Application of Aspect-Oriented Programming to Calculation of Program Slice

Takashi Ishio, Shinji Kusumoto, Katsuro Inoue
Graduate School of Information Science and Technology,
Osaka University
1-3 Machikaneyama, Toyonaka,

Osaka 560-8531, Japan
+81 6 6850 6571
{t-isio, kusumoto, inoue } @ist.osaka-u.ac.jp

Abstract

Aspect-Oriented Programming (AOP) is a new technol-
ogy for separation of concerns in program development.
Using AOP, it is possible to modularize crosscutting as-
pects of a system. Common examples of crosscutting as-
pects are design or architectural constraints, systemic prop-
erties or behaviors (e.g., logging and error recovery), and
features. Since such crosscutting aspects are usually dis-
tributed among objects in Object-Oriented Programming,
it is difficult to maintain them consistently. In AOP, they
can be written in a single aspect and thus easy to main-
tain. One useful application of AOP is to modularize col-
lecting program’s dynamic information for program analy-
sis. Since collection of dynamic information affects over all
target program, this functionality becomes typical crosscut-
ting concerns. In this paper, we intend to evaluate the use-
fulness of AOP in the area of program analysis. At first, we
examine the application of AOP to collecting dynamic in-
formation from program execution and calculating program
slice. Then, we develop a program slicing system using As-
pect], and describe benefits, usability, cost effectiveness of
the module of dynamic analysis based on AOP.

1. Introduction

Aspect-Oriented Programming (AOP) proposes a new
module unit named aspect for encapsulating crosscutting
concerns, such as logging, synchronization, and so on [1].
Since such concerns crosscut objects, program codes imple-
menting such concern must be distributed among objects in
Object-Oriented Programming. In AOP, it can be written in
a single aspect.

AOP seems to be usable and useful, but there are not so
many actual examples that show the usefulness of applying

AOP to program development. One useful application of
AOP is to modularize collecting program’s dynamic infor-
mation for program analysis. Dynamic information, to be
short, are series of program execution. Collecting dynamic
information from program execution is needed in calculat-
ing program slice and measuring dynamic complexity of a
program [2, 10].

Program slicing is a very promising approach for pro-
gram debugging, testing, understanding, and so on [17].
Given a source program p, program slice is a collection of
statements possibly affecting the value of slicing criterion
(a pair <s, v>, s is a statement in p and v is a variable de-
fined or referred to at s). Also, we call program slice simply
slice.

In recent software development, not only procedural lan-
guages like C and Pascal but also Object-Oriented lan-
guages like Java [7] and C++[8] have become to be used.
Since Object-Oriented languages have new concepts such as
class, inheritance, dynamic binding and polymorphism[9],
Object-Oriented programs have many dynamically deter-
mined elements.

In slice calculation process, it is effective to observe pro-
gram execution, and to use information about statements
actually executed. Dependence-Cache (DC) slicing has
been proposed to use dynamic data dependence analysis
and static control dependence analysis to calculate accurate
slices with lightweight costs [2, 14]. Ohata et al. extends
DC slicing method for Object-Oriented languages [12].

In process of DC slice calculation of Java, it is an im-
portant issue how to analyze dynamic data dependence. An
analyzer may implement function that observes target pro-
gram to track and to collect information about dynamic data
dependence. In the past research, such function have not
been encapsulated in a single module. Actually, the func-
tion was implemented as a pre-processor which inserts anal-
ysis operations in the target program code [12], or as a cus-
tomized Java Virtual Machine (JVM) [3]. But, the former

approach is hard to implement and to maintain the rules
of conversion, the latter approach is expensive because we
must re-customize a JVM when new versions are released.

In this paper, we propose to introduce AOP for encapsu-
lating dynamic program analysis into an aspect and achieve
a cost-effective DC slice calculation. We implement a DC
slice calculation system using AspectJ [15], and conduct ex-
periment to evaluate the usefulness of our approach com-
paring to a customized JVM approach. As the result, it is
confirmed that AOP approach can reduce the cost greatly
to calculate DC slice and get the practical precision of the
slice.

The structure of this paper is as follows: In Section 2,
we will briefly overview Aspect-Oriented Programming. In
Section 3, we describe DC slice and our approach to cal-
culate it using AOP. In Section 4, we evaluate the proposed
method comparing to the customized JVM approach and
discuses experimental results. In Section 5, we conclude
our discussion with a few remarks regarding plans for fu-
ture work.

2 Aspect-Oriented Programming (AOP)
2.1 Features of AOP

The goal of Aspect-Oriented Programming (AOP) is to
separate concerns in software. While the hierarchical mod-
ularity of object-oriented languages are extremely useful,
they are inherently unable to modularize crosscutting con-
cerns, such as logging, synchronization, and so on. AOP
provides language mechanisms that explicitly capture the
crosscutting structure. It is possible to encapsulate the
crosscutting concerns as module unit aspect that is easier
to develop, maintain and reuse. Aspects separated from an
object-oriented program are composed by Aspect Weaver to
construct the program with the crosscutting concerns.

AspectJ is an aspect weaver for Java. Aspect] provides
language constructs to write aspects. Join points are well-
defined points in the execution of the program. Programmer
chooses collections of join points as pointcuts, and define
method-like construct named advice, additional behavior at
the join points. Examples of join points which program-
mer can use are shown in Table 1. Advices can be united
by three kinds of forms, before (immediately before join
points), after (immediately after), and around (before and
behind).

2.2 Example of Aspect

Here, an observer pattern (Observer Subject Protocol)
[16] is shown as an example of the aspect. The Observer
pattern is consists of Observer object which watches the
state change of objects and Subject object which is watched

Table 1. Pointcut Designators of AspectJ

kind of join point meanings

call method or constructor is called.
execute an individual method or
constructor is invoked.
get a field of object is read.
set a field of object is set.
handler an exception handler is invoked.
Observer Subject
Subject obj; register List observers;
update(); —*| register(Observer);
update getStatus();
getStatus

Figure 1. Class relations of Observer pattern
(Java)

Observer Subject
tStat
update(Subject); _getotalus getStatus();
update after() :
set(Subject.status)
ObservationAspect

Figure 2. Class relations of Observer pattern
(AspectJ)

by the Observer. Since the concern of “Observer observes
state change of Subject” is crosscutting objects, this makes
inter-dependence relationships between Observer and Sub-
ject. It is shown in Figure 1, and implemented as follows.

1. Observer object registers Subject which Observer
wants to observe (an arrow labeled “register” in Fig-
ure 1).

2. When state change of Subject is occurred, Subject no-
tifies Observer (“update”).

3. Observer gets the latest information about Subject
(“getStatus”™).

In AOP, the observation aspect is described as follows.

e A requirement of “When new value is set to
Subject.status field, Observer gets an update mes-
sage” 1is implemented as an aspect (“after()
set(Subject.status)” and “update”).

e Observer gets the latest information about Subject
(“getStatus”™).

In AOP, since extra codes are not required to be written
in Subject, interdependence between Subject and Observer
is removed. So, they become simpler and easier to reuse.

2.3 Dynamic Analysis of Program

Analysis of dynamic information from program execu-
tion is a technology needed for program slice calculation
and for measurement of dynamic software metrics.

In the past, the following methods of dynamic analysis
have been used for Java programs:

(a) Using preprocessor to insert analysis operations in tar-
get program [12].

(b) Using Java Virtual Machine Profiler Interface (JVMPI)
to collect dynamic information [13].

(¢) Using customized Java Virtual Machine for dynamic
analysis [3].

In method (a), preprocessor and conversion rules on ab-
stract syntax tree are made to insert operations for analysis
in target program. But, it is hard to make generic conver-
sion rules because such conversion is too low level opera-
tion. There are some problems about maintainability and
reusability of it, conflict with other preprocessors, multi-
threaded program handling.

In (b), JVMPI is used to observe program execution.
JVMPI is a non-standard interface of JVM for profiling
CPU and memory usage. It is possible to collect detailed

events on program execution, e.g. method call, thread con-
trol, memory allocation and garbage collection. But, events
are too primitive to analyze, so its overhead of analysis is
expensive. Moreover, JVMPI is not standardized interface.
Also, information obtained from JVMPI strongly depends
on implementation of JVM.

(c) is a method that customizes JVM to observe and an-
alyze program execution. An advantage of this approach is
that JVM can access all of information in Java runtime envi-
ronment. However, JVM customization depends on its im-
plementation. Whenever a new version of JVM is released,
it must be re-customized.

In (b) and (c), program has to be analyzed at Java byte-
code level. So, the bytecode optimization by Just In Time
(JIT) compiler usually affects the analysis result.

On the other hand, in AOP approach, dynamic analysis
aspect can be composed by join points, which is more ab-
stract than syntax tree conversion rules. It achieves good
modularity, maintainability and reusability. It also achieves
handling complex control elements, such as multi-threading
and exception, by well-organized way. Moreover, AspectJ
composes source codes of objects and aspects, so it does not
depend on implementation of specific JVM.

3 Program Slicing

Program slicing is one of the methods such that dynamic
program analysis is effective.

Slice calculation is based on dependence analysis be-
tween program statements in a source program, and de-
pendence analysis consists of two components, data depen-
dence analysis and control dependence analysis.

Though many slice calculation algorithms have already
been proposed, we use program dependence graph (PDG)
in this research [5].

3.1 Program Dependence Graph

A PDG is a directed graph whose nodes represent state-
ments in a source program, and whose edges denote depen-
dence relations (data dependence or control dependence)
between statements. An edge drawn from node V; to node
V, represents that “node V; depends on node V. PDG also
includes special nodes which represent method call and pa-
rameter passing [6].

Control dependence and data dependence are defined as
follows.

Control Dependence (CD) Consider statements s; and so
in a source program p. When all of the following con-
ditions are satisfied, we say that a control dependence
(CD), from statement s; to statement s, exists:

1. s; is a conditional predicate, and

2. the result of s; determines whether s5 is executed
or not.

This relation is written by C' D(s1, S2) Or 81 —--»Sa.

Data Dependence (DD) When all of the following con-
ditions are satisfied, we say that a data dependence
(DD), from statement s; to statement sy by a variable
v, eXists:

1. s defines v, and
2. sq refers to v, and

3. at least one execution path from s; to so without
re-defining v exists (we call this condition reach-
able).

This relation is denoted by DD(s1, v, S2) or $1 L,
SS9 .

Program slicing calculation consists of the following
four phases:

Phase 1: Defined and Referred Variables Extraction
We identify defined variables and referred ones for
each statement in a source program.

Phase 2: Data Dependence Analysis and Control Depen-
dence Analysis
We extract data dependence relations and control de-
pendence relations between program statements.

Phase 3: Program Dependence Graph Construction
We construct PDG using dependence relations ex-
tracted in Phase 2.

Phase 4: Slice Extraction
We calculate the slice for the slicing criterion speci-
fied by the user. In order to calculate the slice for a
slicing criterion <s, v>, PDG nodes are traversed in
reverse order from V, (node V, denotes statement s.).
The corresponding statements to the reachable nodes
during this traversal form the slice for <s, v>.

We can obtain sufficient information about control de-
pendence from static analysis (from only source code).
However, in static analysis, information about data depen-
dence which we can get contains redundant part because
we analyze all execution paths, includes paths which may
be never executed. If we use program slicing for debugging
and program understanding, it is effective to analyze de-
tailed information about one program execution path with
a specific input. Dependence Cache (DC) slicing has been
proposed to realize such requirement [2, 12, 14].

In DC slice calculation, the data dependence analysis is
performed during program execution, and the information
of dynamically determined elements is collected. Control

dependence is analyzed statically from source code since
it needs much cost to analyze control dependence during
program execution. It is known that the DC slicing takes
reasonable cost for calculation of practical programs [2, 12,
14].

3.2 Dynamic Data Dependence Analysis
in DC Slice Calculation

When variable v is referred to at statement s, dynamic
data dependence (DD) relation about v from ¢ to s can be
extracted if we can resolve v’s defined statement ¢. We cre-
ate a table named Cache Table that contains all variables in
a source program and most-recently defined statement in-
formation for each variable. When variable v is referred to,
we extract dynamic DD relation about v using the cache ta-
ble. The following shows the extraction algorithm for the
dynamic DD relations.

Step 1: We create a cache C(v) for each variable v in a
source program.
C'(v) represents the statement which most-recently de-
fined v.

Step 2: We execute a source program and conduct the fol-
lowing processes on each execution point.
On executing statement s,

e when variable v is referred to, we draw an DD
edge from the node corresponding to C'(v) to the
node corresponding to s about v, or

e when variable v is defined, we update C(v) to s.

For example, Figure 3 is a program using array. Table 2
shows a transition of cache C'(v) of each variable v at each
statement when program is executed with input ¢ = 0.

It becomes C(a[0]) = 1, C(a[l]) = 2, C(a[2]) = 3,
C(a[3]) =4, C(a[4]) = 5, C(c) = 6 when statement 6 is ex-
ecuted. When variable a[0] is referred to at statement 7,
data dependence statement1-““» statementT is extracted
because statement 7 refers to a[0] and C'(a[0]) = 1.

Table 2. Cache transition of Figure 3

Statement
number al0] | a[l] | a[2] | a[3] | a[4] | b | ¢
executed
1 1 - - - - - | -
2 1 2 - - - | -
3 1 2 3 - - - -
4 1 2 3 4 - - -
5 1 2 3 4 5 - -
6 1 2 3 4 5 6
7 1 2 3 4 5 716

1: a[0] = 0;
2: al[l] = 1;
3: al2] = 2;
4. al[3] = 2;
5: ald4] = 2;
6: read(c
7:

Figure 3. Example program using array

Figure 4 shows another example of the DC slice. DC
slice with input = 2 and slice criteria =< 37,d > is the
non-shaded part of Figure 4.

3.3 Dynamic Analysis Using AspectJ

Aspect] is an Aspect Weaver which composes objects
and aspects at source code level. Aspect] generates normal
Java code which includes the aspects. At this time, since
Aspect] knows where aspect is built in, Aspect] can gener-
ate codes accessing the information of source codes as con-
text of aspect, e.g. join points’ position in the source code,
signature of methods, and so on. Programmers can write
the dynamic analysis aspect using this feature of Aspect].

An algorithm of the data dependence analysis and poly-
morphism resolution can be described as follows using As-
pectl.

e Data Dependence Analysis

When new value is set to a field: The aspect logs sig-
nature of the field, and the position of assignment
statement.

When field is referred to: The aspect gets the state-
ment information of last assignment to field, and
logs a data dependence from the assignment to
the reference.

e Polymorphism Resolution

When method is called (before call): The aspect
pushes the method signature and the position of
calling into call stack prepared for each thread of
control (it is for multi-threaded program).

When method is invoked (before execution): The
aspect checks the top of the call stack, and
generates a control dependence from the caller
to the actually invoked method.

After method call: The aspect removes the top of the
call stack.

When exception is thrown: The aspect removes the
top of the call stack.

1: 4#include <stdio.h>
2: #define SIZE 5

3:

4: int cube (int x) {

5: return xX*x*x;

6: }

7:

8: wvoid main(void)

9: {

10: int al[SIZE];

11: int b[SIZE];

12: int ¢, d, 1i;

13:

14: al0] = 0;

15: all] = -1;

16: al2] = 2;

17: a[3] = -3;

18: af4] = 4;

19:
20: for (i=0; i<SIZE; i++) {
21: bli] = alil;
22 }
23:
24:
25: scanf ("%d", &c);
26:
27:
28:
29:
30:
31 d = cube(b[c]);
32
33
34
35:
36:
37: printf ("$d\n", d);
38: 1}

Figure 4. Source program and DC slice (non-
shaded part, slice criterion =< 37,d >, input

3.4 Implementation Details

3.4.1 Statical Analysis Supplement

In AOP, aspect may be limited by usable join points and
the applicable operation to the join points. The join points
of Aspect] does not include local control structures (e.g. if;
while, for statements) nor access to local variables. Because
such join points are fine grained, it needs remarkable cost to
implement, and very few cases would need them.

Though usual dynamic analysis requires to observe the
behavior of all variables and control structures, we cannot
implement in Aspect]. Instead, we statically collect infor-
mation about local variables and control structures for the
compensation. This seems sufficient because data depen-
dence of local variables and execution paths of local con-
trol structures are limited in one method, and they are af-
fected only a little from dynamic determined elements in
OOP. Later, we will discuss this issue based on the result of
experimental evaluation.

3.4.2 Analysis of Libraries

Since Aspect] links the aspects to target source code, it can-
not link them into library classes. Here, the library classes
indicate reusable components which are not included as
source codes here.

In this research, libraries are excluded from analysis by
the following reasons:

Library class is reliable. Since libraries are repeatedly
reused, it can be assumed that defects in the libraries
are already removed. Therefore, we do not need to
conduct the detailed analysis to the library classes.

Amount of code of library is numerous. The cost of the
dynamic analysis of libraries is generally more numer-
ous than main program.

When a program uses callback from library side, hid-
den dependence via the library might be caused. It can be
known by the dependence analysis at bytecode level [3].

However, even if we use the bytecode analysis, a de-
pendence analysis to important objects, such as file I/O and
basic data structures, cannot be done because of limitation
in the Java language described later. Therefore, we cannot
say that the range where it actually influences is wide even
with the bytecode handling. It is enough to analyze only the
range where the source code exists.

3.4.3 Loop Caused by Aspect

Aspect] has an advantage that programmers write aspects
in Java easily. But, it causes dependences from aspects
to classes which are used to collect and log information.

caller

1. call

V 2. activate

Foo.getX()

5.activate

A
4.call Aspect onMethodCall

Foo.HashCode() 3. require Hashcode

Figure 5. loop by aspect

Therefore, if some aspect is built into such classes to ana-
lyze, an loop might be caused.

The example of such a loop is shown in Figure 5. In
Figure 5, the aspect operates corresponding to a method
call Foo.getX. The aspect calls Foo.hashCode to get
hash code of the object, and calling F'oo.getX occurs in
Foo.hashCode.

It is not possible to solve it essentially in Java language.
Only the approach like customized JVM approach solves
this problem.

Since we have implemented the data analysis module us-
ing Java standard library, a loop might be caused if the tar-
get program has the methods called from standard library.
As long as we have examined, there are only two methods
that might be called in our implementation. One of them
is Object.toString which is a method that converts an ob-
ject into character string to make data readable. Another is
Object.hashCode, a method that calculates the hash code
for fast access to data structures. It is possible to avoid the
loop by not joining the aspect to them. It causes decrease
of completeness of the information, but we consider that it
does not give the influence on practical use because the role
of these methods is usually independent of the other part.

4 Experimental Evaluation
4.1 Overview

We have implemented a dynamic analysis module using
Aspect], and then developed a DC slice calculation system
for Java. Figure 6 shows system overview.

Using this system, a user can calculate DC slice by the
following steps:

Step 1: Compile target Java program and the dynamic
analysis aspect using Aspect] compiler.

Step 2: Execute the program as usual Java program. Then,
dynamic analysis aspect in the program generate a file
contains dynamic information of the program execu-
tion.

CTarget Program (Java))

CDynamic Analysis Aspeot)

Aspect)

Java Bytecode
(Aspect Woven)

Java Virtual Machine

Normal Analysis
Result Result

slice criterion DC Slice

Source Code Viewer
(GUI)

PDG Constructor

Figure 6. DC slicing system

Table 3. Target programs

Program # of classes Size (LOC)
P1 Simple database 4 262
P2 Sorting 5 228
P3 | DC slice calculation 125 16207

Step 3: Execute the DC slice calculation tool with source
code of target program and a dynamic information file
generated by Step 2. The tool extracts static informa-
tion from the source code, constructs PDG, and opens
a window of a source code viewer.

Step 4: Specify the slice criterion and view DC slice by a
graphical user interface.

In order to evaluate the proposed DC slice system, we
have compared it to the system developed using the cus-
tomized JVM approach [3] from the viewpoint of cost and
module size necessary for the dynamic analysis. In the eval-
uation, we have used the programs shown in Table 3 as the
input of the systems.

P1 is a simple database program which contains few el-
ements of object-oriented language. P2 is a program which
uses polymorphism to switch sorting algorithms. P3 is the
DC calculation system presented in this paper. It includes
many features of Java, e.g. polymorphism, classes and
package hierarchy, exception handling, and interactive user
interfaces.

We have executed these programs with some input data,
and calculated DC slice for arbitrary slice criterion.

In Section 4.2, we evaluate and discuss about DC slice
size. We discuss time cost and module size necessary for
DC slice calculation in Section 4.3 and Section 4.4.

Table 4. Slice size [LOC]

Slice criterion | Customized JVM Aspect
S1(P1) 29 36
S2 (P2) 28 50
S3 (P3) 708 839

4.2 Resulting Slice Size

Here, we compare the two slice tools from the viewpoint
of resulting slice size.

Table 4 shows the size of DC slice for slice criterion S1
in P1, S2 in P2, and S3 in P3.

Actually, the DC slices calculated by both of two systems
included the correct DC slice that is obtained by manually.
But, some redundant statements were included. So, it can be
said that the difference of the slice size shows the difference
of accuracy.

With respect to the redundant statements, in our ap-
proach, we have to statically analyze the target program to
collect information about local variables and local control
structures. Therefore, statements which are possibly depen-
dent but are actually non-dependent may be included in the
slice result. For example, assume that there are some con-
ditional clauses in the program and one of them is not exe-
cuted because of the corresponding conditional predicate is
not satisfied. Then, the statements in the conditional clause
which were are not executed may be included in our ap-
proach, but they are not included in customized JVM ap-
proach.

For the program P1 with a slicing criterion S1, the sizes
of DC slice by the customized JVM approach was 29 (LOC)
and one by our approach was 36 (LOC), respectively. This
is not a substantial difference because the program size of
P1 is small and does not include the characteristics of object
oriented program.

On the other hand, for the program P2 with a slicing cri-
terion S2, the size by our approach became about twice the
size of one by the customized JVM approach. It is con-
sidered that because the program P2 is small but contains
several methods which use many local variables and nested
control structures.

For the program P3 with a slicing criterion S3, the differ-
ence is not so huge though the size of P3 is much larger than
other programs P1 and P2. The reason is that the program
P3 is skillfully decomposed into modules with proper sizes,
and each method has few local variables and simple control
structures.

As we expected, the result shows that the size of DC slice
by our approach is larger than one by the customized JVM
approach for the programs that include many local variables
and local control structures. However, for the size of the tar-

Table 5. Execution time (JIT disabled) [sec.]

Target program | Normal Customized JVM Aspect
P1 0.18 1.8 0.26
P2 0.19 2.8 0.39
P3 1.2 81.0 10.3

Table 6. Execute time (JIT enabled) [sec.]

target program | Normal Aspect
P1 0.24 0.34
P2 0.24 0.41
P3 1.1 9.9

get program (especially P3), the difference of the resulting
slice size between the two approach is insignificant. So, we
consider that our approach would be effective for the large
scale programs.

4.3 Analysis Cost

Here, we evaluate the time for calculating the DC slice.

Table 5 shows the time to execute Java program with nor-
mal JVM, with customized JVM, and the program which
aspect has been inserted with normal JVM (our approach)
for the same input. These values are measured in JIT dis-
abled environment. The execution time with enabled JIT is
shown in Table 6.

In general, our approach shows good performance com-
pared with the customized JVM approach. We consider that
the cost of a dynamic analysis of the local variables is very
expensive, because of little use of the library in P1 and P2.
Moreover, in P3, analyzing internal processing in the library
required further cost. As program size becomes larger, anal-
ysis cost must increase further because more libraries be-
come to be used.

Our aspect approach has an advantage that we can use
JIT compiler to improve performance. In small programs
such as P1 and P2, performance of program without opti-
mization by JIT compiler is better, because the optimiza-
tion is not effective in this case. However, in practically-
large scale program like P3, JIT compiler is very effective
to improve performance. Though effect of JIT compiler is
unequal in runtime environment, it has experimentally been
shown that JIT makes a crucial difference on system perfor-
mance [11].

4.4 Effort to Implement the Slicing Tool

Here, we examine the effort of implementing the slice
tool.

A dynamic analysis module implemented as an aspect
became about 400 lines of code. The DC slice calculation
tool totally became about 16,000 lines in Java.

In our approach, the aspect can be described in high ab-
straction level and has good readability compared with the
pre-processor approach. Moreover, because the aspect is
small and simple, it is easy for the programmer (user) to
switch other implementation to adapt each runtime environ-
ment.

On the other hand, in the customized JVM approach,
it was necessary to add about 16,000 lines of code to
JVM and Java compiler that is totally consisted of about
500,000 LOC. Furthermore, the overall programs must be
re-customized when the original JVM is updated. There-
fore, it is unrealistic to keep it consistent. Qur aspect
approach, which uses the aspect written once, is applica-
ble to any platform where the aspect weaver is available.
Since Aspect] is written in Java, the aspects achieve good
reusability. It is much cheaper than the customized JVM
approach to implement.

5 Conclusion and Future Work

In this paper, we have examined an application of the
aspect-oriented programming to collect dynamic informa-
tion in program slicing calculation. Then, through the im-
plementation of a dynamic program analysis module in
AOP, we have developed a DC slice calculation system and
evaluated the usefulness of it.

Since we make join points of the aspect to be generic
form, the dynamic data dependence analysis aspect can be
woven into various object-oriented programs without its
changes. We can improve maintainability and reusability
of the module.

Here, we have chosen Aspect] to implement the mod-
ule. Aspect] has an restriction that we cannot analyze lo-
cal variables and local control structures. However, such
a difference influences little for the result of slice, and we
observes that the our aspect approach reduces cost for dy-
namic analysis effectively. Compared with the customized
JVM approach, we could achieve cost reduction and main-
tainability improvement with practical precision of the slice
size. Our aspect approach is not dependent to Java specific
factor. It is possible to implement dynamic analysis using
appropriate aspect weaver for other languages.

In future work, we are going to evaluate our slicing sys-
tem for large programs. Also, we will examine the applica-
bility of aspect-oriented programming to other application
in software development.

References

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J. Loingtier and J. Irwin: “Aspect Ori-
ented Programming”, Proceedings of ECOOP, vol.1241
of LNCS, pp.220-242(1997).

[2] Y. Ashida, F. Ohata and K. Inoue: “Slicing Methods
Using Static and Dynamic Information”, Proceedings
of the 6th Asia Pacific Software Engineering Confer-
ence, pp.344-350, Takamatsu, Japan, December(1999).

[3] K. Konda, F. Ohata, K. Inoue: “Extraction Method
for Dynamic Dependence Relations between Bytecodes
Using Java Virtual Machine”, JSSST Computer Soft-
ware, Vol.18, No.3, pp.40-44 in Japanese (2001).

[4] H. Agrawal and J. Horgan: “Dynamic Program
Slicing”, SIGPLAN Notices, Vol.25, No.6, pp.246-
256(1990).

[5] K. J. Ottenstein and L. M. Ottenstein: “The program
dependence graph in a software development environ-
ment”, Proceedings ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software
Development Environments, pp.177-184, Pittsburgh,
Pennsylvania, April (1984).

[6] R. Ueda, K. Inoue and H. Iida: “A Practical Slice
Algorithm for Recursive Programs”, Proceedings of
the International Symposium on Software Engineering
for the Next Generation, pp.96—106, Nagoya, Japan,
February (1996).

[7] 1. Gosling, B. Joy, and G. Steele: “The Java ™ Lan-
guage Specification”, Addison-Weseley (1996).

[8] B. Stroustrup : “The C++ Programming Language
(Third edition)”, Addison-Wesley (1997).

[9] G. Booch: “Object-Oriented Design with Applica-
tion”, The Benjamin/Cummings Publishing Company,
Inc (1991).

[10] S. Yacoub, H. Ammar and T. Robinson: “Dynamic
Metrics for Object Oriented Designs”, Proc.of the 6th
International Symposium on Software Metrics (MET-
RICS99), Boca Raton, Florida USA, pp. 50-61 (1999).

[11] Performance Comparison of JIT,
http://www.shudo.net/jit/perf/index.html

[12] F. Ohata, K. Hirose, M. Fujii, and K. Inoue: “A
Slicing Method for Object-Oriented Programs Us-
ing Lightweight Dynamic Information”, In Proc. of
APSEC2001, pp.273-280(2001).

[13] S. Kusumoto, M. Imagawa, K. Inoue, S. Morimoto,
K. Matsusita and M. Tsuda: “Function point measure-
ment from Java programs”, Proc. of the 24th Interna-
tional Conference on Software Engineering, pp. 576-
582 (2002).

[14] T. Takada, F. Ohata, K. Inoue: “Dependence-Cache
Slicing: A Program Slicing Method Using Lightweight
Dynamic Information”, Proceedings of the 10th In-
ternational Workshop on Program Comprehension
(IWPC2002), pp.169-177, Paris, France, June (2002).

[15] Aspect] Team, “The Aspect] Programming Guide”,
http://aspectj.org/doc/dist/progguide/

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “De-
sign Patterns: Elements of Reusable Object-Oriented
Software”, Addison Wesley (1995).

[17] M. Weiser: “Program slicing”, IEEE Transactions on
Software Engineering, SE-10(4):352-357(1984).

