
A Token-based Code Clone Detection Tool - CCFinder
and Its Empirical Evaluation

Toshihiro Kamiya†, Shinji Kusumoto†, and Katsuro Inoue†‡

{kamiya, kusumoto, inoue}@ics.es.osaka-u.ac.jp

Abstract

A code clone is a code portion in source files that is identical or similar to another. Since code

clones generally reduce maintainability of software, several code clone detection techniques

and tools have been proposed. This paper proposes a new clone detection technique, which

consists of transformation of input source text and token-by-token comparison. Based on the

proposed code clone detection technique, we developed a tool named CCFinder, which

extracts code clones in C/C++ or Java source files. As well metrics for code clones were

developed. In order to evaluate the usefulness of the tool and metrics, we conducted several

experiments. As the results, the tool found several subsystems in two operating systems,

namely FreeBSD and Linux, that could be traced to the same original. As well, the proposed

metrics found interesting clones in a Java library, JDK.

†Graduate School of Engineering Science, Osaka University

‡Graduate School of Information Science, Nara Institute of Science and Technology

Contact to: Toshihiro Kamiya

c/o Katuro Inoue

Division of Software Science

Graduate School of Engineering Science, Osaka University,

 Machikaneyama-cho 1-3, Toyonaka-city, 860-8531, Japan

 Phone: +81-6-6850-6571, Fax: +81-6-6850-6574

 e-mail: kamiya@ics.es.osaka-u.ac.jp

 Page 1

mailto:kamiya@ics.es.osaka-u.ac.jp

Keywords

Code clone, Duplicated code, CASE tool, Metrics, Maintenance

1 Introduction

A code clone is a code portion in source files that is identical or similar to another. Clones

are introduced because of various reasons such as reusing code by ‘cut-and-paste’ or

intentionally repeating a code portion for performance enhancement[3]. Clones make the

source files very hard to modify consistently. For example, assume that a software system has

several clone subsystems created by duplication with slight modification. When a fault is

found in one subsystem, the engineer has to carefully modify all other subsystems. For a

large and complex system, there are many engineers who take care of each subsystem, and

modification becomes very difficult. Various clone detection tools have been proposed and

implemented [1][3][7][11][14][16], and a number of algorithms for finding clones have been

used for them, such as line-by-line matching for an abstracted source program [1], and

similarity detection for metrics values of function bodies [16].

We were interested in applying a clone detection technique to a huge software system for a

division of government, which consists of millions lines of code in a few thousand modules

written in several programming languages, which was developed more than 20 years ago and

has been maintained continually by a large number of engineers [22]. It is known that there

are many clones inside the system; however the documentation does not provide information

regarding the clones. These clones heavily reduce maintainability of the system; thus an

effective clone detection tool is expected.

Based on such initial motivation of clone detection, we have devised a clone detection

algorithm and implemented a tool named CCFinder (Code-clone finder). The underlying

 Page 2

concepts for designing the tool were as follows.

The tool should have industrial-size strength, and be applicable to million-line size

system within affordable computation time.

•

•

•

The language dependent part of the tool should be limited to small parts, and the tool has

to be easily adaptable to many other languages.

The tool should detect clones of practical interest, not only syntactically same portions,

but also similar portions which are considered to be actual clones have to be effectively

extracted.

We have used a simplified suffix-tree[10] to find clones practically and effectively. Various

optimization techniques were also built into the tool. The tool was initially developed for C

and C++, and then successfully extended to Java by two person days. The tool transforms a

source code with transformation rules so that portions of interest (but syntactically not

exactly identical structures) can be detected and uninteresting portions (even when they

structurally similar) are not detected. The uninteresting clone portions do not contribute to

reduction of total size of code since they are hard to be merged into single portions. It

performs an abstraction of a token sequence called parameter-replacement before executing

the token-by-token matching algorithm. This parameter-replacement is a pre-process of

parameterized-match[1], and is very effective for clones with name substitution. Also,

token-by-token matching algorithms are able to find clones with modified line structures,

which cannot be detected by line-by-line algorithm. Token-by-token matching is much more

expensive than line-by-line matching in computing complexity. However, we propose

several optimization techniques especially for the token-by-token matching algorithm, which

enables the algorithm practically useful for large software.

The clone metrics presented in this paper refer to an equivalence class of clones, and

measure where and how frequently clones appear. The metrics enable to estimate how many

 Page 3

source lines are reduced by removing the clone codes and to evaluate how widely the clones

are spread over the system.

The application of our tool is also a novel contribution of this paper. We have applied

CCFinder on million-lines codes from JDK, Qt, Linux, and FreeBSD, to evaluate its

effectiveness quantitatively and qualitatively. The similarity of Linux and FreeBSD, as well

as nature of JDK, has also been explored. The tool and the metrics have detected clones that

are small in size by themselves but many lines can be removed by rewriting them using a

shared routine.

In Section 2, we introduce the clone-detecting tool dup, which provides a base algorithm

of our clone-detecting technique, after which we describe our clone-detecting approach.

Section 3 defines clones and explains our clone-detecting algorithm. In Section 4, the metrics

of clones are defined, and the clone-detecting approach and the metrics are evaluated

empirically with several software systems of industrial size. Section 5 surveys and discusses

related works. Finally, Section 6 concludes the paper and presents suggestions for future

work.

2 Preliminary

Baker developed tools, named edup and pdup, which extract clones from source files[1].

The input is source files and the output is clones found in the source files. For these tools, a

clone is defined as a pair of subsequent lines, that is, if a sequence of lines is identical or

similar to another sequence of lines, this pair is extracted as a clone. Edup determines that

two lines are equivalent when the pair has exactly the same characters in the same order.

Pdup employs a comparison algorithm called parameterized match and judges that two lines

are equal even if the variables and the functions are renamed.

Our approach presented in this paper concerns the following issues in clone detection.

 Page 4

Identification of structures •

•

•

Our pilot experiment has revealed that certain types of clones seem difficult to be rewritten

as a shared code even if they are found as clones. Examples are a code portion that begins at

the middle of a function definition and ends at the middle of another function definition, and

a code portion that is a part of a table initialization code. For effective clone analysis, our

clone detection technique automatically identifies and separates each function definition and

each table definition code. For comparison, in [1], table initialization values have to be

removed by hand, whereas in [16], only an entire function definition can become a candidate

for clone.

Regularization of identifiers

Recent programming languages such as C++ and Java provide name space and/or generic

type [4]. As a result, identifiers often appear with attributive identifiers of name space and/or

template arguments. In order to treat each complex name as an equivalent simple name, the

clone detecting process has a subprocess to transform complex names into simple form. If

source files are represented as a string of tokens, structures in source files (such as sentences

or function definitions) are represented as substrings of tokens, and they can be compared

token-by-token to identify clones. Identifying structures and transforming names require

knowledge of syntax rules of the programming languages. Therefore, the implementation of

the clone detecting technique depends on the input. The detail of clone detecting process is

described in Section 3.2.

Ranking clones by importance

Large software systems often include many clones, so a clone analysis method must

distinguish important clones from many ‘uninteresting’ clones. The metrics presented in

Section 4.2 enable to identify such important clones: clones that enable large code reduction

by their removal, or clones that have so widely spread in the system that are difficult to find

 Page 5

by hand and to maintain. A certain metric value is used to estimate how many lines of source

files are reduced by making a shared routine of each clone, and another is used to evaluate

how each clone is spread over a software system.

3 Proposed clone-code detection technique

3.1 Definition of clone and related terms

 A clone-relation is defined as an equivalence relation (i.e., reflexive, transitive, and

symmetric relation) on code portions. A clone-relation holds between two code portions if

(and only if) they are the same sequences1. For a given clone-relation, a pair of code portions

is called clone-pair if the clone-relation holds between the portions. An equivalence class of

clone-relation is called clone-class. That is, a clone-class is a maximal set of code-portions in

which a clone-relation holds between any pair of code-portions.

For example, suppose a file has the following 12 tokens:

a x y z b x y z c x y d

We get the following three clone-classes:

C1) a x y z b x y z c x y d

C2) a x y z b x y z c x y d

C3) a x y z b x y z c x y d

Note that sub-portions of code portions in each clone-class also make clone-classes (e.g.

Each of C3 is a sub-portion of C1). In this paper, however we are interested only in maximal

portions of clone-classes so only the latter are discussed.

1 Sequences are sometimes original character strings, strings without white spaces,
sequences of token type, and transformed token sequences. We will discusses how we deal
with such sequences.

 Page 6

In studiers [3][7][11][12][14][16], the clone analyses have been based on clone-pairs. On

the other hand, the clone analysis in [1] has also used clone-classes. The analysis by

clone-classes and the metrics are described in Section 4.2.

Lexical Analysis

Transformation

Detection

Clones on Transformed
Sequence

Formatting

Mapping from Transformed
Sequence into Original

Transformed
Token Sequence

Source files

Clone-pairs

Token Sequence

Clone Detection

Measurement

Clone-classesMetric Values

Figure 1. Clone detecting process

 Page 7

Table 1. Transformation rules for C++

Rule Example and Purpose/Effect

RC1 (Name '::')+ Name2 Name2

Here, the operator +, a postfix operator of

regular expression, means repeat of one or more

times.

std::ios_base::hex is transformed into hex.

In C++ source files, a name may belong to a name space or

a class and can be spelled in full or in shorter form. The

transformation is to neglect the attribution so that they are

considered equivalent in clone detection.

RC2 Name '<' ParameterList '>' Name

Here, ParameterList is a sequence of Name,

Number, String, Operators, ',' and Expression.

Expression is a sequence of tokens which starts

with '(' and ends with the corresponding ')' and

does not include ';'.

sort<int> is transformed into sort.

Template arguments may be omitted because of a type

estimation by the compiler or because of the scope of the

template. The transformation copes with the case.

RC3 '=' '{' InitalizationList, '}'

 '=' '{' UniqueIdentifier '}'

Here, InitalizationList is a sequence of Name,

Number, String, Operators, ',', '(', ')', '{', and '}'.

UniqueIdentifier is a unique token, which never

appears inanother place of a token sequence.

A pilot experiment showed that some tables (such as

character code, color code, and wave table) include a

continuation of a value and regular repeats of some values.

The rule eliminates such large table initialization code.

RC4 Insert UniqueIdentifier at each end of the

top-level definitions and declaration.

This rule prevents extraction of clone-pairs of the code

portions that begin at the middle of a function definition

and end at the middle of another function definition.

3.2 Clone-detecting process

Clone detecting is a process in which the input is source files and the output is clone-pairs.

The entire process of our token-based clone detecting technique is shown in Figure 1. The

process consists of four steps:

(1) Lexical analysis

Each line of source files is divided into tokens corresponding to a lexical rule of the

programming language. The tokens of all source files are concatenated into a single

 Page 8

Table 2. Transformation rules for Java

 # Rule Example and Purpose/Effect

RJ1 (PackageName ‘.’)+ ClassName

 ClassName

Here, PackageName is a word that begins with a

small letter and ClassName is a capitalized word.

java.lang.Math.PI is transformed to Math.PI.

In Java source files, a class is referred to with either the

full package name or a shorter name by using import

sentences. The transformation is to neglect the

attribution so that they are considered equivalent in

clone detection.

RJ2 NDotOrNew NClassName ‘(‘ NDotOrNew

CalleeIdentifier ‘.’ NClassName ‘(‘

Here, NDotOrNew is a token except ‘.’ or ‘new’.

NClassName is an uncapitalized word.

CalleeIdentifier is a token for an omitted callee.

By language specification a method is either an instance

method or a class method. Therefore, if an instance calls

a method without a callee instance or class then the

omitted callee is the instance itself or a class of it.

RJ3 '=' '{' InitalizationList, '}'

 '=' '{' UniqueIdentifier '}'

']' '{' InitalizationList, '}'

 ']' '{' UniqueIdentifier '}'

Here, InitalizationList is a sequence of Name,

Number, String, Operators, ',', '(', ')', '{', and '}'.

UniqueIdentifier is a unique token, which never

appears at another place of a token sequence.

These rules are an expansion of rule RC3. The second

rule is applied where an array is created with

initialization by a new expression. For example,

return new int[] { 1, 2, 3 };.

RJ4 Insert UniqueIdentifier at each end of the top-level

definitions and declaration.

This rule prevents extracting clone-pairs of the code

portions that begin at the middle of a class definition and

end at the middle of another class definition.

token sequence, so that finding clones in multiple files is performed in the same way as

single file analysis. At this step, the white spaces between tokens are removed from the

token sequence, but the spaces are sent to the formatting step to reconstruct the original

source files.

(2) Transformation

The token sequence is transformed by subprocesses (2-1) and (2-2) described below. At

 Page 9

the same time, the mapping information from the transformed token sequence into the

original token sequences is stored for the later formatting step.

(2-1) Transformation by the transformation rules

The token sequence is transformed, i.e., tokens are added, removed, or changed based

on the transformation rules. Table 1 and Table 2 show the transformation rules aiming

at regularization of identifiers (RC1, RC2, RJ1, and RJ2) and identification of

structures (RC3, RC4, RJ3, and RJ4).

(2-2) Parameter replacement

 After step 2-1 each identifier related to types, variables, and constants is replaced

with a special token (this replacement is a preprocess of the ‘parameterized match’

proposed in [1]). This replacement makes code-portions in which variables are

renamed to be equivalent token sequences.

(3) Detection

From all the substrings on the transformed token sequence, equivalent pairs are detected

as clone-pairs. Each clone-pair is represented as a quadruplet (cp, cl, op, ol), where cp
1 void print_lines(const set<string>& s) {
2 int c = 0;
3 set<string>::const_iterator i
4 = s.begin();
5 for (; i != s.end(); ++i) {
6 cout << c << ", "
7 << *i << endl;
8 ++c;
9 }
10 }
11 void print_table(const map<string, string>& m) {
12 int c = 0;
13 map<string, string>::const_iterator i
14 = m.begin();
15 for (; i != m.end(); ++i) {
16 cout << c << ", "
17 << i->first << " "
18 << i->second << endl;
19 ++c;
20 }
21 }

Figure 2. Sample code

 Page 10

and op are, respectively, the position of the first and second portion, and cl and ol are

their respective lengths.

(4) Formatting

Each location of clone-pair is converted into line numbers on the original source files.

Figure 2 shows an example input of a C++ source to explain the clone-detecting process.

The numbers at the left of the figure are line numbers. The input is divided into tokens. The

token sequence transformed by the transformation rules is shown in Figure 3. Lines 1, 3, 11,

and 13 become shorter. After this step the token sequence is transformed by

parameter-replacement, again. The same code after parameter-replacement is shown in

Figure 4. Identifiers are replaced with a token $p in the sample. At last, clone-pairs, i.e.

equivalent substrings in the token sequence, are identified. Let ti denote the i-th token (1 <= i

<= 114) in the token sequence in Figure 4, and let us make a matrix { dxy }, here dxy = 1 if tx is

equal to ty, 0 otherwise. The part of the matrix is shown in Figure 5. In this figure, we place

‘*’ for dxy = 1 when x > y. Since it always holds that dxy = dyx (symmetric) and dxx = 1, we
1 void print_lines (const set & s) {
2 int c = 0 ;
3 const_iterator i
4 = s . begin () ;
5 for (; i != s . end () ; ++ i) {
6 cout << c << ", "
7 << * i << endl ;
8 ++ c ;
9 }
10 }
11 void print_table (const map & m) {
12 int c = 0 ;
13 const_iterator i
14 = m . begin () ;
15 for (; i != m . end () ; ++ i) {
16 cout << c << ", "
17 << i -> first << " "
18 << i -> second << endl ;
19 ++ c ;
20 }
21 }

Figure 3. The transformed code by the transformation rules

 Page 11

place nothing for dxy = 1 when x <= y. A clone-pair is found as a line segment of ‘*’ that is

parallel to the main diagonal of the matrix. The code portions from line 1 to 7 and from line

11 to 172 make a clone-pair. The code portions from line 8 to 10 and from 19 to 21 make

another clone-pair. The lines 9, 10, 20, and 21 make a clone-class, but they are very short and

trivial and should be filtered out by assigning a minimum length for clone.

Here, a clone-relation is specified with the transformation rules and the

parameter-replacement described above. Other clone-relations are derived with a subset of

the transformation rules and neglection of the parameter-replacement. In the experiments

described in Section 4, a clone-relation with all the transformation rules is compared to a

clone-relation with a subset of the transformation rules.

1 $p $p ($p $p & $p) {
2 $p $p = $p ;
3 $p $p
4 = $p . $p () ;
5 for (; $p != $p . $p () ; ++ $p) {
6 $p << $p << $p
7 << * $p << $p ;
8 ++ $p ;
9 }
10 }
11 $p $p ($p $p & $p) {
12 $p $p = $p ;
13 $p $p
14 = $p . $p () ;
15 for (; $p != $p . $p () ; ++ $p) {
16 $p << $p << $p
17 << $p -> $p << $p
18 << $p -> $p << $p ;
19 ++ $p ;
20 }
21 }

Figure 4. The code after parameter-replacement

2 More strictly, “…from line 11 to the first token in line 17 and from line 1 to the first token in
line 7 make …”. The tool reports the locations of clones by line number.

 Page 12

3.3 The implementation techniques of tool CCFinder

Tool CCFinder was implemented in C++ and runs under Windows 95/NT 4.0 or later.

CCFinder extracts clone-pairs from C, C++ and Java source files. The tool receives the paths

of source files from the command-line (or text files in which the paths are listed), and writes

the locations of the extracted clone-pairs to the standard output. Figure 6 shows an example

of the output for the sample code. In this case, the user specified for CCFinder to extract

clone-pairs that have three or more lines, and the tool reports two clone-pairs (shown at line

14 and 15). The option –b at line 3 shows that the user specifies for the tool to extract

9 10 20 21

$p $p ($p $p & $p) { $p $p = $p ; $p $p = $p . $p () ; fo
r

(; $p != $p . $p () ; ++ $p) { $p << $p << $p << * $p << $p ; ++ $p ; } } $p $p ($p $p & $p) { } }

$p
$p *
(
$p * *
$p * * *
&
$p * * * *
)
{

9 }
10 } *

$p *
$p *
(* * * *
$p *
$p *
& *
$p *
) * * * *
{ * *
$p *
$p *
= * *
$p *
; * * * * * *
$p *
$p *
= * *
$p *
. * *
$p *
(* * * * *
) * * * * *
; * * * * * *
for *
(* * * * *
; * * * * * *
$p *
!= *
$p *
. * *
$p *
(* * * * *
) * * * * *
; * * * * * *
++ * *
$p *
) * * * * *
{ * * *
$p *
<< * * * *
$p *
<< * * * *
$p *
<< * * * *
$p *
->
$p *
<< * * * *
$p *
<< * * * *
$p *
->
$p *
<< * * * *
$p *
; * * * * * *
++ * *
$p *
; * * * * * *

20 } * *
21 } * * *

18

19

14

15

16

17

11

12

13

1

115 6 7 81 2 3 4

Figure 5. Matrix to show the scatter plot token-by-token

 Page 13

clone-pairs that have at least 3 LOC(lines of code). The examples between LOC and

clone-pairs are shown in experiments in Section 4

The straightforward clone-detecting algorithm for n tokens with matrix requires the time

complexity of O(n2). A data structure called suffix-tree is devised to detect clone-pairs and it

requires O(n) time complexity[1][10]. CCFinder employs a relaxed algorithm of O(n log n)

time using a suffix-tree, which is not only easily implemented but also practically efficient.

In Section 4, we will show that our tool can analyze millions of lines in moderate time.

The optimizations employed by CCFinder for large source files are the following:

Filtering by header tokens •

We would like to extract the code portions that make real sense as a clone-pair. As a simple

filtering for this purpose, the clone-detection algorithm distinguishes "header" tokens. A

header token is defined as the token that can be the first token of code portions of code-pairs.

For example, on detecting clone-pairs in C/C++ source files, tokens, “#”, “{”, and “(” are

header tokens by themselves. Also, the successors of “:”, “; ”, “)”, “}”, and ends-of-line of

a preprocessor directive become header tokens. This filtering reduced the number of tokens

1 #version: ccfinder 2.1
2 #option -s: l
3 #option -b: 3
4 #option -k: +
5 #option -rC: ab-dfikmnpst
6 #option -rJ: ab-cdfikmnprs
7 #option -c: wfg
8 #begin{file description}
9 0.0 22 sample.cpp
10 #end{file description}
11 #begin{syntax error}
12 #end{syntax error}
13 #begin{clone}
14 0.0:1-7, 0.0:11-17, 7
15 0.0:8-10, 0.0:19-21, 3
15 #end{clone}

Figure 6. The output of CCFinder for the sample code

 Page 14

inserted into suffix-tree by factor 3 in either C/C++ or Java source file, in the experiments

described in Section 4.

Repeated code skipping •

Repetition of a short code portion tends to generate many clone-pairs, but such clone-pairs

are reconstructed by information about which code portion is repeated and where the

repetition occurs. For example, consider the following code.

 ...

 a1: case '0':

 a2: value = 0;

 a3: break;

 a4: case '1:

 a5: value = 1;

 a6: break;

 ...

a46: case 'f':

a47: value = 15;

a48: break;

 ...

From this code section, only one clone-pair, (a1-a45, a4-a48), is extracted as a maximal

clone-pair. Now consider that the following code section is also included in the target source

files;

b1: case 'a':

b2: flag = 2;

b3: break;

 In this case 17 code portions make a clone-class, { a1-a3, a4-a6, ..., a46-a48, b1-b3 }, in

 Page 15

which each pair of the code portions makes a clone-pair, thus the number of maximal

clone-pairs are 136 = 17C2 = 17 (17 - 1) / 2, in total. To avoid this explosion of clone-pairs,

a heuristic approach is introduced. Upon building a suffix-tree, if a repetition of a1-a3 is

found at a4, the succeeding repetition section a4-a48 is intentionally not inserted in the tree,

so that the 136 clone-pairs are not being reported. However, the two clone-pairs, (a1-a45,

a4-a48) and (a1-a3, b1-b3), are still extracted, which offers enough information to

reconstruct the 136 clone-pairs.

Integer token •

•

A token is represented by a serial number, not as a string or a hash-value. This optimization is

enabled by parameter-replacement, which causes a token sequence to consist of only limited

kinds of tokens. Otherwise, a set of tokens is infinite in general, thus the tool should use

string or hash-value as a representation of a token, which would cost higher time and space in

clone detection.

Division of large source

If the total size of source files is too large to build a single suffix-tree on primary store, the

tool prepares a ‘divide and conquer’ approach. The input source files are divided into disjoint

subsets. For each pair of the subsets, a sub suffix-tree is built to extract clone-pairs. The total

collection of clone-pairs is the final output. Let m be the number of subsets of source files,

and then number of pairs of the subsets (and thus sub suffix-trees) is mC2, therefore the time

complexity becomes O(m2). As a practical example, in the experiment in Section 4.5, source

files had about 3 million LOC and were divided into 4 subsets, and this has not caused a

serious fall in performance.

By the definition of clone-pair and clone-class, for any clone-pair, the substrings on its

code portions become a clone-pair. CCFinder does not report such ‘substring’ clone-pairs.

 Page 16

4 Experiment

The purpose of the experiment was to evaluate our token-based clone-detecting technique

and the metrics. The target source files have ‘industrial’ size and are widely available. The

person who performed the analysis did not have preliminary knowledge about the source

files; consequently the following results are obtained purely by the analysis with the tool and

metrics. In all the following experiments, tool CCFinder was executed on a PC with Pentium

III 650MHz and 1GB RAM.

0 500

500

0
400300200100

k LOC

400

300

200

100

k LOC

A

B

Figure 7. Scatter plot of clones over 20 lines in JDK

 Page 17

4.1 Clones in a Java library, JDK

JDK 1.2.2 [23] is a commonly used Java library and the source files are publicly available.

Tool CCFinder has been applied to all source files of JDK excluding examples and demo

programs, which are about 500k lines in total, in 1648 files. It takes about 3 minutes for

execution on the PC. Figure 7 shows a scatter plot of the clone-pairs having at least 20 lines

of code (LOC). Both the vertical and horizontal axes represent lines of source files. The files

are sorted in alphabetical order of the file paths, so files in the same directory are also located

near on the axis. A clone-pair is shown as a diagonal line segment. Only lines below the main

diagonal are plotted as mentioned in Section 3.2. In Figure 7, each line segment looks like a

dot because each clone-pair is small (several decades lines) in comparison to the scale of the

axis. Most line segments are located near the main diagonal line, and this means that most of

the clones occur within a file or among source files at the near directories.

Crowded clones marked A in the graph correspond to 29 files of src/ javax/ swing/

 31| */
 32| public class MultiButtonUI extends ButtonUI {
 33|

160| public static ComponentUI createUI(JComponent a) {
161| ComponentUI mui = new MultiButtonUI();
162| return MultiLookAndFeel.createUIs(mui,
163| ((MultiButtonUI) mui).uis,
164| a);
165| }
(a) MultiButtonUI.java

 31| */
 32| public class MultiColorChooserUI extends ColorChooserUI {
 33|

160| public static ComponentUI createUI(JComponent a) {
161| ComponentUI mui = new MultiColorChooserUI();
162| return MultiLookAndFeel.createUIs(mui,
163| ((MultiColorChooserUI) mui).uis,
164| a);
165| }
(b) MultiColorChooserUI.java

This two files are identical except three identifiers shown in bold style.

Figure 8. A pair of similar source files found in JDK

 Page 18

plaf/ multi/ *.java. These files are very similar to each other and some of them

contain an identical class definition except for their different parent classes.

Figure 8 shows parts of the two files, as examples, MultiButtonUI.java and

MultiColorChooserUI.java, and the differences are only in lines 32, 161, and 163.

According to the comments of the source files, a code generator named AutoMulti creates

the files. To modify these files, the developer should obtain the tool (the tool is not included

in JDK), edit, and apply it correctly. If the developer does not use the tool, he/she has to

update all the files carefully by hand. As the example shows, the modification of clones

needs extra work. In this case, these clones are easily rewritten with a shared code if the

programming language would support generic type [4].

The longest clone (349 lines) is found within src/ java/ util/ Arrays.java

(marked B in Figure 7). Methods named “sort” have 18 variations for signatures (number

and types of arguments), and they use identical algorithm/routine for sorting.

4.1 Evaluation of transformation rules for JDK

In Section 3.2, we also proposed the transformation rules for Java. To evaluate

effectiveness of the transformation rules, we have applied CCFinder with some of their

transformation rules disabled. Figure 9 shows the histogram of detected clone-pairs when

some of rules are applied. PR+1234 means that the parameter-replacement and all rules (RJ1,

RJ2, RJ3, and RJ4) are applied (i.e. original CCFinder). Exact Match means that no

parameter-replacement or no transformation is applied. This figure shows that the longer the

clone length is, the smaller its occurrence becomes. A noticeable peak around 80 LOC is a set

of clone-pairs found in files generated by AutoMulti, which cannot be detected by Exact

Match by the reason mentioned above. In this experiment, the clone-pairs found by PR+1234

are much fewer than with PR+124. This means that rule RJ3 removes many table

initialization codes.

 Page 19

The case PR+1234 extracted 2111 clone-pairs and PR+34 extracted 2093 clone-pairs.

There are several clone-pairs that can be detected by introducing RJ1 and RJ2. Figure 10

shows one such code portion. The lower code portion has a method call with a class name

(Utility.arranRegiionMatches), while the upper code portion has a call without

0

200

400

600

800

1000

1200

1400

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

10
0.

.

Length of clones (LOC)

O
cc

ur
en

ce

PR+1234
PR+124
PR+34
Exact Match

“PR+1234” means that parameter-replacement and the transformation rule RJ1, RJ2, RJ3,
and RJ4 are applied.

Figure 9. Occurences against length of clone-pairs in JDK

if (hashes[i] == hashes[j] &&
arrayRegionMatches(values, iBlockStart,
values, jBlockStart, BLOCKCOUNT)) {

indices[i] = (short)jBlockStart;
break;

}
if (hashes[i] == hashes[j] &&

Utility.arrayRegionMatches(values, iBlockStart,
values, jBlockStart, BLOCKCOUNT)) {

indices[i] = (short)jBlockStart;
break;

}

Figure 10. Part of a clone-pair captured by rule RJ2

 Page 20

class name (arrayRegionMatches). In the case of Exact Match, only a small number of

clone-pairs are found. The “exact” clone-pairs are obvious candidates to be rewritten as a

shared code. However, our transformation and parameter replacement approach finds more

subtle clone-pairs so that the chances to rewrite and reorganize overall structures of software

systems become higher.

4.2 Analysis using clone metrics

We define several metrics for clone-classes in order to find important clone-classes, which

enable us to perform large code reduction. Also, we use metrics to find clone-classes that are

widely spread over a system.

Radius of clone-class; RAD(C)

For a given clone-class C, let F is a set of files which include each code portion of C.

Define RAD(C) as the maximum length of path from each file F to the lowest common

ancestor directory of all files in F. If all code portions of C are included in one file, RAD(C)

= 0. In Figure 11, RAD({4:a, 5:a, 8:a }) = 3 since their lowest common ancestor is 1 and

the maximum path length from directory 1 to each file is 3 for file 4. Note that RAD({ 10:d,

10:d }) = 0 since the lowest common ancestor is file 10 itself.

a

a

b

b

c c

d
d

a

directory

file

clone

1

2

3

4

5 6

7

8

9

10

Clone-class C RAD(C)

{ 4:a, 5:a, 8:a } 3

{ 5:b, 6:b } 1

{ 6:c, 8:c } 2

{ 10:d, 10:d } 0

Figure 11. Radius and population of clone-class

 Page 21

If a clone-class has a large RAD, the code portions widely spread over a software

system, and it would become difficult to find those clones and maintain their consistency

correctly, since such different subsystems are likely to be maintained by different

engineers.

Length; LEN(C), LEN(p)

LEN(p) is the number of lines of a code portion p. LEN(C) for clone-class C is the

maximum LEN(p) for each p in C.

Population of clone-class; POP(C)

POP(C) is the number of elements of a given clone-class C.

A clone class with a large POP means that similar code portions appear in many places.

Deflation by clone-class; DFL(C)

Combination of LEN and POP gives an estimation of how many lines would be removed

from source files by rewriting each clone-class as a shared code. Suppose that all

code-portions of a clone-class C are replaced with caller statements of a new identical

routine (function, method, template function, or so) and that this caller statement is one

line. In this case LEN(C) POP(C) lines of code are occupied in the original source files.

In the newly restructured source files, they occupy POP(C) lines for caller statements and

LEN(T) for a callee routine. Now let us define a metric DFL3 as a rough estimator of

reduced source lines:

DFL(C) = (old LOC related to C) – (new LOC related to C)

= LEN(C) POP(C) – (POP(C) + LEN(C))

= (LEN(C) – 1) (POP(C) – 1) – 1,

3 A similar metric is used in [1], which estimates how many lines are removed in total by
rewriting all clone-classes.

 Page 22

1

10

100

1000

10 100 1000
ＬＥＮ (LOC)

PO
P

Clone-classes of the top
30 in DFL values
The other clone-classes

Figure 12. Population and length of clone-classes in JDK

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8

RAD

LE
N

 (L
O

C
)

Figure 13. Length and radius of clone-classes in JDK

 Page 23

Note that DFL(C) >= 0, for all clone-classes C that satisfy LEN(C) >= 2 and POP(C) >= 2.

Applying Metrics to JDK

The data of JDK were analyzed using the metrics. Figure 12 shows the LEN and POP

parameters of each clone-class. The set of clone-classes with the highest 30 DFL values is

obviously different from the set with the highest LEN values or the set with the highest POP

values. By investigation of source files, the clone-classes of the top 30 DFL values are

classified into the following four types:

Source files generated by AutoMulti (10 clone-pairs) •

•

•

•

Part of a switch/case statement which seems to be easily rewritten by an array (3

clone-pairs)

Routines to apply one algorithm to many data types, that could be rewritten by generic

type (5 clone-pairs)

Instantiations of definitional computations (e.g. methods in order to put or get a value of

an instance value and methods in order to change signature or private/public

accessibility of the other methods) (12 clone-pairs)

Figure 13 shows the RAD and LEN parameters of each clone-class. Except for

clone-classes whose RAD values are 7, most clone-classes with high LEN have small RAD

value. That is, in most cases, a clone occurs between files at near directories. One of the

reasons would be that copying a code portion from a distant file is a time consuming job

because developer needs to search for the target code portion through many files. Another

reason would be that the nearer files are more likely to implement similar functionalities.

As for all clone-classes whose RAD values are 7, 6, or 5, we investigated all the

corresponding source files. All code portions of 7 are found in ‘swing’ subsystem, which

has source files located at distant directories, src/ com/ sun/ java/ swing and src/

javax/ swing. If the all files and subdirectories in the former are moved to the latter, the

 Page 24

RAD values must be 3. The clone-classes of 6 and 5 are classified as access methods. We

investigated clone-classes of 4 and found a clone-pair created in cut-and-paste style, within

src/ javax/ swing/ event/ SwingPropertyChangeSupport.java and src/

java/ beans/ PropertyChangeSupport.java. A class

SwingPrpertyChangeSupport is directly derived from a parent class

PropertyChangeSupport, and it contains methods to override those of the parent, but

each overridden method is equivalent to the original. The reason for cloning is performance

enhancement (the detail is described in the comment of

SwingPropertyChangeSupport). Therefore, a careful modification process would be

required for each of them.

4.3 Applied to a C++ library, Qt

To evaluate the token-based comparison for C++ source code, CCFinder was also applied

to a C++ GUI framework, Qt 2.0.2 [18], which is about 240k lines in total, in 480 source files.

Execution on the PC takes less than one minute. Figure 14 shows the number of clones for

0

20

40

60

80

100

120

140

160

180

200

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

10
0.

.

Length of clones (LOC)

O
cc

ur
re

nc
e

PR+1234
PR+124
PR+34
Exact Match

Figure 14. Occurrences against length of clone-pairs in Qt

 Page 25

Table 3. Subsystems cloned between operating systems

Subsystem Linux files FreeBSD files
zlib arch/ppc/coffboot/zlib.c

drivers/net/zlib.c
lib/libz/adler32.c
lib/libz/deflate.c
lib/libz/infblock.c
lib/libz/infcodes.c
lib/libz/inffast.c
lib/libz/inflate.c
lib/libz/inftrees.c
lib/libz/trees.c
sys/net/zlib.c

rocket drivers/char/rocket.c sys/i386/isa/rp.c
awe_wave drivers/sound/lowlevel/awe_wave.c sys/gnu/i386/isa/sound/awe_wave.c
mpu401 drivers/sound/mpu401.c sys/i386/isa/sound/mpu401.c
sequencer drivers/sound/sequencer.c sys/i386/isa/sound/sequencer.c

each subset of rules. PR+1234 means that the parameter-replacement and all rules (RC1,

RC2, RC3, and RC4) are applied. The difference between PR+1234 and PR+124 tells that

RC3 removes many table initialization codes. By comparison of PR+1234 and PR+34, we

know that RC1 and RC2 extract clone-pairs in the code, which uses templates and

namespaces.

4.4 Application of CCFinder to Linux and FreeBSD systems

CCFinder was applied to million lines of code from two operating systems, Linux 2.2.14

[15] and FreeBSD 3.4 [8]. The purpose of this experiment was to investigate where and how

similar codes are used between two operating systems. Linux and FreeBSD are well known

Unix systems and have independent kernels written in C. The target is the source files of

kernel and device-drivers, 2095 .c files of 1.6 million lines in Linux, and 2906 .c files of

1.3 million lines in FreeBSD. Clone-pairs with 20 LOC or more between two systems are

extracted. This operation takes about 40 minutes on the PC.

By investigation of source codes corresponding to the clone-classes of top 30 lengths, such

clones belong to 5 files or subsystems, shown in Table 3. The 3 subsystems, awe_wave,

 Page 26

mpu401, and sequencer contain files with identical names between two OS’s; therefore

the mapping of the two OS’s for the subsystems could be identified by analysis of file names.

On the other hand, ‘rocket’ files have different names, rocket.c and rp.c, so that the

identification of the mapping is more difficult.

In case of subsystem zlib, the situation is more complex. Linux has two different files

with the same name. FreeBSD has 9 files. Figure 15 shows a scatter plot among the files that

have any clones in ‘zlib’ files. A in the graph shows, Linux has two files named zlib.c,

and drivers/net/zlib.c includes all lines of arch/ppc/coffboot/zlib.c. In

FreeBSD system, sys/net/zlib.c is equal to a concatenation of eight lib/libz/*.c

arch/ppc/coffboot/
zlib.c

drivers/net/
zlib.c

lib/libz/
{adler.c, deflate.c,

infblock.c,
infcodes.c,

inffast.c, inflate.c,
inftrees.c, trees.c}

sys/net/zlib.c

ar
ch

/p
pc

/c
of

fb
oo

t/
zl

ib
.c

dr
iv

er
s/

ne
t/

zl
ib

.c

lib
/li

bz
/

{a
dl

er
.c

, d
ef

la
te

.c
,

in
fb

lo
ck

.c
, i

nf
co

de
s.c

,
in

ff
as

t.c
, i

nf
la

te
.c

,
in

ftr
ee

s.c
, t

re
es

.c
}

sy
s/

ne
t/z

lib
.c

Linux

FreeBSD

Linux FreeBSD

A

BC

Figure 15 Clones among zlib subsystems.

 Page 27

files, as shown by B in the graph. In both operating systems (OS’s), the largest zlib.c files

contain complete source for ‘zlib’ subsystem while the other files contain part of the

subsystem. The two largest zlib.c files are almost identical between Linux and FreeBSD,

as shown by C.

5 Discussion and Comparison with Related Works

5.1 Clone Detection Using AST

Baxter et al. proposed a technique to extract clone-pairs of statements, declarations, or

sequences of them from C source files[3]. The tool parses source code to build an abstract

syntax tree (AST), and compares its subtrees by hash values. The parser needs a

‘full-fledged’ syntax analysis for C to build AST. The clone detecting method works in

bottom-up way; that is, the tool first finds small clone-pairs such as an expression and a

statement, then it gathers the small clones to find larger clone-pairs such as a block and a

function. There are no transformation rules as our tool has. Our transformation rules help to

find more practically useful clones.

Baxter’s tool expands C macros (define, include, etc) to compare code portions

written with macros. The tool also detects clone-pairs in which operands are re-ordered.

These features aim at some ‘semantic’ comparison, brought by the knowledge of the

programming language. Therefore, the usrs have to know what dialect of C is used in source

files, and also need consistent source files just like in source code computation. Our

clone-extracting technique, which does not employ AST or macro-expansion, has robustness

for incorrect source codes, flexibility regardless of dialect of the programming languages,

and easy adaptability for various programming languages. Moreover, our tool has ability to

cope with the context of tokens and the omitted tokens. Though our tool has no ability to

identify clone-pairs in which expressions are re-ordered, a ‘match with hole’ technique

 Page 28

described below will be complement.

5.2 An approach to calculate match with hole

Duploc[7], a clone-extractor, extracts clone-pairs of sequences of lines from source files in

various programming languages. It transforms lines in an input to eliminate white-spaces and

comments, and compares lines to identify clone-pairs. The tool captures clone-pairs

including unmatched lines (called holes). Duploc also offers a visual support for clone

analysis. Its user can click the scatter plot to edit code sections of clone.

Duploc employs a simple transformation rule, e.g. neglect too commonplace lines such as

break;. However, it does not handle the cases for which our transformation rules are

applied.

5.3 Abstraction and annotation

The clone-detecting method proposed in [16] uses a representation named Intermediate

Representation Language (IRL) to characterize each function in the source code. A clone is

defined as a pair of the function bodies that have similar metric values.

A tool named QBO [2] stores outline of source code (a kind of abstracted representation of

source code) and answers queries on the outline. There are many other tools that analyze and

store abstracted information of source code. For example, a metric tool[17] inputs source

code and outputs metric values that express some characteristics of the source code. A

reverse engineering method[21] and tool[19], which extract a design of software from source

code, hides detail of the source code. Also, a general framework named GENOA for such

code analyzers has been developed[6]. Essentially, these tools remove information of no

interest from the source code. As the alternative approach, there is a tool [20] that adds

annotations to source code, which are obtained through analysis of the source code. Such

annotation tools do not remove any information from the source code, so that they are useful

both as a supporting tool for human understanding and as a preprocessor of the other tools.

 Page 29

5.4 Clone analysis over versions

In [14], Laugë et al. performed tracking of clones over versions of a system, using the

clone-detecting technique presented [16].

In [12], Johoson examined changes between two versions of a compiler gcc[9], with

clone-pairs of line sequences. As for gcc, another approach to compare versions is studied in

[5]; Burd and Munro observed large-scale changes to occur between version 2.7.2 and 2.8.0

of gcc, by using dominance relation of functions.

6 Conclusions and Further Works

 In this paper, we presented a clone detecting technique with transformation rules and a

token-based comparison. We also proposed metrics to select interesting clones. They were

applied to several industrial-size software systems in the experiments. An experiment to

compare two OS’s found several subsystems that would come from a same original. Some of

them have distinct file names between OS’s, and some are duplicated with in a system.

The current clone-detection approach does not intend to compare source files using two or

more programming languages. However, today some software systems are implemented in

multi-languages (e.g. Java, SQL, HTML, and etc). We started to survey intermediate

representations such as those mentioned in [2][13][16][24][25], which are suitable to

compare source files in various programming languages and plan to develop a

clone-detecting tool which can be used to compare versions of a particular software system

when the new version is rewritten by a different methodology or in a different programming

language.

References

[1] B. S. Baker, “On finding Duplication and Near-Duplication in Large Software System”,

 Page 30

Proc. Second IEEE Working Conf. on Reverse Eng., pp. 86-95 Jul. 1995

[2] F. Balmas, “Query by Outlines: a new paradigm to help manage programs”, Proc. of

ACM SIGPLAN-SIGSOFT Program Analysis for Software Tools and Engineering

(PASTE) ’99, pp. 86-94. Toulouse, France. Sep. 1999.

[3] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone Detection Using

Abstract Syntax Trees”, Proc. of IEEE Int’l Conf. on Software Maintenance (ICSM) ’98,

pp. 368-377, Bethesda, Maryland, Nov. 1998.

[4] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. “GJ Specification”.

http://cm.bell-labs.com/cm/cs/who/wadler/pizza/gj/

[5] E. Burd and M. Munro, “Evaluating the Evolution of a C Application”, Proc. of ACM

SIGSOFT Int’l Workshop on Principles of Software Evolution (IWPSE) 99, pp. 1-5.

Fukuoka, Japan. Jul. 1999.

[6] P. Devanbu , “GENOA - A Customizable, front-end Retargetable Source Code Analysis

Framework”, ACM Trans. on Software Eng. and Methodology, vol. 9 , no. 2, Apr. 1999.

[7] S. Ducasse, M. Rieger, and S. Demeyer. “A Language Independent Approach for

Detecting Duplicated Code”, Proc. of IEEE Int’l Conf. on Software Maintenance

(ICSM) ’99, pp. 109-118. Oxford, England. Aug. 1999.

[8] FreeBSD. http://www.freebsd.org/

[9] Gnu Project. http://www.gnu.org/

[10] D. Gusfield, Algorithms on Strings, Trees, and Sequences, pp. 89-180. Cambridge

University Press 1997.

[11] J. H. Johnson, “Identifying Redundancy in Source Code using Fingerprints”, Proc.

of IBM Centre for Advanced Studies Conference (CAS CON) ‘93, pp. 171-183, Toronto,

Ontario. Oct. 1993.

[12] J. H. Johnson, “Substring Matching for Clone Detection and Change Tracking”,

 Page 31

Proc. of IEEE Int’l Conf. on Software Maintenance (ICSM) ’94, pp. 120-126. Victoria,

British Columbia, Canada. Sep. 1994.

[13] B-K. Kang and J. M. Bieman, “Using design abstractions to visualize, quantify, and

restructure software”, The Journal of Systems and Software, vol. 24, no. 2, Elsevier

Science, pp. 175-187. Aug. 1998.

[14] B. Laugë, E. M. Merlo, J. Mayrand, and J. Hudepohl. “Assessing the Benefits of

Incorporating Function Clone Detection in a Development Process”, Proc. of IEEE Int’l

Conf. on Software Maintenance (ICSM) ’97, pp. 314-321, Bari, Italy. Oct. 1997.

[15] Linux Online. http://www.linux.org/

[16] J. Mayland, C. Leblanc, and E. M. Merlo. “Experiment on the Automatic Detection

of Function Clones in a Software System Using Metrics”, Proc. of IEEE Int’l Conf. on

Software Maintenance (ICSM) ’96, pp. 244-253, Monterey, California, Nov. 1996.

[17] Metamata Metrics. http://www.metamata.com/products/

[18] Qt On-line Reference Documentation. http://doc.trolltech.com/

[19] Rational Rose. http://www.rational.com/products/rose/

[20] Sapid Home Page. http://www.agusa.nuie.nagoya-u.ac.jp/person/Sapid/

[21] J. Seemann and J. W. Gudenberg, “Pattern-Based Design Recovery of Java

Software”, ACM Software Eng., vol. 23, no. 6, pp. 10-16 1998.

[22] S. Takabayashi, A. Monden, S. Sato, K. Matsumoto, K. Inoue, and

K. Torii, “The detection of fault-prone program using a neural

network”, Proc. SEA-UNU/IIST Int’l Symposium on Future Software Technology (ISFST)

'99, pp.81-86. Nanjing, China. Oct. 1999

[23] The source for Java Technology. http://java.sun.com/

[24] Unified Modeling Language (UML) Resource Center.

http://www.rational.com/uml/

 Page 32

[25] Mark Weiser, “Program slicing” IEEE Trans. on Software Eng. vol. SE-10, no. 4 pp.

352-357, Jul. 1984.

 Page 33

	Abstract
	Keywords
	Introduction
	Preliminary
	Proposed clone-code detection technique
	Definition of clone and related terms
	Clone-detecting process
	The implementation techniques of tool CCFinder

	Experiment
	4.1 Clones in a Java library, JDK
	Evaluation of transformation rules for JDK
	Analysis using clone metrics
	
	Applying Metrics to JDK

	Applied to a C++ library, Qt
	Application of CCFinder to Linux and FreeBSD systems

	Discussion and Comparison with Related Works
	Clone Detection Using AST
	An approach to calculate match with hole
	Abstraction and annotation
	Clone analysis over versions

	Conclusions and Further Works
	References

