously as scienti�c calculation.

the model to the real environment. While a method is executed, �les are mod-
i�ed/referenced or tools are invoked. The changes of the status in the model
in
uence to the real environment.

Arbitrary and Multi-Grained Object De�nition In this example (Figure
2), each source code is de�ned as one object (.SRC1 and .SRC2), and these source
codes are a part of one module (.MODULESRC).

Object .SRC1 def

...

Attribute @Location "host/path/to/src1";

Method &MAKEOBJ def

invoke(.COMPILER@Location, @CompileFlags,

.SRC1.OBJ@Components)

endMethod

...

endObject

Object .SRC2 def

...

Attribute @Components "path/to/src2";

Method &MAKEOBJ def

invoke(.COMPILER@Location, @CompileFlags,

.SRC2.OBJ@Components)

endMethod

...

endObject

Object .MODULESRC def

...

Attribute @Components (.SRC1 .SRC2);

Attribute @Location "host/path/to/module";

Method &MAKEOBJ def

foreach $Component (@Components) {

$Component&MAKEOBJ;

}

invoke(.LINKER@Location, @Components, @Location);

endMethod

...

endObject

Fig. 2. Multi-grained objects

In this example, .SRC1/.SRC2 and .MODULESRC have the samemethod \&MAKEOBJ

". However, the behavior is not the same; .SRC1&MAKEOBJ simply performs com-
pilation, however, .MODULESRC&MAKEOBJ executes compilation of each source and
also linking all the source. In MonoProcess, methods with same label could per-
form di�erent activities. This means that MonoProcess supports grain sensitive
operation.

If a developer decided to divide .SRC1 into two sources, .SRC1.MAIN and
.SRC1.SUB, he/she executes an object creation by using a special method .SRC1&FORK
twice and makes new objects, which are managed by .SRC1 object.

Easy Information Extraction We assume that object .FOO has an attribute
.FOO@MAINTAINER, which represents the responsible person of this object. One
day, the responsible person is changed from person A to person B. Later some-
thing wrong with .FOO, and we want to know which is the person in charge.

In MonoProcess, we may check an attribute .FOO@MAINTAINER.HISTORY, to
catch up the transition of value .FOO@MAINTAINER, since if the responsible person
of .FOO was changed, i.e., attribute value of .FOO@MAINTAINER was changed,
.FOO@MAINTAINER.HISTORY was also changed.

Assume there is also object .BAR, which is the same type of object .FOO. If
we decide to trace the change of responsible person, we may say:

StatusObject .MAINTAINER_STATUS def

PObject .FOO.MTSTATUS;

PObject .BAR.MTSTATUS;

endObject

PObject .FOO.MTSTATUS def

Attribute @MAINTAINER;

endObject

PObject .BAR.MTSTATUS def

Attribute @MAINTAINER;

endObject

In this description, two partial objects, .FOO.MTSTATUS and .BAR.MTSTATUS

are de�ned, and using these objects we compose a new status object .MAINTAINER_STATUS.
We can grasp the process by checking the transition of .MAINTAINER_STATUS ob-
ject.

3 Design and Implementation of MonoProcess/SME

3.1 System Design

Figure 3 is the image of MonoProcess/SME system. MonoProcess/SME assumes
that there are already in the network-based environment, co-exists with exist-
ing environment, and works for both developers and project managers. There
are three parts in MonoProcess/SME; repository part, user-interface part, and
method engine part.

TCP/IP
Network

.........

...

...........

......

.........

...

...........

......

User−side
Agent

User−side
Agent

Object Browser Object Browser

Object
Repository

Method EngineMethod Engine

Object Access
Library

HTML Transrator

Fig. 3. MonoProcess/SME

Repository The repository part is for object storage management. It handles
object descriptions, and stores software development project information such
as object operation histories, and is composed of the object repository and the
object access library.

The object repository is a storage of objects. It contains the structure in-
formation de�ned in the objects, attribute values, and method descriptions. In
the viewpoint of the object repository, MonoProcess/SME can be seen as an
object-oriented distributed database system.

The object access library increases accessibility to the object repository.
MonoProcess allows to use two or more languages for the method descriptions,
and the object access libraries have to be prepared for each language. We cur-
rently use language such as Perl-based description language or UNIX shell script.

User-Interface The user-interface part is for interactions between the system
and the users. It provides the feature to browse object repository, execute a
method, and so on. This part is composed of the object browser, user-side agent,
and HTML translator.

The object browser is an user interface of MonoProcess/SME. We employ
a web browser as the object browser, to achieve an interface independence to
the platform. Translating from information in the object repository to web-
browserable form is done in HTML[9] translator. It is embedded in the web
server, performing as the interface to the other parts of the system. The ob-
ject browser may be implemented as a proprietary program, to o�er maximum

strength of object repository operation.
The user-side agent is a back-end processor, and it exists per each user. It

works with the object browser, and collects user-side information, invokes some
tools, and supports user-dependent activities.

Method Engine The method engine part is for interpreter of method descrip-
tion. It works as the core engine of process execution. This part uses/is used
by other two parts. The method engine is description language dependent part,
and it is activated for each method. The method engine uses the object access
library to check/modify the object repository.

3.2 Prototype System of MonoProcess/SME

We have already made a prototype system of MonoProcess/SME, to implement
MonoProcess and its features listed in section 2.3. We employ Perl-based tiny
description language for object description and implementations as the method
engine and the object access library. The translator is the module of Apache[1]
web server. We have used this prototype system to describe ISPW-6 process
modeling example[20] (Figure 4). We also describes a detailed behavior of ISPW-
6 example process to con�rm that MonoProcess/SME provides the facility of
software development support environment.

The description is enacted and the resulting environment established a proper
behavior of the ISPW-6 example[14, 26]. Figure 5 is an sample screen-shot about
using with MonoProcess/SME environment; activities in software development,
such as tool invocation, product passing from an activity to an another activity,
and so on is executed within MonoProcess/SME environment.

4 Conclusion

In this paper, we propose a new development environment MonoProcess/SME,
which is based on an object-centered software process model MonoProcess.

MonoProcess is based on Objects, to represent all artifacts in software devel-
opment environment. In this model, software process is shown as a state transi-
tion of objects. With this model, software process is illustrated clearly; that is
powerful capability of the process management.

MonoProcess/SME is a MonoProcess-based software development environ-
ment. MonoProcess/SME is an \add-on" for current development environment,
and it provides product management and reactive activity execution support.
A prototype system of MonoProcess/SME has been implemented and ISPW-6
example has been described and executed on the prototype.

As a further work, a full implementation of MonoProcess/SME has to be
completed. Validation of our model and more support for process enaction based
on validation is also planned.

Notification
of successful
testing

Requirements change

: Hand carried
: Computer I / O

: E - mail
: Verbal

Project plans

Completion
notification

 Update
project plans

Feedback

Task / schedule
notification

 Outcome
notification

Approved
modified design

Software
design
document
file

Current
design

Current
source code

Modified source /
object code

Object code

Software
development
file

Feedback Current
source code

Feedback

: Modified design Modified test plans

Current
test plans

Test plans file
Test package file

: Current unit test package

Test
results

Modified test plans

Schedule and
Assign Tasks

Monitor
Progress

Review
Design

Modify
Design

Modify
Code

Modify Unit
Test Package Test Unit

Modify
Test Plans

: Modified unit test package

Fig. 4. ISPW6 Process Modeling Example

Fig. 5. Screen-shot of Prototype System

Acknowledgement

We are grateful to Tetsuo Yamamoto and Yutaka Fujiwara for their contribution
of the development of a prototype of MonoProcess/SME.

References

1. Apache Project. Apache HTTP Server Project. hURL:http://www.apache.org/i.
2. P. Armenise, S. Bandinelli, C. Ghezzi, and A. Morzenti. Software Process Repre-

sentation Language: Survey and Assessment. In Proceedings of the 4th Conference
of Software Engineering and Knowledge Engineering, pages 455{462, 1992.

3. S. Bandinalli, E. Nitto, and A. Fuggetta. Supporting Cooperation in the SPADE-1
Enviornment. IEEE Transaction on Software Engineering, 22(12):841{865, 1996.

4. S. Bandinelli, A. Fuggetta, and C. Ghezzi. Software Process Model Evolution
in the SPADE Environment. IEEE Transactions on Software Engineering,
19(12):1128{1144, 1993.

5. S. Bandinelli, A. Fuggetta, and S. Grigolli. Process Modeling in-the-large with
SLANG. In Proceedings of the Second International Conference on the Software
Process, pages 75{83, 1993.

6. N. Barghouti. Supporting Cooperation in the MARVEL Process-Centered SDE.
In Proceedings of the 5th ACM SIGSOFT Symposium on Software Development
Environments, pages 21{31, 1992.

7. I. Ben-shaul and G. Kaiser. A Paradigm for Decentralized Process Modeling and
its Realization in the Oz Environment. In Proceedings of 16th International Con-
ference on Software Engineering, pages 179{188, 1994.

8. I. Ben-Shaul, G. Kaiser, and G. Heineman. An Architecture for Multi-User Soft-
ware Development Environments. In Proceeding of 5th ACM SIGSOFT/SIGPLAN
Symposium on Software Development Environments, pages 149{158, 1992.

9. T. Berners-Lee and D. Connolly. Hypertext Markup Language { 2.0. RFC1866,
1995.

10. B. Curtis, M. Kellner, and J. Over. Process Modeling. Communication of the
ACM, 35(9):75{90, 1995.

11. C. Ellis, S. Gibbs, and G. Rein. Groupware, Some Issues and Experiences. Com-
munications of the ACM, 34(1):38{58, 1991.

12. C. Fernstrom and C. G. Innvation. PROCESS WEAVER: Adding Process Support
to UNIX. In Proceedings of 2nd International Conference on Software Process,
pages 12{26, 1993.

13. A. Fugetta. Functionality and architecture of PSEEs. Information and Software
Technology, 38(4):289{293, 1996.

14. Y. Fujiwara. Software Process Modeling with Objects and its Software Develop-
ment Management System { Repository Implementation and its Application to
ISPW-6 Example {. Bachelor Thesis of Department of Information and Computer
Sciences, Osaka University, 1997.

15. H. Iida, K. Mimura, K. Inoue, and K. Torii. HAKONIWA: Monitor and Naviga-
tion System for Cooperative Development Based on Activity Sequence Model. In
Proceedings of 2nd International Conference on Software Process, pages 64{74,
1993.

16. K. Inoue. Current Research Activities on Software Process. Japan Society for
Software Science and Technology Technical Re port, 95(SP-2-1):1{10, 1995.

17. G. Kaiser, P. Feiler, and S. Popovich. Intelligent Assistance of Software Develop-
ment and Maintenance. IEEE Software, pages 40{49, 1988.

18. T. Katayama. A Hierarchical and Functional Software Process Description and Its
Enaction. In Proceedings of 11th International Conference on Software Engineer-
ing, pages 343{352, 1989.

19. T. Katayama. Software Processes and Their Research Topics. In 11th Conference
Proceedings Japan Society for Software Science and Technology, pages 433{436,
1994.

20. M. Kellner, P. Feiler, A. Finkelstein, T. Katayama, L. Osterweil, M. Penedo, and
H. Rombach. Software Process Modeling Example Problem. In Proceedings of the
6th International Software Process Workshop, pages 19{29, 1991.

21. K. Ochimizu. Survey of Research Activities on Software Process. Journal of In-
formation Processing Society of Japan, 36(5):379{391, 1995.

22. K. Shimamoto, M. Matsushita, H. Iida, K. Inoue, and K. Aoyama. Process Re-
porting Tool Using WWW. Information Processing Sciety of Japan Technical
Report, SE-106:9{16, 1995.

23. S. Sutton Jr., D. Heimbigner, and L. Osterweil. APPL/A: A Language for Soft-
ware Process Programming. ACM Transactions on Software Engineering and
Methodology, 4(3):221{286, 1995.

24. P. Tarr and L. Clarke. PLEIADES: An Object Management System for Software
Engineering. In Proceedings of the First ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, volume 18, pages 56{70, 1993.

25. R. Taylor, F. Belz, L. Clarke, L. Osterweil, R. Selby, J. Wileden, A. Wolf, and
M. Young. Foundations for the Arcadia Environment Architecture. In Proceedings
of 3rd ACM SIGSOFT/SIGPLAN Symposium on Practical Software Development
Environments, pages 1{13, 1988.

26. T. Yamamoto. Software Process Modeling with Objects and its Software Devel-
opment Management System { Modeling and User-Interface Implementation {.
Bachelor Thesis of Department of Information and Computer Sciences, Osaka Uni-
versity, 1997.

This article was processed using the LaTEX macro package with LLNCS style

