
Design and Implementation of Bytecode-based Java Slicing System

Fumiaki Umemori†, Kenji Konda††, Reishi Yokomori††, Katsuro Inoue†
†Graduate School of Information Science and Technology, Osaka University

††Graduate School of Engineering Science, Osaka University
{umemori,inoue}@ist.osaka-u.ac.jp,

{konda,yokomori}@ics.es.osaka-u.ac.jp

Abstract

Program slice is a set of statements that affect the value
of variable v in a statement s. In order to calculate a pro-
gram slice, we must know the dependence relations between
statements in the program. Program slicing techniques are
roughly divided into two categories, static slicing and dy-
namic slicing, and we have proposed DC slicing technique
which uses both static and dynamic information.

In this paper, we propose a method of constructing a
DC slicing system for Java programs. Java programs have
many elements which are dynamically determined at the
time of execution, so the DC slicing technique is effective
in the analysis of Java programs. To construct the system,
we have extended Java Virtual Machine for extraction of dy-
namic information. We have applied the system to several
sample programs to evaluate our approach.

1 Introduction

Program slice is a set of statements that affect the
value of variablev in a statements. Program slicing is
a very promising approach for program debugging, test-
ing, understanding, merging, and so on[6, 7, 10, 12, 21].
We have empirically investigated effectiveness of program
slicing for program debugging and program maintenance
processes, and its significance was validated by several
experiments[13].

In order to calculate a program slice, we must know the
dependence relations between statements in the program.
Program slicing techniques are roughly divided into two
categories, static slicing[14, 21] and dynamic slicing[2, 22].
The former is based on static analysis of source program
without input data. The dependence of program statements
is investigated for all possible input data. The latter is based
on dynamic analysis with a specific input data, and the de-
pendence of the program statements is explored for the pro-
gram execution with the input data. The size of the static

slice is larger than that of the dynamic one in general, since
the static slice considers all possible input data. The size of
the dynamic slice is smaller in general, but the dynamic one
requires a large amount of CPU time and memory space to
obtain it.

We thought that using both static and dynamic informa-
tion would be better than using only static or dynamic in-
formation, and have proposed DC slicing technique which
uses both static and dynamic information. Using DC slic-
ing, we can obtain suitable compromises of slice precision
and slicing performance.

In software development environment in recent years,
object-oriented languages, such as Java, are used in many
cases. Although we would like to adapt the program slicing
techniques to Java programs, Java programs have many fea-
tures which are dynamically determined at the time of ex-
ecution. Therefore, applying the static slicing technique to
the object-oriented languages will cause a problem in slice
precision. Also the dynamic slicing has a problem in analy-
sis cost. We consider that the DC slicing technique is effec-
tive in the analysis of Java programs.

In this paper, we propose a method of constructing a DC
slicing system for Java programs. To construct the system,
we extended Java Virtual Machine for extraction of dynamic
information. Since the execution is on the bytecode, we
define the slice calculation method on the bytecode.

This DC slicing system consists of 4 subsystems, an ex-
tendedJava Compiler that can generate a cross reference
table between the source code and the bytecode, an ex-
tendedJava Virtual Machine(JVM) that can perform the
dynamic data dependence analysis for the bytecode, astatic
control dependence analysis toolfor the bytecode, and a
slicer. A slice in the bytecode calculated by the slicer is
mapped onto a slice in the source code by using the cross
reference table .

In section 2, we will briefly overview the DC slicing.
In section 3, we will present a method of constructing a
DC slicing system, and discuss an implementation of the
sysytem. In section 4, we will evaluate the proposal method

by comparison with traditional slicing methods. In section
5, we will conclude our discussions with a few remarks.

2 Dependence-Cache(DC) Slicing

In this section, we briefly explain the computation pro-
cess of program slice, and introduce DC slice on which our
proposed method is based.

2.1 Program Slice

[Slice Computation Process]
In general, slice computation process consists of the fol-

lowing four phases.

Phase 1: Control Dependence Analysis and Data Depen-
dence Analysis
We extract control dependence relations and data de-
pendence relations between program statements.

Phase 2: Program Dependence Graph[17] Construction
We constructProgram Dependence Graph (PDG)us-
ing dependence relations extracted on Phase 2.

Phase 3: Slice Extraction
We compute the slice for the slicing criterion specified
by the user. In order to compute the slice for a slicing
criterion<s, v> (wheres is a statement andv is a vari-
able), PDG nodes are traversed in reverse order from
Vs (Vs is a node corresponding tos.). The statements
corresponding to the visited nodes during this traversal
form the slice for<s, v>.

[Dependence Relation]
Consider statementss1 ands2 in a source programp.
When all of the following conditions are satisfied, we

say that acontrol dependence (CD), from statements1 to
statements2, exists:

1. s1 is a conditional predicate, and

2. the result ofs1 determines whethers2 is executed or
not.

This relation is written byCD(s1, s2) or s1 - s2.
When the following conditions are all satisfied, we say

that adata dependence (DD), from statements1 to state-
ments2 by a variablev exists:

1. s1 definesv, and

2. s2 refersv, and

3. at least one execution path froms1 to s2 without re-
definingv exists (we call this conditionreachable).

This relation is denoted byDD(s1, v, s2) or s1 -v s2.

[Program Dependence Graph (PDG)]
A PDG is a directed graph whose nodes represent state-

ments in a source program, and whose edges denote de-
pendence relations (DD or CD) between statements. A
DD edge is labeled with a variable name “a” if it denotes
DD(· · ·, a, · · ·). An edge drawn from nodeVs to nodeVt

represents that “nodeVt depends on nodeVs”.

[Example]
Figure 1 shows a sample Java program and its PDG

(Phase 1, 2), and Figure 2 shows the slice (“∗”-marked
statements) for<6, c> on Figure 1 (Phase 3).

}8:
a = 0;7:
e = c;6:

if (d > 5) {5:
d = 10;4:
c = a – 2;3:
b = a + 3;2:
a = 5;1:

3: c = a – 2;

4: d = 10;

5: if (d > 5)

6: e = c;

7: a = 0;

2: b = a + 3;

1: a = 5;

CD
DD

cd

a
a

Figure 1. Sample Java Program and its Pro-
gram Dependence Graph (PDG)

2.2 Dependence-Cache (DC) Slice

When we statically analyze source programs that have
array variables, too many DD relations might be extracted.
This is because it is difficult for us to determine the values
of array indices without program execution if they are not
constant values but variables —array indices problem.

Also, in the case of analyzing source programs that have
pointer variables,aliases(an expression refers to the mem-
ory location which is also referred to by another expression)
resulting from pointer variables might generate implicit DD
relations. In order to analyze such relations, pointer analy-
sis should be needed. Many researchers have already pro-
posed static pointer analysis methods[9, 19, 18]; however, it
is difficult for static analyses to generate practical analysis
results —pointer alias problem.

3: c = a – 2;

4: d = 10;

5: if (d > 5)

6: e = c;

7: a = 0;

2: b = a + 3;

1: a = 5;

cd

a
a

}8:
a = 0;7:
e = c;6:�

if (d > 5) {5:�

d = 10;4:�

c = a – 2;3:�

b = a + 3;2:
a = 5;1:�

Figure 2. Slice for <6, e> on Figure 1

DC slicing uses dynamic DD analysis, so that it can re-
solve abovearray indices problemandpointer alias prob-
lem. Since dynamic DD analysis is based on program ex-
ecution, we can extract the values of all variables on each
execution point. On the other hand, since DC slicing uses
static CD analysis, we need not record execution trace and
its analysis cost is much less then that of dynamic slicing
(dynamic slicing uses dynamic DD and CD analyses).

[DC Slice Computation Process]
Computation process for DC slice is as follows.

Phase 1: Static Control Dependence Analysis and PDG
Construction
We extract CD relations statically between statements,
and construct PDG that has CD edges only.

Phase 2: Dynamic Data Dependence Analysis and PDG
Edge Addition
We execute a source program. On program execution,
we extract DD relations dynamically between state-
ments using the following method, and add DD edges
to PDG.

Phase 3: Slice Extraction

[Dynamic Data Dependence Analysis]
When variablev is referred to at statements, dynamic

DD relation aboutv from t to s can be extracted if we can
resolvev’s defined statementt. We create a table named
Cache Tablethat contains all variables in a source program
and most-recently defined statement information for each
variable[1]. When variablev is referred to, we extract dy-
namic DD relation aboutv using the cache table. The fol-
lowing shows the extraction algorithm for dynamic DD re-
lations.

Step 1: We create cacheC(v) for each variablev in a
source program.
C(v) represents the statement which most-recently de-
finedv.

Step 2: We execute a source program and proceed the fol-
lowing methods on each execution point.
At the execution of statements,

• when variablev is referred to, we draw an DD
edge from the node corresponding toC(v) to the
node corresponding tos aboutv, or

• when variablev is defined, we updateC(v) to s.

2.3 Comparison with Static, Dynamic and
DC Slices

Table 1 shows the difference among static slice, dynamic
slice and DC slice.

Table 1. Comparison of analysis method among
static, dynamic and DC slicing

Static Slicing Dynamic Slicing DC Slicing
CD static dynamic static
DD static dynamic dynamic

PDG node statement execution point statement

Figure 4 shows PDGs constructed from a sample pro-
gram on Figure 3 by Static, Dynamic and DC slicing tech-
nique; for dynamic and DC slicing, we passed integer value
“2” to readLine() statement on program execution.PDGS ,
PDGD andPDGDC represent the PDG for Static Slicing,
Dynamic Slicing, DC Slicing, respectively.

Table 2. The number of nodes and dependence
edges for each PDG on Figure 4

PDGS PDGD PDGDC

Node 10 13(8 statements) 10
Edge 22 20 15

The number of nodes inPDGS or PDGDC is equal
to the number of program statements. On the other hand
the number of nodes inPDGD is the number of execu-
tion points. Since any node corresponding to unexecuted
statement does not exist onPDGD, the number of pro-
gram statements executed is less than that ofPDGS and
PDGDC . However, if a certain statement in a loop block
is executed repeatedly, the number of nodes inPDGD will
increase easily.

System.out.println(c);13:
}12:

b = b – 1;11:
}10:
c = a[b] – 10;9:

} else {8:
c = a[b];7:

if (b < 10) {6:
while (b > 0) {5:
b = Integer.parseInt(br.readLine());4:
a[2] = 3;3:
a[1] = 2;2:
a[0] = 1;1:

Figure 3. Sample Program

PDGS generally has more edges than others because of
the consideration of possible execution path. And only the
edges on execution path are extracted in dynamic slicing, so
the number of edges inPDGD can increase depending on
the length of the execution path. We can see a merged de-
pendence edge inPDGDC for several distinct inPDGD.
For example, the two edges represented111 - 52, 112

- 53 in PDGD, are represented one edge 11-
5 in PDGDC . The analysis cost ofPDGDC is less than
PDGD. The edges ofPDGDC are based on actual execu-
tion, so they are fairly accurate.

In DC slicing, PDG has redundant control dependence
edge. So the size of DC slice may become large than that of
dynamic slicing. However, edges of PDG are traversed from
destination node to source node. If the node after branch of
a condition predicate cannot be reached during slice extrac-
tion, a redundant statement is not added to a slice. So the
existence of redundant edge does not make a big difference
of the size of Dynamic Slise and DC Slice.

Since the data dependence edges inPDGDC cannnot
hold the information of multiple occurrence of a single
statement asPDGD, the size of DC slice may become
larger than that of dynamic slice. However, the size of the
execution trace is much larger than that of program state-
ments generally. In many cases, the program which can ap-
ply static slicing cannnot apply dynamic slicing. With DC
slicing, the slice of a near dynamic slice accuracy can be

11

654

321

7 9

13

��������

11

654

321

7 9

13

� � � � � �� � � � � �� � � � � �� � � � � �

����������������������������

111

615141

3121

71

131

112

6252

72

53

Figure 4. Program Dependence Graphs (PDG)
of the Program shown in Figure 3.

always obtained.
The characteristic of each slicing method is summarized

as follows[5, 20].

analysis accuracy (slice size)
Static Slice≥ DC Slice≥ Dynamic Slice

analysis cost (dependence relations analysis time and space)

Dynamic SliceÀ DC Slice> Static Slice

2.3.1 Example of Slice Extraction

For the program shown Figure 3 with slicing criterion<13,
c>, we get the following slices.

Static Slice {1, 2, 3, 4, 5, 6, 7, 9, 11, 13}
Dynamic Slice {2, 3, 4, 5, 6, 7, 11, 13}
DC Slice {2, 3, 4, 5, 6, 7, 11, 13}

For another slicing criterion<9, c>, we get the follow-
ing.

Static Slice {1, 2, 3, 4, 5, 6, 9, 11}
Dynamic Slice {}
DC Slice {4, 5, 6, 9}

The size of DC slice is smaller than that of static, and it
includes redundant statements but is close to dynamic slice.

3 Implementation of DC Slicing for Java

In order to show the usefulness of DC slicing method for
object-oriented languages such as Java, we have studied an
implementation methods. In [16], we proposed a method of
embedding analysis codes to the target source code before
compilation. However, it has some drawbacks; it does not
work properly for complex statements with nested method
calls. Therefore, its applicability is limited.

In this paper, we propose an implementation method
of DC slicing system, by extending Java Virtual Machine
which processes bytecodes, so that the virtual machine can
extract dynamic data dependencies during execution. Since
the analysis target is bytecode, we will define a slice cal-
culation method on bytecode while the conventional slice
calculation method is defined on source code. User can-
not grasp the slice on bytecode intuitively, so a slice of the
bytecode is mapped back onto a slice of the source code
by referring to the cross reference table which is created by
Java compiler.

Our proposal method extracts DC slices as follows.

Phase 0: Cross Reference Table between source code and
bytecode is created by the Java compiler.

Phase 1: Static control dependence is analyzed and a PDG
without DD edges is constructed.

Phase 2: Dynamic data dependence is analyzed during the
program execution by JVM and the PDG is completed.

Phase 3: Slices on the bytecode is extracted and they are
mapped back to the source code.

3.1 Cross Reference Table between
Source Code and Bytecode

In the proposal method, we create a cross reference ta-
ble, in order to get a mapping between bytecode and source
code.

We have extended the Java compiler so that the cross
reference table can be obtained. When building a syntactic-
analysis tree from the source code, the Java compiler holds

the information of each token in the source code. When the
Java compiler generates the bytecode from the syntactic-
analysis, the correspondance relation between the source
code and the bytecode also extracted. In general, the Java
compiler optimizes the bytecode. However, the correspon-
dence relation between the source code and the bytecode
is lost by the optimization. Thus, we turn off the the opti-
maization here.

We show an example of the cross reference table in Fig-
ure 5. By referring to this cross reference table, we can
translate the slice criterion specified on the source code into
the slice criterion on the bytecode. Related with the source
code after slice calculation, we can grasp the slice on the
bytecode.

int i = 2;
if (i > 2) {

i++;
} else {

i--;
}
int j = i;

bytecode statements a corresponding token set

iconst2 ”2”
istore1 ”i =”
iload 1 ”i”
iconst2 ”2”
if icmple L13 ”>”
iinc 1 1 ”i++”
goto L18 ”if”

L13: nop ””
nop ”if”
iinc 1 -1 ”i−−”

L18: nop ”if”
iload 1 ”i”
istore2 ”j =”
return ”main”

Figure 5. Cross Reference Tables

3.2 Control Dependence Analysis

In the DC slicing method, control-dependence analysis
is done statically. Here we define control dependence rela-
tion on the bytecode as follows[4]. This control dependence
relations are computed by applying the algorithm on Figure
6 to each method in the bytecode.

Definition Control Dependence
Consider two bytecode statementss andt. Whens and

t satisfy the following conditions, we say that a control
dependence relation exists froms to t.

1. s is a branch command, and the last command of
abasic block[3] X.

2. Assume thatX branches to basic blocksU and
V , and consider an execution pathp from U to
the exit andq from V to the exit. t satisfies the
following.

(a) Any p includest

(b) No q includest.

Input Bytecode
Output Control dependence relations between bytecode statements
ProcessCompute static control dependence relations for bytecode

(1) Divide bytecode into Basic Block, and construct its control
flow graphG

(2) Add an entry nodeR, an exit nodeE, and their associated
edges toG, and add each edge fromR to first node inG, last
node inG to E, from R to E

(3) Construct reverse control flow graphG′ for G(N : set of
nodes inG′)

(4) Construct dominator tree[11, 15] forG′(the root isE)

(5) foreachbasic blockx in N begin

(6) find Dominance Frontier[8]a DF G′[x]

(7) foreachy in DF G′[x]

(8) Compute and output pairs of last statement iny and each
statement inx regarded as control dependence relations

(9) end

aThe Dominance Frontier of a nodes is the set of all nodest
such thats dominates a predecessor oft, but does not strictly domi-
natet.

Figure 6. Static Control Dependence Analysis
Algorithm

3.3 Data Dependence Analysis for DC
Slicing

In the DC slicing method, the target program in bytecode
is executed on an extended JVM(Java Virtual Machine), and
the data dependence relation is extracted at the execution
time. We prepare a cache area for each data field to identify
the bytecode statement which defines the latest value of the
data field. Examples of the data field are member variables
in each instance, stack elements on JVM, and local variables
in each method.

When a data fieldd is referred to at execution of byte-
code on JVM, we extract a DD relation ford using the cache
of d. A DD relation is obtained from the statement specified

by the cache ofd to the statement which made this refer-
ence. When a value of a data fieldd is defined, the cache
of d is updated by the statement which made the definition.
The cache for a dynamically allocated data field is created
at the same time when the data field is created.

Figure 7 shows the dynamic data dependence analysis
algorithm. In this algorithm, each instance generated from
the same class has independent cache, so that we can extract
the DD relation of each instance independently. Table 3
shows a transition of caches and DD relations during the
execution of bytecode shown in Figure 8.

Input Bytecode
Output Data dependence relations of statementss
ProcessCompute dynamic data dependence relations for execution

of each statements
(1) foreachfield datan referred to ats

(2) output the pair of the statement specified by the cache for
n ands

(3) foreachfield datan defined ats begin

(4) if no cache forn existsthen

(5) generate a cache forn

(6) update the content of cache forn to s

(7) end

Figure 7. Data Dependence(DD) Analysis Al-
gorithm

Table 3. Transitions of the caches for figure8
statement local variable[0] stack[0] stack[1] dependence

relations

1 - 1 -
2 2 - - 1→ 2
3 2 3 -
4 2 3 4 2→ 4
5 2 - - 3,4→ 5
6 6 - - 2→ 6
7 6 - -
9 6 9 - 6→ 9
10 6 - - 9→ 10

PDGDC for the bytecode is constructed as shown in
Figure 8. In this method, each node represents a bytecode
statement, each edge represents a dependency relation.

3.4 Computation of a Slice

After constructing the PDG, we compose a slice from a
given DC slicing criterion. The method is essentially the
same as usual ones. We collect a set of reachable nodes
through edges reversely from the node corresponding to the
DC slicing criterion.

3iconst_31:
i =istore_02:

10:
9:
8:
7:
6:
5:
4:
3:

iiload_0L2:

ifgoto L2
i--iinc 0 -1L1:

return

i++
<
i
5

ireturn

iinc 0 1
if_cmpge L1
iload_0
iconst_5

Control Dependence

Data Dependence

� ���������
	
� �
���
�������
������	

����� ��� �
� ! "	

�
# � ��$ # �%��	

if_cmpge L1

goto L2

iinc 0 1

ireturn

iload_0

iconst_5

iinc 0 -1

iload_1

istore_0

iconst_3

Figure 8. Example of Program Dependence
Graph for Bytecode

3.5 System Architecture

In order to realize our proposal method, we hava de-
veloped a DC slicing system for Java programs. Figure 9
shows its architecture. Figure 10 is a screenshot of the main
window of the system.

Extended
Java

��������� 	
��

����
�������

Extended JVM
PDG � ����������������

!#" $ ���
� �����%���&������

' ��(�����
)������*+��,-� ' 	 � ��
/. ' ��(�����
)������*-��,-��0

! ��1�2#�&�43�2%��5&2%687:9;���������&�-���
�82#� !8! 2#�=< �=2%�=>+�&�?�%6@� " �

' 	 � ��
A�-�&� �
-�&� ��B

CD Analysis Tool

DDD relations

CD relations

' 	 � ��
��

execution result

Figure 9. System Architecture

Java compilerproduces the cross reference table be-
tween the source code and bytecode. Control dependence
relations is statically analyzed byCD analysis tool, and
data dependence relations is dynamically analyzed by the
extended JVMwhile execution. Based on the dependence
relations extracted by these processes, aPDG of the byte-
code is constructed. A DC slice criterion on the source pro-
gram is specified by the user, and it is translated to the byte-

code statement with the cross reference table. The reachable
statements are collected by traversing the PDG. Finally, the
slice result is mapped back on the source program by the
cross reference table.

Table 4. Slice target program

program classes total lines
P1 (database management) 4 262

P2 (sorting) 5 231

Table 5. Slice Size [Lines]

Static Slice Dynamic Slice DC Slice

P1-slice criterion 1 60 24 30
P1-slice criterion 2 19 14 15
P2-slice criterion 1 79 51 51
P2-slice criterion 2 27 23 25

4 Evaluation

In this section, we evaluate our approach by a compari-
son with traditional slicing methods. We have made an ex-
periment, and we have evaluated the slice size and analysis
cost. Table 4 lists the target programs for the evaluation.
Program P1(which consists of 4 classes, 262 statements) is a
database management program, and the program P2(which
consists of 5 classes, 231 statements) is a sorting program.

We have applied our DC slicing system to P1 and P2, and
measured the slice size, used memory, PDG construction
time, slice calculation time, and the number of PDG nodes.

4.1 Slice Size

We have measured the slice sizes for the static slicing,
dynamic slicing, and DC slicing. Table 5 shows the sizes of
slices for two slice criteria. The static and dynamic slices
were counted by hand.

From the viewpoint of fault localization, we prefer
smaller slice sizes. DC slice sizes are smaller than static
slice sizes. In this experiment, the DC slice sizes are almost
equivalent to the dynamic slice sizes.

The DC slice sizes are about 50% to 93% of the static
slice sizes, and DC slices provide a better focus to falut lo-
cations. Since the target programs used here are small-scale
ones, the difference between static slices and DC slices is
not so large. However, if class inheritances, overrides and

Figure 10. System Main Window

Table 6. Analysis Cost
JVM execution time[ms] JVM memory usage[Kbytes] PDG construction time and

program
original extended original extended slice calculation time[ms]

P1 325 2,058 3,780 15,980 525
P2 341 3,089 4,178 26,091 450

overloads of methods are used in a large-scale program,
we would guess that the difference becomes larger. This
is because static slicing has to consider all possible cases,
but our approach considers actually used inheritances, over-
rides, and overloads.

4.2 Analysis Cost

We have compared the extended JVM with the original
JVM with respect to the execution time and the memory
usage. The target programs are listed ones in Table 4. Table

6 shows the results.
As you can see from these tables, the extended JVM re-

quires more execution time and space. The extended JVM
is 6-9 times slower and 4-6 times more space consuming
than the original JVM. One reason for this is that the DD
analysis is performed not only for the traget program but
for associated JDK libraries. Moreover, the extended JVM
executes bytecodes without any optimization, but the orig-
ined one performs JIT(Just In Time) optimization.

Table 7 shows the number of nodes in PDG created by
the DC slicing and dynamic slicing. Dynamic slicing re-
quired 30-50 times more nodes, which drastically increase
the memory usage at the execution. Compared to the dy-
namic slicing, DC slicing is less costly and more practical
approach to get reasonable slices.

We are planning to improve analysis speed with less
memory, although, current system is considered practical
enough in debugging environment.

Table 7. PDG nodes
program DC slicing dynamic slicing ratio

P1 34,966 1,198,596 1 : 34.3
P2 34,956 1,808,051 1 : 51.7

5 Conclusion

In this paper, we have proposed an implementation
method of the DC slicing for Java program.

The major characteristics of this method is that the anal-
ysis of control dependences and data dependences are per-
formed at the bytecode level, and the slice results are
mapped back to the source program.

The proposed method has been actually implemented by
extended JVM to collect the dynamic data dependences. To
validate this approach, we have applied the developed sys-
tem to sample programs. The result shows that our approach
to implement DC slicing for Java is very practical and real-
istic one to get effective slices.

As a future work, we are planning to improve JVM fur-
ther for more efficient dynamic data dependence analysis.

References

[1] H. Agrawal, R. A. DeMillo and E. H. Spafford: “An
execution backtracking approach to program debug-
ging”, IEEE Software, pages 21-26, May 1991.

[2] H. Agrawal and J. Horgan: “Dynamic Program Slic-
ing”, SIGPLAN Notices, Vol.25, No.6, pp.246–256
(1990).

[3] A. V. Aho, R.Sethi and J. D. Ullman: “Compilers
Principles, Techniques, and Tools”, Addison-Wesley,
(1986).

[4] A. W. Appel and M. Ginsburg: “Modern Compiler
Implementation in C”, Cambridge University Press,
Cambridge (1998).

[5] Y. Ashida, F. Ohata and K. Inoue: “Slicing Methods
Using Static and Dynamic Information”, Proceedings
of the 6th Asia Pacific Software Engineering Con-
ference (APSEC’99), pp.344–350, Takamatsu, Japan,
December (1999).

[6] D. Atkinson and W. Griswold: “The design of whole-
program analysis tools”, Proceedings of the 18th Inter-
national Conference on Software Engineering, Berlin,
Germany, pp.16-27, (1996).

[7] D. Binkley, S. Horwitz, and T. Reps: “Program in-
tegration for languages with procedure calls”, ACM
Transactions on Software Engineering and Methodol-
ogy 4(1), pp.3-35, (1995).

[8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman
and F. K. Zadeck: “Efficiently Computing Static Sin-
gle Assignment Form and the Control Dependench
Graph”, ACM Transactions on Programming Lan-
guages and Systems, Vol.13, No.4, pp.461-486, Oc-
tober (1991).

[9] M. Enami, R. Ghiya and L. J. Hendren: “Contextsen-
sitive interprocedural points-to analysis in the pres-
ence of function pointers”, Proceedings of the ACM
SIGPLAN94 Conference on Programming Language
Design and Implementation, pp.242-256, Orlando,
Florida, June (1994).

[10] K.B.Gallagher: “Using Program Slicing in Software
maintenance”, IEEE Transactions on Software Engi-
neering, 17(8), pp.751-761 (1991).

[11] D. Harel: “A liner time algorithm for finding domina-
tor in flow graphs and related problems”, Proceedings
of 17th ACM Symposium on Theory of computing,
pp.185–194, May (1985).

[12] M. Harman and S. Danicic: “Using program slicing to
simplify testing”, Journal of Software Testing, Verifi-
cation and Reliability, 5(3), pp.143-162 (1995).

[13] S. Kusumoto, A. Nishimatsu, K. Nishie, K. In-
oue: “Experimental Evaluation of Program Slicing
for Fault Localization”, Empirical Software Engineer-
ing (An International Journal), Vol.7, No.1, pp.49-76,
March (2002).

[14] L. Larsen and M. J. Harrold: “Slicing Object-Oriented
Software”, Proceedings of the 18th International Con-
ference on Software Engineering, pp.495-505, Berlin,
March (1996).

[15] T. Lengauer and E. Tarjan: “A fast algorithm for
finding dominators in a flow graph”, ACM Transac-
tions on Programming Languages and Systems, Vol.1,
No.1, pp.121-141, July (1979).

[16] F. Ohata, K. Hirose and K. Inoue: “A Slic-
ing Method for Object-Oriented Programs Using
Lightweight Dynamic Information”, Proceedings of
Eighth Asia-Pacific Software Engineering Conference
(APSEC2001), pp.273–280, Macau, China, Decem-
ber (2001).

[17] K. J. Ottenstein and L. M. Ottenstein: “The program
dependence graph in a software development environ-
ment”, Proceedings ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software
Development Environments, pp.177–184, Pittsburgh,
Pennsylvania, April (1984).

[18] Shapiro, M. and Horwitz, S.: “Fast and accurate
flowinsensitive point-to analysis”, Proceedings of the
24th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pp.1-14, Paris,
France, January (1997).

[19] B.Steensgaard: “Points-to analysis in almost linear
time”, Technical Report MSR-TR-95-08, Microsoft
Research (1995).

[20] T. Takada, F. Ohata and K. Inoue: “Dependence-
Cache Slicing: A Program Slicing Method Using
Lightweight Dynamic Information”, Proceedings of
the 10th International Workshop on Program Compre-
hension(IWPC2002), pp.169-177, Paris, France, June
(2002).

[21] M. Weiser: “Program Slicing”, IEEE Transaction on
Software Engineering, 10(4), pp.352–357 (1984).

[22] J. Zhao: “Dynamic Slicing of Object-Oriented Pro-
grams”, Technical Report SE-98-119, Information
Processing Society of Japan (IPSJ), pp.11-23, May
(1998).

