
Code Clone Analysis Environment for Software
Maintenance

Yoshiki Higo1 Toshihiro Kamiya2 Shinji Kusumoto1 Katsuro Inoue1

1Graduate School of Information Science and Technorogy, Osaka University
2PRESTO, Japan Science and Technology Agency

{y-higo,kamiya,kusumoto,inoue}@ist.osaka-u.ac.jp

ABSTRACT
Recently, code clone has been regarded as one of factors that
make software maintenance more difficult. A code clone is a
code fragment in a source code that is identical or similar to
another. For example, if we modify a code fragment which
has code clones, it is necessary to consider whether we have
to modify each of its code clones. There are two ways of
maintenance support for code clones. One is to comprehend
and manage code clones, and the other is to remove them.
For the former support, we have developed code clone anal-
ysis environment Gemini. For the latter support, we have
proposed a method that detects refactoring-oriented code
clone. Through the application of them to software mainte-
nance in several software companies, we got some feedback
about them. In this paper, in order to improve the useful-
ness and applicability of the methods in the actual software
maintenance, we extend both of our maintenance support
methods. Concretely, we have developed a new code clone
analysis tool SuperGemini that is improved the scalability
by restructuring the architecture of Gemini. This improve-
ment makes it possible to apply SuperGemini to industrial
software practically. Also, as the extension of the refactor-
ing method, we have developed a characterization of code
clones by some metrics, which suggest how to remove them.
Then, we have developed refactoring support tool Cancer.
We expect SuperGemini and Cancer can support software
maintenance more effectively.

Categories and Subject Descriptors
D.1.m [Programming techniques]: Miscellaneous; D.2.6
[Software Engineering]: Programming Environments; D.2.8
[Software Engineering]: Metrics

General Terms
Design, Languages, Management

Keywords
Code clone, Refactoring, Software maintenance

1. INTRODUCTION
Recently, maintaining software systems has been becoming
more difficult as the size and complexity of software is in-
creasing. Maintenance of software system is defined as mod-
ification of a software product after delivery to correct faults,
to improve performance or other attributes, or to adapt the
products to a modified environment[14]. Actually, it is re-
ported that many software companies expend a lot of time
and human cost for software maintenance.

It is generally said that code clone is one of factors that
make software maintenance more difficult[6]. Code clone
is a code fragment that is identical or similar to another.
Code clones are introduced because of various reasons such
as reusing code by ‘copy-and-paste’. If we modify a code
fragment and it has many code clones, it is necessary to
consider pros and cons of modification in its corresponding
all code clones. Especially, for large scale software, such
processes are very complicated and need much cost. So,
efficient code clone detection is necessary and important in
software development and maintenance.

There are two ways of maintenance support for code clones.
One is to comprehend and manage code clones, and the
other is to remove them. For the former support, there exist
many researches to automatically detect code clones[4][13].
We have also developed code clone detection tool CCFinder[10]
and code clone analysis environment Gemini[15]. We have
been delivering Gemini (including CCFinder) to more than
50 software organizations and evaluated the usefulness of
them in the actual software maintenance. Then, we have
gotten valuable feedback from them. One of the problems
to be solved in applying Gemini to industrial software is
scalability. That means Gemini can’t deal with large scale
software (more than 50000 LOC), effectively. So, the im-
provement of scalability of Gemini is essential problem. For
the latter support, several code clone removal methods have
been proposed[2][3][12]. We have also suggested a refac-
toring method that can apply practical software develop-
ment and maintenance[7]. But, we have not implemented
the method as an actual software tool.

In this paper, in order to deal with the above problems,
we develop two maintenance support systems based on code
clone analysis. The first system is SuperGemini that have
high scalability to cope with a huge size software in the ac-
tual software organization. The second system is Cancer
to support the refactoring for code clone. Cancer can de-

tect refactoring-oriented code clones in practical time from
large scale software. Moreover, Cancer characterizes de-
tected code clone using some metrics. In other word, Cancer
tells the user which code clones can be removed and how to
remove them. So, the user can concentrate on modifying
source code, which leads software development and main-
tenance to more effective ones. Through case studies for
several open source software, we confirm the applicability of
SuperGemini and Cancer.

2. PRELIMINARIES
Here, we define some terminology regarding code clones.
Next, we briefly explain our previous research results, a code
clone detection tool CCFinder[10], a code clone analysis
system Gemini and a refactoring method for code clones
detected by CCFinder. Finally, we show several problems
to be solved that were known through applications of the
tools in the actual software maintenance process.

2.1 Code Clone
A clone relation is defined as an equivalence relation (i.e.,
reflexive, transitive, and symmetric relation) on code frag-
ments[10]. A clone relation holds between two code frag-
ments if (and only if) they are the same sequences. (Se-
quences are sometimes original character strings, strings with-
out white spaces, sequences of token type, and transformed
token sequences.) For a given clone relation, a pair of code
fragments is called a clone pair if the clone relation holds
between the fragments. An equivalence class of clone rela-
tion is called a clone set. That is, a clone set is a maximal
set of code fragments in which a clone relation holds between
any pair of code fragments. A code fragment in a clone set
of a program is called a code clone or simply a clone.

2.2 CCFinder
CCFinder[10] detects code clones from programs and out-
puts the locations of the clone pairs on the programs. The
length of minimum code clone is set by the user in advance.
Clone detection of CCFinder is a process in which the input
is source files and the output is clone pairs. The process
consists of following four steps:

Step1: Lexical analysis: Each line of source files is divided
into tokens corresponding to a lexical rule of the pro-
gramming language. The tokens of all source files are
concatenated into a single token sequence, so that find-
ing clones in multiple files is performed in the same way
as single file analysis.

Step2: Transformation: The token sequence is transformed,
i.e., tokens are added, removed, or changed based on
the transformation rules that aims at regularization of
identifiers and identification of structures. Then, each
identifier related to types, variables, and constants is
replaced with a special token. This replacement makes
code fragments with different variable names clone pairs.

Step3: Match Detection: From all the sub-strings on the
transformed token sequence, equivalent pairs are de-
tected as clone pairs.

Step4: Formatting: Each location of clone pair is converted
into line numbers on the original source files.

Clone scatter plot view

Source code view

Metric graph views

Code clone database
Clone selection

information

Clone selection
information

Interfaces

User

Code clone analysis environment, Gemini

Source files

Code clone detector

Metrics manager

Source code manager

Clone pair manager

Figure 1: Architecture of Gemini

2.3 Gemini
Since CCFinder aims to detect code clones efficiently, the
output from CCFinder is text format, which is difficult to
analyze in practical maintenance process. So, we have im-
plemented Gemini to support effective code clone analysis.

Gemini[15] is a GUI-based code clone analysis environment
which uses CCFinder as a code clone detector. As shown in
Figure 1, Gemini provides to the user the following view win-
dows that enable an interactive code clone analysis: Scatter
Plot View, Metric Graph View, Source Code View.
Scatter Plot View shows visually where clone pairs exist in
source files. It is very effective mechanism in early phase
of code clone analysis since the state of distribution of code
clone can be grasped at a glance. In the view, the user can
select clone pairs by mouse dragging. The detail of the Scat-
ter Plot View will be described later. Metric Graph View is
used for the user to select clones by the quantitative char-
acteristics of them. In the Metric Graph View, the user can
easily select distinctive clone sets by setting the range of
each metrics value. Source Code View works cooperating
the Scatter Plot View on the Metric Graph View. The user
can obtain actual source code corresponding to the clones
selected in the other views.

Here, we briefly explain the Scatter Plot. Figure 2 shows
an example of the Scatter Plot. Both the vertical and hor-
izontal axes represent code fragments of source files. The
following two sequences are used as sample code fragments
in the scatter plot.

code fragment X: “ABCDCDEFBCDG”,

code fragment Y: “ABCEFBCDEBCD”

Here, symbols “A”,“B”,“C”,... are code fragments in an unit
such as character, token, line, statement, function, etc (In
Gemini, it is token). In Figure 2, each small black square
means that corresponding two elements on the two axes are
the same. So, a clone pair is shown as a diagonal line seg-
ment. If the same code fragments are arranged on the two
axes, naturally, a diagonal line from the upper left to the
lower right is drawn since such dot means comparison of to-
ken with itself, and the dots are symmetrical with a diagonal
line.

2.4 Refactoring of code clones
We have also studied the removal of code clones from source
code. The removal of code clones is generally referred as
refactoring[6] or restructuring. The key idea of our method
is to find a kind of cohesive code fragment (like compound
block or method bodies) from the code clone fragments. Fig-
ure 3 shows an example. In this figure, there are two code

Figure 2: Scatter plot of code clones

fragments A and B from a program, and the code fragments
with hatching are maximal clones between them. In code
fragment A, some data are substituted to list data struc-
ture from the head successively. In code fragment B, they
are done so from the tail successively. The for blocks in A
and B have a common logic that handles a list data struc-
ture. There are, however, sentences before and after for

block, that are not necessarily related with the for block
from semantic point of view. Such semantically unrelated
sentences often obstruct refactoring. In other word, extract-
ing only for block as a code clone is more preferable from
refactoring viewpoint in this example.

The proposed method is implemented as a filter for the out-
put of CCFinder. We named the filter CCShaper[7]. The
extracting process using CCShaper consists of the following
three steps:

Step1: Detect clone pairs using CCFinder.

Step2: Provide syntax information (body of method, loop
and so on) to each block by parsing the source files
where clone pair are detected in Step1 and investigat-
ing the positions of blocks.

Step3: Extract structural blocks in the code clone using the
information of location of clone pairs and structural
blocks. Intuitively, structural block indicates the part
of code clone that is easy to move and merge.

CCShaper performs Steps 2 and 3. For example, CCShaper
extracts the following kinds of code clone as a refactoring-
oriented code clone for Java language.

Declaration : class { }, interface { }
Method : method body, constructor, static initializer

Statement : if, for, while, do, switch, try, synchronized

In Step 1, time complexity O(nt) is required. Here, n is
the token number included in target software, and t is the
length of the longest code clone in it (the details are shown

�� ��� ���	��
�� ���� � � ��
��������
� ������������! #" $&%('�)�$+*(,�)�$�-�-�.
/
0�1�2 3 4 5�6�7�8�0 %9" : 0 #;�, 0=<�2 : 0�> .@? 1�3 3 ��,�" : 2 A�7 ����" <�2 : 0 .�.�)
0�1�2 3 %B" <�2 : 0�> . 0@1�2 3 4 5�6�7�8�0)
0�1�2 3 4 5 $+%C$D)
0�1�2 3 4 5�6�7�8�0 %�EGF <�<)

H
� ��� ���BIKJGL�L��

�

�� ��� ���B��
������
���! #" 2 %M'�) 2 *9NO'�) 2 -�-�.
/
0�1�2 3 4 5�6�7�8�0 %B" : 0 #;�, 0=<�2 : 0�> .�? 1�3 3 ��,�" : 2 A�7 ����" <�2 : 0 . .�)
0�1�2 3 %B" <�2 : 0�> . 0@1�2 3 4 5�6�7�8�0)
0�1�2 3 4 5�2 % 2)
0�1�2 3 4 5�6�7�8�0 %�EKF <�<)

H
�	�M� �

�
PRQ+S�T(U�VXW�Y�Z[T�\!]&^

PRQ+S!T(U@V_W�Y�Z[TO\!]=`

a b�c d eKfhg�i�eGjke�i�e�lOlOmnpo
q�r s t u�vOwXx

o fkd y o c zO{ o�| r y
o�} m ~ qOs s b�{Od y r ��w b�a d

|
r y
o m m�io

q�r s fhd
|
r y
o�} m o qOr s t u�vOwXx

o io
q�r s t u eGfke�io
q�r s t u�vOwXx

o f��!� |�| i�
�����D�������������������&�

�� ��� ���	��
�� ���� � � ��
��������
� ������������! #" $&%('�)�$+*(,�)�$�-�-�.
/
0�1�2 3 4 5�6�7�8�0 %9" : 0 #;�, 0=<�2 : 0�> .@? 1�3 3 ��,�" : 2 A�7 ����" <�2 : 0 .�.�)
0�1�2 3 %B" <�2 : 0�> . 0@1�2 3 4 5�6�7�8�0)
0�1�2 3 4 5 $+%C$D)
0�1�2 3 4 5�6�7�8�0 %�EGF <�<)

H
� ��� ���BIKJGL�L��

�

�� ��� ���B��
������
���! #" 2 %M'�) 2 *9NO'�) 2 -�-�.
/
0�1�2 3 4 5�6�7�8�0 %B" : 0 #;�, 0=<�2 : 0�> .�? 1�3 3 ��,�" : 2 A�7 ����" <�2 : 0 . .�)
0�1�2 3 %B" <�2 : 0�> . 0@1�2 3 4 5�6�7�8�0)
0�1�2 3 4 5�2 % 2)
0�1�2 3 4 5�6�7�8�0 %�EKF <�<)

H
�	�M� �

�
PRQ+S�T(U�VXW�Y�Z[T�\!]&^

PRQ+S!T(U@V_W�Y�Z[TO\!]=`

a b�c d eKfhg�i�eGjke�i�e�lOlOmnpo
q�r s t u�vOwXx

o fkd y o c zO{ o�| r y
o�} m ~ qOs s b�{Od y r ��w b�a d

|
r y
o m m�io

q�r s fhd
|
r y
o�} m o qOr s t u�vOwXx

o io
q�r s t u eGfke�io
q�r s t u�vOwXx

o f��!� |�| i�
�����D�������������������&�

Figure 3: Example of merging two code fragments

in [10]). In Step 2, time complexity O(n) is required. Next,
in Step 3, time complexity O(cs log c) is required. Here,
s is the number of target source files, and c is the average
number of code clones in each file. Actually, the values of c
and s are extremely smaller than the value of n. So, time
complexity O(nt) is approximately required for detecting
refactoring oriented code clones, which enables us to detect
ones in practical time from large scale software.

There are several related studies about refactoring of code
clones. Komondoor et al.[12] has proposed a refactoring
method using program slicing. In this method, a program
dependence graph is constructed by analyzing target source
codes. Identical or similar parts are detected as code clone.
This detection is greatly precise because of considering con-
trol and data flow of program. Moreover, it can detect re-
ordered and intertwined clones[12] which cannot detected
by CCFinder. But, time complexity of constructing pro-
gram dependence graph is O(m2)(m is the number of state-
ment and expression included in target source codes), which
makes it difficult to apply this method to large scale soft-
ware. Also, Balazinska et al.[2] has proposed an approach to
extract code clones using metrics. Since they consider the
context of code clone, it is practical. But, the unit of the
code clone is restricted to ‘function’ and ‘method’, which
makes it difficult to perform refactoring to smaller unit of
code clone.

2.5 Problems to be solved
We have so far delivered Gemini to more than fifty software
organizations, and gotten many feedbacks from them. One
of the problems which have been repeatedly pointed out is
the low scalability of Gemini. The scatter plot of Gem-
ini needs space complexity O(n2)(n is the number of target
source files) by its implementation. Moreover, if very many
clones exist, the cost of plotting clones becomes huge and
consequently the performance extremely deteriorates. From
our experience and the related research[11], Gemini can per-
form smoothly if the LOC of target software is about 50,000
∼ 200,000 or less.

Also, there is another problem caused by the user-interface
of Gemini. The Scatter Plot View is based on clone pair
analysis. On the other hand, the Metric Graph View is based

�

�

� � �

�

�

�� �� ��

(a) Previous

�����

�����

��

�

�

�

�

����

�����

�����

����

�

�

�

�

��������

(b) Latter

Figure 4: Data Structure of Scatter Plot

on clone set analysis. We considered that it is useful to use
each view, separately. But, some users wanted to use the
views cooperatively and then claimed that the operations
were sometimes confused. So, the usability of them were
not good.

With respect to the method of refactoring of code clones de-
scribed in Section 2.4, we have just proposed the approach
to extract the refactoring-oriented clones and did not con-
sider how to remove them. So, the user have to decide how
to remove the code clones by him/herself.

This paper describes the improvements for these problems.
For the improvement of Gemini, we have added some new
views, and changed architecture of it. As the results, the
scalability of Gemini have been improved greatly. For the
improvement of the refactoring method, we have introduced
some metrics to determine how to remove them. Detected
clones are quantitatively characterized by using the metrics
which support the user how to remove them.

3. NEW CODE CLONE ANALYSIS ENVI-
RONMENT: SUPERGEMINI

3.1 Key Idea for Improving Gemini
Through several experiments, we realized that the Scatter
Plot View makes Gemini’s scalability lower extremely. The
Scatter Plot View, by its nature, needs space complexity
O(n2)(n is the number of target source files) to draw clone
pairs. Moreover, Scatter Plot View draws each clone pair
respectively even if very many clones exist. Thus, it makes
the cost of drawing very high.

So, we decided to contrive the implementation of the Scatter
Plot View. At first, we reconstitute the data structure. Ex-
isting Gemini uses single 2-dimensional matrix as the data
structure for the Scatter Plot View(Figure 4(a)). In Fig-
ure 4, c© means clones existing in the cell corresponding to
two axes. To cope with the problem, we contrive to use hi-
erarchy 2-dimensional matrices. As shown in Figure 4(b),
each cell of the top level matrix has a sub-matrix. If no
code clones exist in files corresponding to this sub-matrix,
it is not necessary to create the instance of this one, which
leads to cutting down memory usage. Also, we revised the
drawing component that if very many clones exist in some
portions of source files, the portions are marked out collec-

tively. This contrivance leads to cutting down the cost of
drawing clones.

With respect to the problem of user-interface, we changed
the architecture of Gemini. Existing architecture is shown
in Figure 1. In the revision of the architecture, we examined
that there are following two categories of code clone analysis:

File-Based Analysis: It aims to evaluate how many code
clones are included in each file. In this analysis, the
user selects some files with interest. And, they check
how many clones exist in those files or how those files
are covered with clones, and so on.

Clone-Based Analysis: It aims to evaluate which code
clones are distinguishing. This analysis, the user se-
lects some clones with interest. And, they check where
those clones exist in software, and so on.

So, we changed the Gemini’s architecture according to the
categories.

Also, we introduce a new metric called LDL(C) to Gemini.
LDL(C) means the rate how code clone C contains the same
statement repeatedly. For example, the following code frag-
ment (a code clone) C1 consists of three System.out.println
statements.

System.out.println("The value of a is " + a);
System.out.println("The value of b is " + b);
System.out.println("The value of c is " + c);

In this case, a System.out.println statement is appeared
three times in this fragment. So, the value of LDL(C1) be-
comes 0.33. This metric enables the user to discriminate the
clones, which include repeatedly the same statements, from
other clones. Say, they are repeated import statements
clones in Java language, or repeated printf and scanf state-
ments clones in C language. The reason of introducing this
metric also dues to the feedback from software companies.

3.2 Implementation of SuperGemini
We have implemented above extensions as a new code clone
analysis environment, SuperGemini. SuperGemini funda-
mentally doesn’t provide clone pair information to the user.
Scatter Plot View isn’t used to display clone pair informa-
tion, but used to show how many code clones exist between
each file, which is used in file-based analysis. Figure 5 shows
the architecture of SuperGemini. As shown in this figure,
several new views, Directory Tree View, Clone Set List, and
File List are included in SuperGemini. The Directory Tree
View is mainly used with the Scatter Plot View. The Scatter
Plot View shows clones which are under the directory or file
indicated on the Directory Tree View. The Clone Set List is
used in clone-based analysis. The Clone Set List shows clone
sets selected on the Metric Graph View. Also, the Clone Set
List has a sort function, which sorts clone sets according to
ascending or descending order of each metric. We consider
that the user operates these views as follows.

1. The user roughly specifies clone sets in the Metric
Graph View with his/her interest metrics.

2. The user sorts the selected clone sets on the Clone Set
List based on the metrics and specify the distinctive
clone set.

3. The user browses actual code fragment of the specified
clone set one by one.

������� �	��
 � ��� � �������	 ����������� ������� �������� �	��
 � ������� ������� �

� �������	 ����������� �	��� ���

� �����	� ����� �	�������	 ��� � �! "������#����

$�% & ' (�) (*�% +) * , & - . / (�/ & 0 (�1 + (234(* . + /)	5 . 6 7 8�1 + (2

,�/ 6 * * (.�7 % & * 1 + (2 9 + . (/ * & . :�* . ((�1 + (2 , & - . / (�/ & 0 (�1 + (2

;=<�>�?

;@<�>�?

A�B C�D >�E F�GH<�>	IKJ D G B L <�M <NM DPO >�?�Q G�R	>	<

STM B >�E FUG�<�>	I"J D G B L <�M <NM D�O >�?�Q G�R	>�<
V�+ % (H% +) *

W � ��� ����� �	�������� ��� � �X Y������#����

������� �	��
 � ���������� �	��
 � ��� � �������	 ����������� ������� �� �������	 ����������� ������� �������� �	��
 � ������� ������� �������� �	��
 � ������� ������� �

� �������	 ����������� �	��� ���

� �����	� ����� �	�������	 ��� � �! "������#����

$�% & ' (�) (*�% +) *$�% & ' (�) (*�% +) * , & - . / (�/ & 0 (�1 + (2, & - . / (�/ & 0 (�1 + (234(* . + /)	5 . 6 7 8�1 + (234(* . + /)	5 . 6 7 8�1 + (2

,�/ 6 * * (.�7 % & * 1 + (2,�/ 6 * * (.�7 % & * 1 + (2 9 + . (/ * & . :�* . ((�1 + (29 + . (/ * & . :�* . ((�1 + (2 , & - . / (�/ & 0 (�1 + (2, & - . / (�/ & 0 (�1 + (2

;=<�>�?

;@<�>�?

A�B C�D >�E F�GH<�>	IKJ D G B L <�M <NM DPO >�?�Q G�R	>	<

STM B >�E FUG�<�>	I"J D G B L <�M <NM D�O >�?�Q G�R	>�<
V�+ % (H% +) *V�+ % (H% +) *

W � ��� ����� �	�������� ��� � �X Y������#����

Figure 5: Architecture of SuperGemini

The File List is used in file-based analysis. The File List
has the following information for each file.

• the number of tokens included in the file,
• the number of lines included in the file,
• the number of code clones included in the file,
• the rate how the file is covered with code clones,
• the list of code clones included in the file, and
• the list of files which include the same code clones with

the file.

The File List provides the user quantitative clone informa-
tion of each file. The user also can sort files based on each
information. Say, it is very easy for the user to browse the
source code of the file which includes the largest number
of code clones. Here, we classify clone sets as the follow-
ing three types based on its degree of dispersion in the file
system.

Dense: In case that all the element of a clone set are in-
cluded in the same file,

Middle: In case that all the element of a clone set are not
included in the same file but in the same directory,

Scattered: In case that all the element of a clone set are
included in neither the same file nor the same direc-
tory.

The reason why we use this classification is that the way
how to deal with code clones is different from their degree
of dispersion[11]. The Source Code View has also been ad-
justed to this classification. That is, the code clones shown
in the Source Code View are highlighted by the different col-
ors based on each dispersion. So, the user can figure out the
degree of dispersion of them at a glance.

4. REFACTORING METHOD FOR CODE
CLONE

4.1 Key Idea
We use existing refactoring pattern[6], especially “Extract
Method” and “Pull Up Method”, to remove code clones.

“Extract Method” means that a fragment of source code
are extracted and redefined as a new method[6]. Originally,
this pattern is applied to too long method or too complex
part. Here, in order to remove code clones, we use “Extract
Method” to extract code clone fragments as a common new
method. “Pull Up Method” means that the same methods
defined in child classes are pulled up to its parent class[6].
This pattern is performed because of various reasons such as
design pattern. If plural child classes which have common
parent class include clone method, pulling up such methods
means clone removal.

4.2 Code Clone Metrics for Determining Refac-
toring Pattern

We attempt to refine detected code clones by measuring
their characteristics to remove some of them. “Extract Method”
is the extraction of a code fragment, so it is desirable that
the target fragment has low coupling with the other sur-
rounding fragments in the method, in other words, the vari-
ables defined outside the fragment aren’t used (referred and
substituted) in the fragment. If such variables are used,
it is necessary to provide them as parameters for the new
method. Therefore, we measure the amount of such vari-
ables.

On the other hand, “Pull Up Method” means moving iden-
tical existing methods in child classes to the parent class,
so it is necessary that the child classes have common parent
class. Therefore, we measure the dispersion of clones in the
class hierarchy. The above characterizing makes it possible
to determine how each clone can be removed. In order to
make the decision, we introduce several metrics.

For the variables which are defined outside the code clone
fragment, we define two metrics RV K(S), and RV N(S).
Here, we assume that clone set S includes code fragments
{f1, f2, · · · , fn}. Code fragment fi uses externally defined
variables {vi1 , vi2 , · · · , vimi

}. Also, RS(vij) denotes the
total number of referred and substituted count of vij .

RV K(fi) = mi,

RV N(fi) =

miX
i=1

RS(vi)

and,

RV K(S) = (

nX
i=1

RV K(fi))/n

RV N(S) = (

nX
i=1

RV N(fi))/n

Intuitively, RV K(S) represents the number of externally de-
fined variables used in the fragments of the clone set S.
Additionally, RV N(S) counts the number of usage of the
variables used in the fragments of S. For the dispersion in
class hierarchy, we defined a metrics DCH(S). As described
above, the clone set S includes code fragments {f1, f2, · · · , fn}.
Ci denotes the class which includes code fragment fi.

Then, if the classes {C1, C2, · · · , Cn} have several com-
mon parent classes, Cp is defined as the class which lays the
lowest position in class hierarchy among the parent classes
of {C1, C2, · · · , Cn}. Also, D(Ck, Ch) represents the dis-

���
������� �	��
 � ��� ����� ���	� ��� ���	�� �� ������� ��� � � !

"$#�%�&�'�(#�)�&�%�*,+ *,-�*�. &

/�0�)�+ *	12%�*	+ *	-�*�. &

354 6 7�8�4 796 :<;�8�=9>�?@8�; =<AB?
>9:B4 :<C�:�D�?FEFG 4 H@IF?B4 6 G 8�D

JJ JJLK�M�N M�O,N P Q�R�Q�SBOTQ�U�M�O�V Q�R�M�W

XX XXLY�ZTN [\�O,N P Q�R�Q�S�W	N []�O,N]�[\�V	^�V Q�O�_,W
`` ``LY�ZTN [\�O,N P Q�R�Q�SBO�V \�WTWba�P M�[\�[OTa�c
dd ddLY�ZTN [\�O,N P Q�R�Q�S�e�\�[P \�^�V M�U�M�S P R�P N P Q�R

ff ffLY�Z	N [\�O,N P Q�RgQ�S�W	N []�O,N]�[\�V	O�V Q�R�M�W
hh hhjik\�V O�]�V \�N P Q�R�Q�S�W�Q�l�Mml�M�N [P O	W n2o &	prqF*)�*TsB&	t

u$v w x y z {�| x } ~ �B� y v �

��� � � v�{ v w,� y { w

� � � x z vBz � � v�� y v �

���,���

�r����� ����� �����b� � ���L�b�b��� �

���
������� �	��
 � ���������� �	��
 � ��� ����� ���	� ��� ���	�� �� ������� ��� � � !

����� ���	� ��� ���	�� �� ������� ��� � � !

"$#�%�&�'�(#�)�&�%�*,+ *,-�*�. &"$#�%�&�'�(#�)�&�%�*,+ *,-�*�. &

/�0�)�+ *	12%�*	+ *	-�*�. &/�0�)�+ *	12%�*	+ *	-�*�. &

354 6 7�8�4 796 :<;�8�=9>�?@8�; =<AB?
>9:B4 :<C�:�D�?FEFG 4 H@IF?B4 6 G 8�D
354 6 7�8�4 796 :<;�8�=9>�?@8�; =<AB?
>9:B4 :<C�:�D�?FEFG 4 H@IF?B4 6 G 8�D

JJ JJLK�M�N M�O,N P Q�R�Q�SBOTQ�U�M�O�V Q�R�M�WJJ JJLK�M�N M�O,N P Q�R�Q�SBOTQ�U�M�O�V Q�R�M�W

XX XXLY�ZTN [\�O,N P Q�R�Q�S�W	N []�O,N]�[\�V	^�V Q�O�_,W
`` ``LY�ZTN [\�O,N P Q�R�Q�SBO�V \�WTWba�P M�[\�[OTa�c
dd ddLY�ZTN [\�O,N P Q�R�Q�S�e�\�[P \�^�V M�U�M�S P R�P N P Q�R

XX XXLY�ZTN [\�O,N P Q�R�Q�S�W	N []�O,N]�[\�V	^�V Q�O�_,W
`` ``LY�ZTN [\�O,N P Q�R�Q�SBO�V \�WTWba�P M�[\�[OTa�c
dd ddLY�ZTN [\�O,N P Q�R�Q�S�e�\�[P \�^�V M�U�M�S P R�P N P Q�R

ff ffLY�Z	N [\�O,N P Q�RgQ�S�W	N []�O,N]�[\�V	O�V Q�R�M�W
hh hhjik\�V O�]�V \�N P Q�R�Q�S�W�Q�l�Mml�M�N [P O	W
ff ffLY�Z	N [\�O,N P Q�RgQ�S�W	N []�O,N]�[\�V	O�V Q�R�M�W
hh hhjik\�V O�]�V \�N P Q�R�Q�S�W�Q�l�Mml�M�N [P O	W n2o &	prqF*)�*TsB&	t

u$v w x y z {�| x } ~ �B� y v �u$v w x y z {�| x } ~ �B� y v �

��� � � v�{ v w,� y { w��� � � v�{ v w,� y { w

� � � x z vBz � � v�� y v �� � � x z vBz � � v�� y v �

���,���

�r����� ����� �����b� � ���L�b�b��� �

Figure 6: The analysis flow of Cancer

tance between class Ck and class Ch in the class hierarchy.

DCH(S) = max {D(C1, Cp), D(C2, Cp), · · · , D(Cn, Cp)}

If the classes don’t have common parent class,

DCH(S) = -1

The value of DCH(S) also becomes larger as the degree of
the dispersion of its clone set becomes large. If all frag-
ments of a clone set S are in the same class, the value of its
DCH(S) is set as 0. If all fragment of a clone set are in a
class and its direct children classes, the value of its DCH(S)
is set as 1. Exceptionally, if classes which have some frag-
ments of a clone set don’t have common parent class, the
value of its DCH(S) is set as -1. In detail, this metric
is measured for only the class hierarchy where the target
software exists because it is unrealistic that the user pulls
up some methods which are defined in the target software
classes to library classes like JDK.

4.3 Refactoring Support Tool: Cancer
Based on the proposed method, we have implemented a
refactoring support tool Cancer with Java language. Figure
6 shows the analysis flow of Cancer. Cancer consists of two
units, Analysis unit and GUI unit. Analysis unit performs
the following analyses.

1. Detection of code clones,

2. Extraction of structural blocks,

3. Extraction of class hierarchy,

4. Extraction of variable definition,

5. Extraction of structural clones,

6. Calculation of some metrics.

For detection of code clones, Cancer internally calls CCFinder[10].
For the analyses which need syntax or semantic analyses,
we used JavaCC[8], which is an open source code generator
written in Java language. The analysis result, that is struc-
tural clone information with metrics, is passed to GUI unit
as XML format. Figures 7(a) and 7(b) show snapshots of
Cancer with the name of the windows.

Intuitively, the user specifies the distinctive clone set on the
Main Window. Then, he/she analyzes the details of it on
the Clone Set Viewer.

4.4 Function of Each Component
Here, we explain each component on Cancer.

����� ����� 	�
�� ���� ���� 	����

���

���

����� ����� 	�
�� ���� ���� 	����

���

���

(a) Before selection

����� ����� 	�
�� ���� ���� 	����

���

���

����� ����� 	�
�� ���� ���� 	����

���

���

(b) After selection

Figure 8: Metric Graph

4.4.1 Metric Graph View
The Metric Graph View uses existing metrics, LEN(S),
POP (S), and DFL(S) [15] in addition to three metrics de-
fined in Section 4.2. The followings are brief explanations
of each metric.

LEN(S) for clone set S is the maximum length of token
sequence for each one in S.

POP(S) is the number of elements (code fragments) of a
given clone set S. A clone set with a high value of
POP (S) means that similar code fragment appear in
many places.

DFL(S) indicates an estimation of how many tokens would
be removed from source files when the code fragments
in a clone set S are reconstructed. This reconstruction
is considered as the simplest case that all code frag-
ments of S are replaced with caller statements of a new
identical routine (function, method, template function,
or so). After the reconstruction, LEN(S) × POP (S)
tokens are occupied in the source files. In the newly
reconstructed source files, they occupy k × POP (S)
tokens (let k be the number of tokens for one caller
statement) for caller statements and LEN(S) tokens
for callee routine.

Here, we explain the Metric Gragh View using an example
shown in Figure 8. In the Metric Graph View, each metric
has a parallel coordinate axe. Upper and lower limits are
set per each metric. The hatching part is between upper
and lower limits of each metric. A polygonal line is drawn
per each clone set. In this example, values for the clone sets
S1 and S2 are drawn. In the left graph(8(a)), all metric
values of S1 and S2 are between upper and lower limits.
So, these two clone sets are selected state. In the right
graph(8(b)), the value of DCH(S2) is bigger than the upper
limit of DCH, which means S2 is unselected state. The
Metric Graph View enables the user to select arbitrary clone

��������� �
	�������
��� ��� ������������������� �"!#������� ����$ ��% �&$ ��'��(��$ ��%)%*$ � %)�

���������������*������$ ��'��,+�'�� �

��������� �
	�������
��� ��� ������������������� �"!#������� ����$ ��% �&$ ��'��(��$ ��%)%*$ � %)�

���������������*������$ ��'��,+�'�� �

(a) Main Window

���������	��
����������� � ��� �����	�	� ������
�� !�#"�
$�����

%&�$ '�����(�!��'����� ��) *�+,�
$�	�
$-$� �'�.� � ���

���������	��
����������� � ��� �����	�	� ������
�� !�#"�
$�����

%&�$ '�����(�!��'����� ��) *�+,�
$�	�
$-$� �'�.� � ���

(b) Clone Set Viewer

Figure 7: Snapshots of Cancer

set by changing upper and lower limits of each metric. And,
the result of selection is reflected on the Clone Set List.

4.4.2 Checkbox ofRV Variables
In the Checkbox of RV Variables in Figure 7(a), the user
can decide which variables are counted as metrics RV K(S)
and RV N(S). Currently, the variables are selected from the
following five types.

• field members of its class,

• field members of parent class,

• “this” variable,

• “super” variable,

• local variables.

For example, if the user is going to perform “Extract Method”
within a class, it is not necessary to count all kind of vari-
ables except local ones because these variables can be ac-
cessed anywhere in the same class. On the other hand, if
the user is going to perform refactoring that crosses over
plural classes like “Pull Up Method”, these ones should be
counted.

4.4.3 Checkbox of Clone Unit
In the Checkbox of Clone Unit, the user can decide which
kind of clone unit are shown in the Metric Graph View.
Currently, the number of unit types are twelve as described
in Section 2.4. For example, if the user is going to perform
“Pull Up Method”, he/she should check only ‘method’ unit
because the target of this pattern is the existing methods.

4.4.4 Clone Set List
The Clone Set List shows all clone sets which are selected
in the Metric Graph View. And the list can sort clone sets
in ascending and descending sequence of each metric value.
Double-clicking a clone set on this view is a trigger to run
the Clone Set Viewer as shown in Figure 7(b). It shows
more detail information of the selected clone set.

4.4.5 Metrics value panel
The Metrics Value Panel shows the values of all metrics of
clone set selected in the Main Window.

4.4.6 Code fragment list
The Code Fragment List shows the list of all code fragments
included in the selected clone set. Each element of the list
has three kinds of information, a path to each file which
includes the code clone fragment, the location of the code
clone in the file(the number of beginning line, beginning
column, end line and end column), and the number of token
included in the code clone fragment.

4.4.7 Source Code View
The Source Code View works cooperatively with the Code
Fragment List. The user can obtain the actual source code
corresponding to the code clone fragment selected in the
Code Fragment List. The fragment including the clones is
emphatically displayed.

4.4.8 RV variables list
The RV Variables List shows the list of all variables which
are used and defined externally in the code fragment which
is selected in the Code Fragment List. Each element of this
list has three kinds of information, the name of its variable,
the kind of its variable and the count of used.

4.5 Refactoring Procedure
Now, we explain refactoring process using Cancer. If the
user wants to perform “Pull Up Method”, the following con-
ditions should be considered for example.

(PC1) The target is ‘method’ unit code clone.

(PC2) The value of DCH(S) is more than 1.

Usually, ”Pull Up Method” is performed on existing meth-
ods, so (PC1) should be considered. And, the classes whose
method includes target code clones have to inherit com-
mon parent class, so (PC2) should be considered. Next,

Table 1: Target software
Student’s Ant 1.6 Eclipse 2.1.3

Num. of Files 70 627 7920
LOC 7200 180,000 1,690,000

Detection time 2 seconds 20 seconds 5 minutes

the refinement process is as follows. At first, the user checks
only ‘method’ unit checkbox on the Checkbox of Clone Unit,
which is reflected to the Metric Graph View. Next, the user
sets the lower limit of DCH(S) as more then 0. This opera-
tion is reflected to the Clone Set List. As the result, the list
shows the clone sets which meet the conditions (PC1) and
(PC2).

On the other hand, if the user wants to perform “Extract
Method”, the following conditions should be considered for
example.

(EC1)The target is ‘statement’ unit code clones.
(EC2)Tthe value of DCH(S) is 0.
(EC3)The value of RV K(S) is less than 1.

Since “Extract Method” is usually performed on a code frag-
ment in a method, (EC1) is considered. Next, if all frag-
ments of clone set S exist in the same class, it is easy to
merge them. So, (EC2) is considered. The reason to con-
sider (EC3) is that if some variables which are externally
defined are used in a fragment, it is necessary to make them
parameters of the new extracted method. Moreover, if some
values are substituted to some of them, they have to be re-
turned to method caller place to reflect the values of them.
It is necessary to contrive like making new data class if plural
value are substituted. The refinement process is as follows.
At first, the user checks only ‘statement’ unit (do, if, for,
switch, synchronized, try, while) checkbox on the Checkbox
of Clone Unit, which is reflected to the Metric Graph View.
Next, the user checks only ‘local variable’ on the Checkbox of
RV Variables because other kind variables can be accessed
as far as in the same class. Next, the user set the range of
DCH(S) as some value between 0 and 1(0 5 DCH(S) 5
1), and the upper limit of RV K(S) as less then 2. As the
result of these operations, the Clone Set List shows only the
clone sets which meet above three conditions (EC1), (EC2)
and (EC3).

5. CASE STUDY
Here, we describe several case studies to evaluate the use-
fulness of SuperGemini and Cancer.

5.1 SuperGemini
The objective of the case study for SuperGemini is con-
firm how the scalability of SuperGemini has improved as
compared with Gemini. In this case study, we applied Su-
perGemini to small, middle and large scale software. For
each application, we analyzed the detection time of code
clone (by CCFinder), the initialization time (reading code
clone information file and initializing each view) of SuperGem-
ini and Gemini and the used memory size. Of course, sev-
eral conditions for the code clones are the same both in
SuperGemini and Gemini except the memory size assigned
to JavaVM.

Table 1 shows the scale and clone detection time for each
software, and Table 2 shows the result of each application.

The small scale software is a student’s program of Osaka
University. In this application, the used memory size of
Gemini is a little bit lower than one of SuperGemini. We
consider that the increased memory size of SuperGemini is
caused by introducing new metrics. For the application of
middle scale software, Ant 1.6.0[1], there is a remarkable
difference between Gemini and SuperGemini. The initial-
ization time of Gemini is 15 second, which is so impractical
comparing with one of SuperGemini. Also, the used memory
size of SuperGemini is 35% smaller than one of Gemini. This
improvement is caused by introducing a new data structure
of the Scatter Plot View. These difference becomes more re-
markable in application to the large scale software, Eclipse
2.1.3[5]. In this case, in the execution of Gemini, we assigned
1GB memory to JavaVM (SuperGemini and Gemini are im-
plemented in Java language). But, it was insufficient for
Gemini and so Gemini couldn’t work. On the other hand,
in the execution of SuperGemini, though we only assigned
100MB memory to JavaVM, SuperGemini worked smoothly.
So, we can say that restructuring of the architecture makes
marvelous improvement of the scalability.

5.2 Cancer

5.2.1 Overview
In order to evaluate the usefulness of Cancer, we have ap-
plied it to Ant 1.6.0[1]. It includes 627 files and the size
is 180,000 LOC. In this case study, we set thirty tokens as
the length of minimum code clone of CCFinder(intuitively,
thirty tokens correspond to about five LOC). The value
thirty is the empirical value which was derived from our
previous applications of CCFinder. We also set thirty to-
kens as the length of minimum clone of Cancer. Then, we
tried to perform “Extract Method” and “Pull Up Method”
to code clones detected by Cancer. We got 154 clone sets
from Ant. The followings are the number of clones.

All detected clones 154
“Extract Method” 32
“Pull Up Method” 20

The conditions of “Extract Method” and “Pull Up Method”
are the same as ones described in Section 4.5. In Section
5.2.2 and 5.2.3, we describe the details of refactoring using
Cancer. Also, after removing several clone sets, we per-
formed regression tests to confirm the behavior of Ant. In
the regression test, we used totally 220 test cases included in
Ant package. These test cases used JUnit[9], which is one of
regression testing frameworks. So, we could easily perform
all test cases and took about 4 minutes to perform all test
cases.

5.2.2 “Extract Method”
As described above, we extracted 32 clone sets using the
“Extract Method” conditions described in Section 4.5. Then,
we browsed and examined all source codes of each clone set,
and classified them to the following four groups:

Group 1 clone sets that can be removed only by extracting
them and making a new method in the same class.

Group 2 clone sets that can be removed by extracting them
and making a new method with setting the externally
defined variables as parameters of it because such vari-
ables are used in the clone.

Table 2: Result of case study
Gemini SuperGemini

Student’s Ant 1.6.1 Eclipse 2.1.3 Student’s Ant 1.6.1 Eclipse 2.1.3
Initialization time 2 seconds 15 seconds - 1 seconds 2 seconds 20 seconds

Memory usage 26MB 58MB - 35MB 38MB 100MB

Group 3 clone sets that can be removed by extracting them
and making a new method with setting the externally
defined variables as parameters of it and with adding
parameters of return statement to deliver the results
to the variables used in the caller.

Group 4 clone sets that can be removed but need a lot of
effort.

if (!isChecked()) {
// make sure we don’t have a circular reference here
Stack stk = new Stack();
stk.push(this);
dieOnCircularReference(stk, getProject());

}

Figure 9: Example of Extract Method in Group 1

Three clone sets were classified to Group 1. Figure 9 shows
a source code of one of them. In this ‘if-statement’ clone, no
externally defined variable was used. So, it was very easy to
extract it as a new method in the same class.

if (javacopts != null && !javacopts.equals("")) {
genicTask.createArg().setValue("-javacopts");
genicTask.createArg().setLine(javacopts);

}

Figure 10: Example of Extract Method in Group 2

Eighteen clone sets were classified to Group 2. Figure 10
shows a source code of one of them. In this ‘if-statement’
clone, the variable “javacopts” was a field member of its
class, and the variable “genicTask” was a local variable. So,
it is necessary to set “genicTask” as a parameter of a new
method to extract this code clone in the same class.

if (iSaveMenuItem == null) {
try {

iSaveMenuItem = new MenuItem();
iSaveMenuItem.setLabel("Save BuildInfo To Repository");

} catch (Throwable iExc) {
handleException(iExc);

}
}

Figure 11: Example of Extract Method in Group 3

Seven clone sets were classified to Group 3. Figure 11 shows
a source code of one of them. In this ‘if-statement’ clone, the
variable “iSaveMenuItem” was externally defined. More-
over, the value was substituted to it. So, it is necessary to
set “iSaveMenuItem” as a parameter of a new method and
add ‘return statement’ to reflect the result of substitution
to the caller.

Four clone sets were classified to Group 4. Figure 12 shows a
source code of one of them. In this ‘if-statement’ clone, some
‘return-statements’ were used. So, a lot of effort would be
necessary to extract it. In this case study, we didn’t remove
these four clone sets because we think that removal of them
is strongly dependent on the skill of each programmer.

5.2.3 “Pull Up Method”
Next, we describe the results of applying ‘Pull Up Method”.
As described above, we extracted 20 clone sets using the

if (name == null) {
if (other.name != null) {

return false;
}

} else if (!name.equals(other.name)) {
return false;

}

Figure 12: Example of Extract Method in group 4

“Pull Up Method” conditions described in Section 4.5. Then,
we browsed and examined all source codes of each code
clone, and classified them to the following four groups:

Group 1 clone sets that can be removed only by moving
them to the common parent class.

Group 2 clone sets that can be removed by moving them
to common parent class after adding variables which
are defined outside.

Group 3 clone sets that can be removed by moving them to
common parent class and adding a new method which
needs parameters of outside variables and return state-
ment. Existing methods which includes the pull-uped
clones can be deleted or changed so that they call the
new method from the inside. If they are deleted, it is
necessary to change all its caller places.

Group 4 clone sets that need much contrivance to remove.

Here, no clone set was classified to Group 1.

private void getCommentFileCommand(Commandline cmd) {
if (getCommentFile() != null) {

/* Had to make two separate commands here because
if a space is inserted between the flag and the
value, it is treated as a Windows filename with
a space and it is enclosed in double quotes (").
This breaks clearcase.

*/
cmd.createArgument().setValue(FLAG_COMMENTFILE);
cmd.createArgument().setValue(getCommentFile());

}
}

Figure 13: Example of Pull Up Method in group 2

Ten clone sets were classified to Group 2. Figure 13 shows a
source code of one of them. In this ‘method’ clone, the vari-
able “this” was omitted at calling method “getComment-
File” which was defined in the same class. The variables
“this” and “FLAG_COMMENTFILE”, which are field members
of the same class, are externally defined. To adapt “Pull Up
Method” pattern, with adding two parameters, we pulled
up them to the common parent class.

Two clone sets were classified to Group 3. Figure 14 shows a
source code of one of them. In this method clone, the vari-
able “map” was externally defined, and some values were
substituted to it(Method “setError” was defined in the com-
mon parent class). So, to pull up this clone set to the com-
mon parent class, it was necessary to add a parameter and
return statement for the variable “map”.

Eight clone sets were classified to Group 4. Figure 15 shows
a source code of one of them. In this method, the method
“checkOptions” was called. This method was defined in

public void verifySettings() {
if (targetdir == null) {

setError("The targetdir attribute is required.");
}
if (mapperElement == null) {

map = new IdentityMapper();
} else {

map = mapperElement.getImplementation();
}
if (map == null) {

setError("Could not set <mapper> element.");
}

}

Figure 14: Example of Pull Up Method in group 3

public void execute() throws BuildException {
Commandline commandLine = new Commandline();
Project aProj = getProject();
int result = 0;

// Default the viewpath to basedir if it is not specified
if (getViewPath() == null) {

setViewPath(aProj.getBaseDir().getPath());
}

// build the command line from what we got. the format is
// cleartool checkin [options...] [viewpath ...]
// as specified in the CLEARTOOL.EXE help
commandLine.setExecutable(getClearToolCommand());
commandLine.createArgument().setValue(COMMAND_CHECKIN);

checkOptions(commandLine);

result = run(commandLine);
if (Execute.isFailure(result)) {

String msg = "Failed executing: " +
commandLine.toString();

throw new BuildException(msg, getLocation());
}

}

Figure 15: Example of Pull Up Method in group 4

the same class(Methods, “getProject”, “getViewPath” and
“getLocation” were defined by using common parent class).
And, the variable “commandLine”, which was a parameter
of this method, was defined and used in the clone. So, this
method caller made it difficult to apply “Pull Up Method”
to this clone set. But, the method “checkOptions” was de-
fined in each child class. In this case, “Template Method”
pattern[6] could be applied. Procedure of this pattern ap-
pliance is the followings. At first, we moved the clone to the
common parent class. Next, we defined an abstract method
“checkOptions” in the common parent class.

6. CONCLUSION
In this paper, we have proposed a new code clone analysis
environments. We have implemented SuperGemini that is
capable to analyze huge scale software. Also, we have pro-
vided some new viewers to SuperGemini and attained high
usability compared with Gemini. Moreover, we have pro-
posed a new refactoring method for code clones, and imple-
mented a refactoring support tool, Cancer. The code clone
analysis algorithm used in Cancer is so fast that it can apply
industrial huge scale software. Also, we have applied Cancer
to Ant, and removed almost of refined clones.

As future works, we are going to perform more detail anal-
ysis for code clones. For example, distinction of reference
and substitution of externally defined variables should be
considered. Also, we are going to consider the effectiveness
of refactoring. Currently, we refine code clones based on the

judgment whether they can be removed or not. If we can
judge whether the code clones should be removed or not, the
supporting of the refactoring will become more effective.

In the present, SuperGemini and Cancer have been devel-
oped independently. So, some components are implemented
on both of them (ex. the Metrics Graph View). It is nec-
essary to integrate them and develop a total maintenance
environment based on code clone analysis.

Also, we are going to deliver SuperGemini to software com-
panies to confirm the impact of improving architecture, be-
cause this improvement is based on their requirement. Also,
we are going to apply Cancer to several industrial software.

7. REFERENCES
[1] Ant, http://ant.apache.org, 2003.

[2] M. Balazinska et al., “Advanced Clone-Analysis to
Support Object-Oriented System Refactoring”,
Proceedings the 7th Working Conference on Reverse
Engineering, 2000, 98-107.

[3] I. D. Baxter et al., Clone Detection Using Abstract
Syntax Trees, Proc. of ICSM98, pages 368-377, Nov.
1998.

[4] S. Ducasse et al., A Language Independent Approach
for Detecting Duplicated Code, Proc. of ICSM99, pages
109-118, Aug. 1999.

[5] Eclipse, http://www.eclipse.org, 2004.

[6] M. Fowler, Refactoring: improving the design of
existing code, Addison Wesley, 1999.

[7] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto and K.
Inoue, On software maintenance process improvement
based on code clone analysis, Proc. of Profes 2002, pp.
185-197 (2002).

[8] JavaCC, http://javacc.dev.java.net, 2003.

[9] JUnit, http://www.junit.org, 2003.

[10] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: A
multi-linguistic token-based code clone detection
system for large scale source code IEEE Transactions
on Software Engineering, vol. 28, no. 7, pp. 654-670,
(2002-7).

[11] Cory Kapser and Michael W. Godfrey, Toward a
Taxonomy of Clones in Source Code: A Case Study,
Evolution of Large-scale Industrial Software
Applications (ELISA), Amsterdam, The Netherlands,
September 23, 2003.

[12] R. Komondoor and S. Horwitz, Using slicing to
identify duplication in source code, In Proc. of the 8th
International Symposium on Static Analysis, Paris,
France, July 16-18, 2001.

[13] J. Mayland, C. Leblanc, and E. M. Merlo Experiment
on the Automatic Detection of Function Clones in a
Software System Using Metrics, Proc. of IEEE Int’l
Conf. on Software Maintenance (ICSM) ’96, pages
244-253, Monterey, California, Nov. 1996.

[14] Pigoski T. M, Maintenance, Encyclopedia of Software
Engineering, 1, John Wiley & Sons, 1994.

[15] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue, Gemini:
Maintenance Support Environment Based on Code
Clone Analysis, 8th International Symposium on
Software Metrics, June 4-7, 2002.

