
Application of Collaborative Filtering for Software Component Retrieval System

Makoto Ichii, Reishi Yokomori, and Katsuro Inoue
Graduate School of Information Science and Technology, Osaka

{m-itii,yokomori,inoue}@ist.osaka-u.ac.jp

Abstract

A search engine for software component helps devel-
opers to reuse software component and to understand its
behavior. We are studying about a software component
search engine and constructs SPARS-J for Java source
codes. SPARS-J provides useful information obtained by
static analysis of source codes in a repository. However, we
also consider that SPARS-J provides more useful informa-
tion by using the analysis result of its retrieval history. In
this paper, we suggest a recommendation method by using
collaborative filtering technique, and evaluated the effec-
tiveness of the system implemented of SPARS-J

Keywords: Software Component, Software Retrieve, Col-
laborative Filtering

1 Introduction

In recently years, the importance of reuse of software
components has been widely recognized in actual develop-
ment. There are many assistance tool of software reuse; In
particular, we consider that an effective use of repositories
of already developed software is very important.

As the most effective usage of software components, we
suggest a search engine for java programs, named SPARS-
J(Software Product Archiving and Retrieving System for
Java)[3]. SPARS-J provides useful information, such as
components using (or used by) the component, similar com-
ponents, package information, and so on, by static anal-
ysis of source codes in the repository. By using SPARS-
J, developers can find necessary components easier. How-
ever, we can easily imagine that the search efficiency differs
among people and multiple users often request a same kind
of query for the similar purpose. Therefore, we think that
more efficient search can be performed by feeding back the
search history to the user.

In this paper, we propose the method of recommending
components by applying the technique of collaborative fil-
tering to the search history. Using this method, users can
get exact components which satisfy their requirements. We
also implement this method as an actual tool on SPARS-J,
and evaluate its usefulness by an experimentation.

2 Collaborative Filtering

Collaborative filtering is a recommendation technique
based on the idea that “People who agreed in the past will
probably agree again” [6]. At first, the systems using this
technique obtain the rating of each item from each user and
store them up, and predict the fondness of each user. And
they recommend the item which is highly rated by the user
whose fondness is similar. Such recommendation systems
are widely used for Netnews, movies, music, and so on.

Tapestry[1] is an early recommendation system using
collaborative filtering. In this system, the user can get a rec-
ommendation of E-mail or Netnews by designating the rec-
ommender whom (s)he wants to get recommendation from.
On the other hand, GroupLens[6] determines the recom-
mender and the information to recommend automatically.
A user votes the articles of Netnews based on five-level rat-
ing, and GroupLens recommends based on the tendency of
the rating.

On the other hand, there are also systems which get rat-
ing implicitly. Phoaks[4] acquires and recommends URLs
which are automatically collected from Netnews, FAQ, and
the reports. Moreover, There is a system using collabora-
tive filtering for the software function[5]; Ohsugi consider
the use of software function as implicit vote. The history
of software function execution is analyzed and automatic
recommendation is performed.

Considering the user’s effort, we think it more appropri-
ate for the application to a search engine to collect ratings
implicitly from the search history. Our system considers the
reference history of software components as implicit vote,
and recommends ones automatically.

3 Proposed Method

The processes of our recommendation method are as fol-
lows:

1. System records the reference history to a database as
user’s rating.

2. Based on the rating recorded in the database, system
calculates correlation coefficient between each user.

3. By using correlation coefficient and rating of each user,
system calculates recommendation value of each com-
ponent.

4. Based on recommendation values of each component,
system recommends components to browse.

Followings are the details of each phase.

1:Recording of search action
In the case of the technique of recommendation based

on the user’s explicit rating, such as the one of GroupLens,
there is a merit which can catch a user’s intention certainly.
However, there is also a demerit to reduce an absolute num-
ber of user’s rating because each user isn’t forced to rate the
all articles they read. Since our system is for an aid to the
search engine of software components, we think that there
are few users which can consume time and effort. There-
fore, we treat a user’s reference history itself as rating. Con-
cretely speaking, when a source code of a component is dis-
played in SPARS-J, we regard that the user votes 1 to the
component.

Because search purpose of a user changes, the compo-
nents which are recommended by using all of his or her
history may be irrelevant. Thus, we use only ratings in the
user’s “session” which is the beginning of use of the system
to the end. In other words, we consider a session as an user.

2:Calculation of correlation coefficient
The correlation coefficient method used by GroupLens

is not work when the rating scale is binary, such as a track
record on HTML. Therefore, we adapt the modification
method which proposed by Breese[2], and use the follow-
ing formulas for calculation of correlation coefficient c(a, i)
between the target user a and another user i.

vi,j =



1 if j ∈ Ii

0 if j /∈ Ii
, v̄i =

1

|I|

X

j∈I

vi,j

c(a, i) =

P

j∈I
(va,j − v̄a)(vi,j − v̄i)

q

P

j∈I
(va,j − v̄a)2

P

j∈I
(vi,j − v̄i)2

In these formulas, Ii represents the components which
the user i has voted, and I is the union set of the components
which either user a or i has voted and some components
neither a nor i has voted.

3:Calculation of recommendation value
About each user whose correlation coefficient against the

target user is positive, the system calculates weighted aver-
age from the correlation coefficient. A system considers
that the weighted average is a recommendation value for
each component.

Recommendation value pa,k is calculated by a below
equation, in which a is the target user , k is a component,
and U is the set of users i where c(a, i) > 0 and |Ii| > 1.

pa,k =

∑
i∈U c(a, i)2vi,k

∑
i∈U |c(a, i)2|

4:Recommendation to user
Based on the recommendation value of each component,

our system recommends by the following two methods;

1. About all components which have the recommenda-
tion value more than a threshold, a system shows a
user those in descending order of its recommendation
value. It’s intended to recommend required compo-
nents for browsing effectively.

2. For all components which have a use relation with
the current- viewing component, a system shows a
user them in descending order of its recommendation
value. It’s intended to recommend useful use-relation
for browsing.

4 Implementation of Recommendation Sys-
tem on SPARS-J

Based on the proposed method in previous section, we
implemented the recommendation system of software com-
ponents on SPARS-J, which is a search engine for Java pro-
grams. For the implementation, we add the following func-
tions to SPARS-J;
• Recording of search history

When a searcher requests the display of the source
code of a component, system stores it in a database
to grasp that the component is seen in the session.

• Calculation of recommendation value
The system calculates the similarity of the present
session and another session, and the recommendation
value of each component.

• Display of search history
The system displays the list of components which the
searcher looked at in the session.

• Display of recommended components
The system displays two ways described previously.

4.1 Experimentation

We evaluated the effectiveness of implemented system
on SPARS-J. In the evaluation, we confirm that the recom-
mendation system contributes to improvement in the refer-
ence efficiency.

In the experimentation, 8 examinees write Java program
by mounting to a skeleton code. We divide 8 examinees
into two groups, and prepared two kinds of situations for
each 4 subjects; the case that an examinee can use only the

Table 1. Result

Search Time Precision
P1 P2 P3 P4 P1 P2 P3 P4

G1 34.8 18.5 21.5 15 0.36 0.18 0.88 0.79
G2 12.5 3.2 24.2 26 0.89 0.73 0.73 0.66

search result of SPARS-J, and the case that an examinee can
use both the search result of SPARS-J and output of rec-
ommendation system, respectively. For each examinee and
each subject, we measured working times to finish, time to
make a search, and the precision about components which
he browsed. Here, we consider the components, which can
be regarded as practically used one, as adequate compo-
nents.

A procedure of the experimentation is as follows;

1. All 8 examinees try an examples P0 for practice. By
this result, they are divided into 2 groups, G1 and G2.

2. The examinees of G1 work against two subjects, P1
and P2, and the examinees of G2 work against two
subjects, P3 and P4, respectively. In this phase, all
examinees can use only the search result of SPARS-J.

3. The examinees of G1 work against two subjects, P3
and P4, and the examinees of G2 work against two
subjects, P1 and P2, respectively. In this phase, all
examinees can use both the search result of SPARS-J
and output of recommendation system.

Table 1 represents the result of each group G1 and G2.
P1, P2, P3, and P4 represent each subject. The cases us-
ing a recommendation function are indicated by boldface.
From this result, we can confirm that the case using the
recommendation function is better than the case using only
SPARS-J, for each subject. Although the difference of the
subject P3 is small, this is because many examinees had
a generally knowledge about the field of P3. These result
shows that a recommendation function is useful to improve-
ment in search efficiency.

As a problem which happened during the experiment,
some examinees could not get effective recommendation.
This is because the system has a policy of ”Do not recom-
mend already displayed components”, so we should recon-
sider this policy.

5 Conclusion

In this paper, we suggest a recommendation method by
collaborative filtering technique, and evaluated the effec-
tiveness of implemented system on SPARS-J. The experi-
ment result showed that collaborative filtering is also effec-
tive for support of software component search.

As future work, we are planning the improvement of ac-
curacy by weighting a history, and the improvement of a
user interface.

References

[1] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry:
“Using Collaborative Filtering to Weave an Informa-
tion Tapestry.”, Communications of the ACM, Vol.35,
No.12, pp.61-70, 1992.

[2] J. S. Breese, D. Heckerman and C. Kadie: “Empirical
Analysis of Predictive Algorithms for Collaborative
Filtering”, In Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence, pp.43-52, 1998.

[3] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto,
M. Matsushita, S. Kusumoto: “Component Rank:
Relative Significance Rank for Software Component
Search”, In Proceedings of the 25th International
Conference on Software Engineering (ICSE2003), pp.
14-24, Portland, Oregon, U.S.A., 2003.

[4] L. Terveen, W. Hill, B. Amento, D. McDonald, and J.
Creter: “PHOAKS: A System for Sharing Recommen-
dations”, Communications of the ACM, Vol.40, No.3,
pp.59-62, 1997.

[5] N. Ohsugi, A. Monden, and K. Matsumoto : “A Rec-
ommendation System for Software Function Discov-
ery”. In Proceedings of the 9th Asia-Pacific Software
Enginieering Conference (APSEC2002), pp.248-257,
2002.

[6] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J.
Riedl: “GroupLens: An Open Architecture for Col-
laborative Filtering of Netnews”, In Proceedings of the
1994 CSCW, pp. 175-186, 1994.

