
Evaluation of Source Code Updates in Software Development
Based on Component Rank

Reishi Yokomori † Masami Noro † Katsuro Inoue ††
† Department of Information and Telecommunication Engineering, Nanzan University

27 Seirei-cho, Seto, Aichi 489-0863, Japan
†† Graduate School of Information Science and Technology, Osaka University

1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
{yokomori, yoshie}@it.nanzan-u.ac.jp, inoue@ist.osaka-u.ac.jp

Abstract

Essential activities for the achievement of trouble-free
software development are monitoring a software product
and management of a software project. Monitoring changes
that have major impact, however, is usually a very hard to
complete because every engineer usually could not know
entire source code in detail. In this paper, we propose our
metric for source code updates based on component rank.
Software components and their use-relation alter as devel-
opment goes. The component rank also changes as a re-
sponse to the changes of use-relation among components.
We use the degree representing change of component rank
as a metric of impact for a source code update in a devel-
opment. We applied the metric to open source projects, and
demonstrated that the metric is useful to know refactoring
activities or important updates. We also discuss how the
metric can contribute for process management.

1. Introduction

Software used in computer systems for our daily life is
getting larger and more complex. As its size grows more
and more, greater number of software engineers must be en-
gaged in development projects. In such environment, mon-
itoring a project and providing feedback on the develop-
ment are vital to promote a trouble-free development. Many
projects use a configuration management system, such as
CVS, for source code control. Developers make a lot of
updates to the system in its development cycle. Source
codes controlled in the configuration management system
are kinds of ideal materials for analysis of important up-
dates which affect the software system. Such information is
a good predictor for the monitoring and the postmortem of
the project.

However, to get entire understanding of stored source
codes is a very arduous task and takes a plenty of time,
so quantitative information based on a specialized metric is
one of the most important key issues. The commonly used
metric is LOC; however, to try to understand the progress
of the development with just LOC may leads mischievous
conclusion. LOC increases monotonically in many cases
through the development process. The important updates,
as a result, are often buried in the monotonous increase of
LOC. We insist that a metric which can figure out an impact
of update is also required for effective analysis.

In this paper, we suggest an update-evaluation model to
detect important updates, which affect the whole software
system, among a lot of updates. In the model we proposed,
we use component rank suggested in [5, 6]. The component
rank is a metric that evaluates importance of components
based on use-relation among software components. Com-
ponents used by many components and used by important
components are evaluated as important components. In the
model, a component rank is calculated at each time when
source code is updated. A set of component rank shows
a transition on importance of each component. In devel-
opment phase, there are many updates, such as modifica-
tions, function-additions, refactoring components, and so
on. These updates set off changes on use-relation among
components. If we focus attention on each component, the
rank of the component also changes as a response to the
modification to its use-relation.

We make a hypothesis that an important update changes
use relation drastically and also induces the fluctuation of
the component rank. So we define the degree of change
of each component rank as a quantified measure of impact
about source code update. We applied the metric to several
open source projects in sourceforge[12]. Throughout the
experiment, we confirmed that the metric is useful for cap-
turing updates about core components and system architec-

1

A B

ED

C

System X

Figure 1. An example of component graph

ture, such as refactoring, rewriting, and so forth. The metric
can provide useful information when we evaluate updates
occurred in a development.

In Section 2, we present a component rank model sug-
gested in [5, 6]. Section 3 shows an update-evaluation
model based on the component rank and implementation
of the model. The results of applications for open source
projects will be presented in Section 4. Finally, we discuss
about the effectiveness of the model in Section 5.

2. Component Rank Model

Our method is based on component rank model sug-
gested in [5, 6]. In this section, we present the model and
elements used in the model.

2.1. Component Graph

In component rank model, software systems are modeled
by a weighted directed graph, called a Component Graph.
A node in the graph represents a software component, and a
directed edge exy from node x to y represents a use relation
meaning that component x uses component y. In current
implementation, it defines that components are Java classes,
and use relations are the class inheritance, method invoca-
tion, abstract class implementation, and so on. However,
the model does not restrict to a specific kind of component
and use relation.

Figure 1 shows a component graph for software system
X . X consists of 5 components A – E. This graph also
shows that component C uses both A and B, and D and
E use C. A software system is generally modeled with a
component graph that is weakly connected (assuming that
there is no redundant component). Our evaluation model
targets at the graph which means one software system.

2.2. Weight of Node

Component rank model defines each weight of node in
the graph based on the following computation policies. This
model calls the order of the nodes sorted by the weights

(a) Weight of Edge (b) Weight of Node

vi

w(vi)

vjeij

w’(eij)

w’(eij) = dij w(vi)

vi

w(vi)

eki

w’(eki)

e1i

w(vi) = w’(e1j) + w’(e2j) +

・・・+ w’(ekj) + ・・・

Figure 2. Definition of weights

component rank of the components. This model introduces
several definitions to define w(v) for component graph G =
(V, E).

Definition 1 (Total Weights of Nodes) Each node v in
component graph G has a non-negative weight value w(v)
where 0 ≤ w(v) ≤ 1. For simplicity of following calcula-
tion, it assumes that the sum of the weights of all nodes in
G is 1, i.e.,

∑
v∈V w(v) = 1.

Definition 2 (Weight of Edge) For computation of the
weights of nodes, it introduces the weight w′(eij) of an edge
eij = (vi, vj), such that w′(eij) = dij × w(vi).

Figure 2 (a) depicts this definition. Here, dij is called a
distribution ratio, where 0 ≤ dij ≤ 1 and the total of dij for
each j is 1. If there is no edge from vi to vj , dij = 0. The
distribution ratio dij is used for determining the forwarding
weights of vi to an adjacent node vj . In the current imple-
mentation, the distribution ratios of the use relations, which
emanate from one node, are equal values.

Definition 3 (Weight of Node) The weight of a node vi is
defined as the sum of the weights of all incoming edges eki,
such that w(vi) =

∑
eki∈IN(vi)

w′(eki).

Here, IN(vi) is the set of the incoming edges of vi. Fig-
ure 2 (b) shows this definition.

2.3. Computation of Weights

Based on these definitions, it has n(= |V |) simultaneous
equations for w(vi), such that

w(vi) =
∑

eki∈IN(vi)
dki × w(vk).

Assume that W is a vector of node’s weights,

W =

w(v1)
w(v2)

...
w(vn)

 .

2

Also, D is a matrix of the distribution ratios,

D =

d11 d12 ... d1n

d21 d22 ... d2n

...
...

. . .
...

dn1 dn2 ... dnn

 .

So the simultaneous equations can be rewritten by,

W = DtW (1)

where Dt is the transposed matrix of D.
Together with Definition 1, formula (1) can be solved

by computing the eigenvector with eigenvalue 1. Instead of
computing the eigenvector, it can also compute the weights
of each node by a repeated computation such that, it gives
initial ad-hoc weights to each node(e.g., 1/n to each node),
and then propagate them to adjacent nodes through directed
edges. The weights are repeatedly recomputed until the
all weights become stable. If we assume that movement
of software developer’s focus on the target components is
represented by a probabilistic state transition, the compo-
nent graph represents a Markov chain. Thus, computing the
weights of the nodes in the graph corresponds to getting a
stationary distribution of the chain.

Figure 3 shows a component graph with computed
weights. v1 has two outgoing edges, and weight 0.4 is
evenly divided to two outgoing edges with 0.2 each (i.e.,
d12 = d13 = 0.5). v3 has two incoming edges, each with
weight 0.2, so that the weight of v3 is 0.4.

v
1 v

2

v
3

0.2

0.2

0.20.4

d
12

=0.5

d
23

= 1

d
13

= 0.5

d
31

= 1

0.4 0.2

0.4

Figure 3. An example of stable weights as-
signed to nodes and edges

To hasten and ascertain a convergence of this computa-
tion, the model introduces pseudo use relation. It also intro-
duces a concept of clustered component graph to track the
copied and modified components among a lot of software
systems. The component rank model was implemented as a
part of component search engine, named SPARS-J[13], and
its application result was reasonable such that very general
and core classes are ranked high (significant), and specific
and independent classes are ranked low (insignificant). The
details are described in [5, 6].

3. An Update-Evaluation Metric based on
Component Rank

When we have a time-line view of a software devel-
opment process, a software system is gradually completed
by implementing necessary functions, and data and control
structures needed for them. We expect these implemen-
tations induce various modifications on components, and
components are stabilized as the software system is near
completion or reaches maturity. We can understand these
modifications by reading source codes thoroughly, however
it’s hard for every engineer to do this. From a viewpoint
of sharing information, evaluation based on a quantified
measure of impact about source code update is a fair so-
lution. The simplest way is based on increase and decrease
of simple metrics, such as LOC, number of classes, and so
on. However, these metrics increase monotonically through
its development cycle, and they are susceptible to changes
which are large-scale but not so important. So we think
these metrics cannot provide enough information for under-
standing updates.

In this paper, we suggest an update-evaluation model
based on component rank. Our proposed method is based
on a hypothesis that the more system is modified massively,
the more two component ranks before and after the update
differs vastly. As a ground of this hypothesis, we consider
the fact that an update that has a major impact on the whole
system also yields a lot of modifications in use-relation
among components.

For example, we consider the case that a function is
added to a system. By adding a function, existing com-
ponents, such as a library, and data structures, become used
more frequently. In this case, the ranks of such components
move up, and the rank of other components fall down in
comparison. The larger the scale of the added function, the
more the number of affected components. In another case,
refactoring and rewriting activities are not uncommon be-
cause a structure of large software is very easy to get com-
plex. We can also expect that these activities cause a far
reaching impact on use-relation by extraction of methods
and classes, and readjustment of interfaces. Such readjust-
ments yield a component which drops out of use, or whose
usage is quite changed. When these updates are performed,
the rank of such components moves up or down signifi-
cantly. Especially, its fluctuation becomes stronger when
such modification extends to core components.

In proposed model, it calculates component rank at each
time of source code update. The set of component ranks
means a transition of importance of each component. To
calculate an impact of a certain update, we extract two sets
of components; a set of components before the update and
the one after the update. For these two sets of components,
we calculate two component ranks separately. These two

3

component ranks generally has a lot of common elements
(continuing components), so we can calculate the degree of
up and down of each continuing component’s rank.

We evaluate an impact of the update, by calculating an
average of each component’s rank change. In the develop-
ment phase, there are many updates, such as modifications,
function-addition, refactoring, and so on. Proposed metric
is affected by not only the mere scale of the change, but also
the scale of the change at the view point of the use-relation,
the whole scale of the software system and the degree of in-
cidence for core components. By considering these factors,
the proposed metric represents a more proper and quantified
measure of the impact for updates.

3.1. Computational procedure

We introduce several definitions to define an impact
impCR(U) for a certain update U . A set of components be-
fore the update U is represented by Setpre(U) , and the one
after the update is represented by Setaft(U), respectively.
We can also assume that there are corresponding compo-
nents between Setpre(U) and Setaft(U), so define a set of
corresponding components as

Setuni(U) = {X |X ∈ Setpre(U) ∧ X ∈ Setaft(U)}.

And then, we can calculate two component ranks
CRpre(U), and CRaft(U) for Setpre(U), Setaft(U), re-
spectively. However, there are a lot of updates which adds
new components or deletes the unneeded ones, so the num-
ber of components may increase or decrease. Therefore, we
evaluate the impact of U by using the following normalized
rank rather than using the raw rank. Each rank is normal-
ized into a value between 0 and 1; the value 1 means the
highest rank, 0 means the last place.

Definition 4 (Normalized Rank of Component X) We
assume that the rank of component X in Setpre(U)
(Setaft(U)) is CRpre(U, X) (CRaft(U, X)), and that
the number of components in Setpre(U)(Setaft(U)) is
Numpre(U)(Numaft(U)).
We define normalized rank for component X as

NCRpre(U, X) =
Numpre(U)−(CRpre(U,X)−1)

Numpre(U)
,

NCRaft(U, X) =
Numaft(U)−(CRaft(U,X)−1)

Numaft(U)
.

Finally, we calculate a difference between two nor-
malized ranks of each continuing component, and then
calculate an average of the difference as impCR(U).
ImpCR(U) means how much impact U gave to the com-
ponent rank by a quantitative value.

Definition 5 (Impact of Update U) We assume that the
number of components in Setuni(U) is Numuni(U). We

define an impact of U , impCR(U), as

impCR(U) =

∑
X∈Setuni(U)

|NCRaft(U, X) − NCRpre(U, X)|

Numuni(U)
.

3.2. Implementation of Evaluation Tool

We have designed and implemented a system to com-
pute impCR(U) for each update U in a development pro-
cess. A target project is a project whose software is written
in Java programming language, and whose source code is
managed by CVS. Figure 4 shows an architecture of our first
prototype of the system. This system uses a registration-
subsystem of SPARS-J[6], so definitions about component
is the same as the one of SPARS-J: Java class and interface
source code are considered as a component, and use rela-
tions are class inheritance, interface implementation, ab-
stract class implementation, variable declaration, instance
creation, field access, and method invocation.

(1) Update-List-Generation phase:
The system obtains a list of update time and date from
CVS by using a history command, and generates a list
of update to be analyzed. In current implementation,
we define a granularity of update as a day, so the sys-
tem generates a list of update date.

(2) CR-Calculation phase:
Based on the list generated by phase (1), the system
calculates a component rank for each update as fol-
lowing;

(2-1) The system obtains the update day’s source codes by
check-out command.

(2-2) The system calculates a component rank for source
codes obtained by (2-1). In current implementation, it
uses a registration-subsystem of SPARS-J.

(3) Metrics-Calculation phase:
Based on the component ranks calculated in phase (2),
the system calculates an impact of changes for each
update. For a visualization of the result to share infor-
mation, we create a chart about impCR.

(3-1) For each update U , the system pulls out two
sets of components correspond with Setpre(U) and
Setafter(U) and two component ranks correspond
with CRpre(U, X) and CRafter(U, X).

(3-2) For each update U , the system calculates impCR(U)
based on the definition.

4

CVS

repository

A 2003/12/7 23:00:00 +0

A 2003/12/7 23:00:00 +0

A 2003/12/7 23:00:06 +0

A 2003/12/7 23:00:07 +0

A 2003/12/7 23:00:07 +0

A 2003/12/7 23:00:10 +0

A 2003/12/8 20:05:00 +0

A 2003/12/8 20:06:00 +0

A 2003/12/8 23:10:00 +0

A 2003/12/9 14:20:10 +0

:

2003/12/7

2003/12/8

2003/12/9

2003/12/10

2003/12/11

2003/12/12

:

History

Update-List

Version. A(2003/12/7)

Version. B(2003/12/8)

Version. C(2003/12/9)

Checkout

Version. D(2003/12/10)

:

1 A ｘｘｘ

２ B ｘｘｘ

３ C ｘｘｘ

４ D ｘｘｘ

1 A ｘｘｘ

２ B ｘｘｘ

３ C ｘｘｘ

４ D ｘｘｘ

５ E ｘｘｘ

1 C ｘｘｘ

２ B ｘｘｘ

３ D ｘｘｘ

４ A ｘｘｘ

５ E ｘｘｘ

SPARS-J

Component Rank

Component Rank

Component Rank

Version. A

↓

Version. B

Version. B

↓

Version. C

:

CR_pre (A→B)

ImpCR (A->B)

0

0.01

0.02

0.03

0.04

0.05

0.06

2
0
0
0
/
0
6

2
0
0
0
/
0
9

2
0
0
0
/
1
2

2
0
0
1
/
0
3

2
0
0
1
/
0
6

2
0
0
1
/
0
9

2
0
0
1
/
1
2

2
0
0
2
/
0
3

2
0
0
2
/
0
6

2
0
0
2
/
0
9

2
0
0
2
/
1
2

2
0
0
3
/
0
3

2
0
0
3
/
0
6

2
0
0
3
/
0
9

2
0
0
3
/
1
2

2
0
0
4
/
0
3

2
0
0
4
/
0
6

2
0
0
4
/
0
9

2
0
0
4
/
1
2

2
0
0
5
/
0
3

2
0
0
5
/
0
6

2
0
0
5
/
0
9

2
0
0
5
/
1
2

2
0
0
6
/
0
3

CR_after (A→B)

phase(1) phase(2) phase(3)

Figure 4. Architecture of the evaluation system

4. Experiment

In this section, we evaluate our approach by applying to
several open source projects. In the experiment, to confirm
to which kind of update the proposed metric yields a high
value, we roughly follow up a content of the update which
yields a high impCR value, from actual development history
of the project.

4.1. Preparation

Sourceforge[12] is a very huge open source community
and there are many development projects. In the experi-
ment, we have extracted target projects that meet the follow-
ing requirements from development projects in sourceforge;
(1) written in Java, (2) CVS repository is used for source
code control, (3) its history is stored in the CVS repository.

4.2. experiment description

We applied our system to 12 open source projects, pre-
sented in Table 1. We made a graph for each results, and in-
vestigated content of updates for every distinguishing point
in every graph. These target projects vary in size and devel-
opment period. Therefore, analysis times for these project
are variously; the shortest one (galleon) is about 20 min-
utes (average 20 seconds per revision), and the longest one
(jedit) is about 10 days (average 10 minutes per revision).
At first, we explain the entire tendency of the application,
and then show the concrete result of a project with several
graphs.

Table 1. Target projects
Name From To Revision LOC

1 azureus 2003/7 2006/2 903 374K
2 freemind 2000/8 2006/2 309 23K
3 galleon 2005/2 2006/2 55 91K
4 ganttproject 2003/5 2006/2 543 73K
5 jasperreports 2003/12 2006/2 349 149K
6 jbidwatcher 2000/5 2006/1 303 29K
7 jedit 2000/1 2006/2 1515 830K
8 megamek 2002/2 2006/2 990 107K
9 openwfe 2003/6 2006/2 643 81K
10 pmd 2002/6 2006/2 802 124K
11 pydev 2003/7 2006/2 315 45K
12 xui 2003/3 2006/2 68 153K

4.2.1 entire tendency

As overall tendency in all projects, we confirmed the fact
that impCR decreases with progress of the development
project. In the early stage of development, impCR indicates
a high value because necessary features are implemented
to an imperfect system one by one. On the other hand, at
the time of nearly completion of the system, the impact of
update becomes small because use-relation among existing
components have already been stabilized.

We also confirmed that there is not so big difference
through the development progress in respect of the maxi-
mum fluctuation range of component rank in a certain up-
date. We think that this is because we defined a unit of
update as a day, and this shows that the size of each up-
date differs little through a development progress. On the
other hand, entire size of the system (the amount of source

5

code) is getting larger through a development progress, so
the size of update is relatively getting smaller; this is also a
factor that impCR decreases.

We also applied polynomial approximation to a series of
impCR for each project, and the result was a decreasing,
convergent, and a little waving curve in many projects. We
think that this is a characteristic of open source development
that always adds features and releases a new version in a
short cycle. A project whose products in early stage is not
registered into CVS decreases the tendency of ”decreasing”
in the curve, and a project in which both an active period and
a silent period are clearly appeared increases the tendency
of ”waving” in the curve.

In addition, we investigated contents of updates which
scored high impCR value. A mere bug correction is hardly
seen in them, and it is possible to classify those updates into
the following three kinds roughly. By calculating and visu-
alizing impCR, we think that we can extract only important
updates which include a lot of modifications in use relation,
and which have a huge impact on the system.

(1) Independent large-scale function implementation
This kind of updates add a few new core components
and a lot of core data structures to the system. How-
ever, existing components are free of impact of the
function implementation in many cases because of its
independency. In the early stage of development, im-
pact caused by adding core components is very huge,
however, the impact is getting smaller as the progress
of development. Especially, a large-scale but local up-
date has this tendency strongly.

Example 1: In the case of TiVo Media server sys-
tem galleon[1], updates which scored high impCR
value are updates for correspondence to weather-
information, music-player, online-radio, photo thumb-
nail, and iTunes etc. These individual functions have
comparatively high independence, so each update’s
impact on the existing components is not so high.
Therefore, impCR value of this kind of update has de-
creased gradually as development progress.

Example 2: JEdit[8] is a text editor that has a high ex-
tendibility by plug-in support. Therefore, a lot of ad-
ditional functions are implemented as a lot of plug-
ins. The independencies among such plug-ins are high,
so impCR value of this kind of updates has decreased
dominantly as the progress.

(2) Function implementation to core components and im-
plementation of crosscutting features
In the case of implementing a new function to core
components, impact caused by the update is very huge
because new use-relations are added into the around

of the modified core components. In the case of im-
plementation of crosscutting features, such as a de-
bugging feature, a logging feature, new data struc-
tures, and so on, impact caused by the update is also
very huge because new use-relations are added into all
around of the components in the system. This kind
of update generally scores high impCR value and it is
hard to be affected by the progress.

Example 3: PMD[11] is a detecting tool for potential prob-
lems which are liable to appear in Java source code.
At the later stage of the development of PMD, updates
which scored high impCR value are a function imple-
mentation to AST, correspondence to JAVA1.5 syntax,
correspondence to JSP, and so on. In these updates,
developers made a lot of modifications into a parsing
subsystem, which includes many core components.

(3) Refactoring and rewriting
This kind of update has a huge impact on existing com-
ponents because such updates includes a lot of move-
ment of function(method) between components and a
lot of modifications, deletion and removal to its data
structure. Especially, the impact is very huge when re-
structuring of core components is performed. It is also
hard to be affected by the progress.

Example 4: GanttProject[2] is a graphical Java program
for editing Gantt charts. In the early part of 2005,
updates which scored relatively high impCR value are
the ones of refactoring about motion listener, mouse
event, input file, resource, and so on. In other section,
refactoring which arrange use relation or data struc-
tures also yields a high impCR value.

4.2.2 Application Result: JBidWatcher

As an individual application result, we show the case of
jbidwatcher[7]. Jbidwatcher is Java-based auction monitor-
ing and management software. In the experiment, it ana-
lyzes 303 revisions from 31st May 2000 to 27th Jan 2006.
Figure 5 shows transitions of LOC and other metrics. We
can grasp that these metrics are monotonically increasing
with similar course.

Figure 6 shows transitions of impCR and number of
components, and Table 2 shows a list of updates that yield
high impCR, respectively. These results show that updates
in early stage of the development marked high impCR due
to implementations of fundamental and/or crosscutting fea-
tures and data structures. In the case of jbidwatcher, im-
plementation of browsing features, password login support,
and dump facility are applicable to these updates.

On the other hand, the value of impCR gradually falls
as the progress, and this means that existing use-relations
are gradually stabilized. However, updates which include

6

Transition (jbidwatcher)

0

500

1000

1500

2000

2500

3000

3500

4000

2
0
0
0
/
0
6

2
0
0
0
/
0
9

2
0
0
0
/
1
2

2
0
0
1
/
0
3

2
0
0
1
/
0
6

2
0
0
1
/
0
9

2
0
0
1
/
1
2

2
0
0
2
/
0
3

2
0
0
2
/
0
6

2
0
0
2
/
0
9

2
0
0
2
/
1
2

2
0
0
3
/
0
3

2
0
0
3
/
0
6

2
0
0
3
/
0
9

2
0
0
3
/
1
2

2
0
0
4
/
0
3

2
0
0
4
/
0
6

2
0
0
4
/
0
9

2
0
0
4
/
1
2

2
0
0
5
/
0
3

2
0
0
5
/
0
6

2
0
0
5
/
0
9

2
0
0
5
/
1
2

2
0
0
6
/
0
3

O
t
h
e
r
s

0

5000

10000

15000

20000

25000

30000

35000

L
O
C

 Methods

 Variables

Cyclomatic number

LOC

Figure 5. Transition of several metrics

Transition (jbidwatcher)

0

0.01

0.02

0.03

0.04

0.05

0.06

2
0
0
0
/
0
6

2
0
0
0
/
0
9

2
0
0
0
/
1
2

2
0
0
1
/
0
3

2
0
0
1
/
0
6

2
0
0
1
/
0
9

2
0
0
1
/
1
2

2
0
0
2
/
0
3

2
0
0
2
/
0
6

2
0
0
2
/
0
9

2
0
0
2
/
1
2

2
0
0
3
/
0
3

2
0
0
3
/
0
6

2
0
0
3
/
0
9

2
0
0
3
/
1
2

2
0
0
4
/
0
3

2
0
0
4
/
0
6

2
0
0
4
/
0
9

2
0
0
4
/
1
2

2
0
0
5
/
0
3

2
0
0
5
/
0
6

2
0
0
5
/
0
9

2
0
0
5
/
1
2

2
0
0
6
/
0
3

im
p
C
R

0
20
40
60
80
100
120
140
160
180
200

C
la
s
s
e
s

impCR

Classes

Figure 6. Transition of impCR and number of
components

changes of class structure and data structures, such as read-
justment, removal, extract, and deletion, yield high impCR
value. Besides updates in Table 2, readjustment of generic
interface, and refactoring for tables and search features also
mark high impCR.

In the case of jbidwatcher, updates which mark high im-
pCR often add some new components. However, updates
which add a lot of new components don’t always mark
high impCR. Updates, which include only local changes
and which don’t break existing framework, don’t mark
high impCR. In the case of jbidwatcher, addition of auto-
completion and support for help file were such updates. We
think impCR is effective for extracting updates which have
a large impact on the entire system.

5. discussion

We think that the proposed metric can contribute for pro-
cess management. As the assumed hypothesis, component
rank drastically changes as a response to the important up-
date which contains a structural change. In postmortem like
our experiment, the metric can capture important updates
on development.

By comparing an actual impCR value with assumed im-

Table 2. High impCR Updates

Date impCR Major Contents
* Implementation

1 2000/6/23 (15th) 0.0516 Adjust mouse action
Delete meaningless codes

2 2001/8/31 (70th) 0.0488 Restructure of UI
Remove generic constants

3 2000/7/11 (20th) 0.0486 Handle a proxy server
Add generic constants

4 2000/6/3 (3rd) 0.0454 * Browsing
5 2000/8/12 (34th) 0.0420 Extract logging classes

* Visual display
6 2000/7/13 (22nd) 0.0400 Password login support

* Bidding features
7 2000/6/6 (5th) 0.0372 * Splash screen
8 2000/7/8 (19th) 0.0367 * Menu bar
9 2000/11/4 (48th) 0.0359 Use Auction Manager

* Multiple tabs
10 2004/1/4 (164th) 0.0352 Clean up platform

-specific code

pCR value, our metric can also give a signal of a serious
problem. If we observe abnormal values with frequency,
something bad may happen. For example, we consider the
case that we observe updates whose impCR values are very
high in near delivery of the system or a final stage of test
phase. In such situation, we can easily imagine a situa-
tion in which the modified use relation is not tested, and
the product includes serious bugs. In another situation, we
consider the case that impCR of a mere function implemen-
tation doesn’t converge even if at the latter term of the de-
velopment. In this case, we can assume a situation that we
must change various components in association with func-
tion implementation because independencies among com-
ponents are very low. We may use impCR as an indicator
for occasion of refactoring.

Transaction of Component Rank(jbidwatcher)

0

0.2

0.4

0.6

0.8

1

2
0
0
0
/
0
6

2
0
0
0
/
0
9

2
0
0
0
/
1
2

2
0
0
1
/
0
3

2
0
0
1
/
0
6

2
0
0
1
/
0
9

2
0
0
1
/
1
2

2
0
0
2
/
0
3

2
0
0
2
/
0
6

2
0
0
2
/
0
9

2
0
0
2
/
1
2

2
0
0
3
/
0
3

2
0
0
3
/
0
6

2
0
0
3
/
0
9

2
0
0
3
/
1
2

2
0
0
4
/
0
3

2
0
0
4
/
0
6

2
0
0
4
/
0
9

2
0
0
4
/
1
2

2
0
0
5
/
0
3

2
0
0
5
/
0
6

2
0
0
5
/
0
9

2
0
0
5
/
1
2

2
0
0
6
/
0
3

Figure 7. Transision of Component Rank

We think transitions of component rank of each compo-
nent also have a lot of useful information. Figure 7 shows

7

transitions of component rank of highly ranked components
in jbidwatcher. It’s difficult to draw a significant conclu-
sion from only the transition of each component; however,
we can read out a dynamic and stabilized period (or point)
about component rank throughout the whole graph. At the
early stage of the development, component rank changes
often and all curves intertwine with each other. However,
rank’s change stops at certain development points and com-
ponents keep their rank for a while. We investigated a trig-
ger for this phenomenon, and found that this is because of
updates which include refactoring, rewriting and restructure
activities. If components are correctly modified, develop-
ers don’t retouch them for a while after such activities. We
think we can use the transitions to confirm whether refac-
toring activities were actually effective.

As easy metrics for impact-measurement, you might
consider that transitions of change of well-known metrics
are also available. However, such transitions are not so sig-
nificant if we could obtain a transition of LOC. This is be-
cause transitions of such metrics have a very similar ten-
dency as the growth of LOC as shown in figure 5. Im-
pCR also has similar tendency as the amount of changed
LOC, however, is better metric for detecting important up-
dates which affect the whole software system because of the
consideration of the change of use-relation.

As related works, there are several researches for
software repositories to understand reasons of software
changes[3], to identify how communication delay among
developers have effects on software development[4],
to detect potential software changes and incomplete
changes[14], and so on. In [9], Johnson proposed an ap-
proach that records developer’s work by installing sensors
in her computer. The objective of this work is to find a
relation between the internal characteristics (size and time,
etc.) and the external characteristics (quality and reliability
of products, etc.) rather than to measure update.

EPM[10] analyzes accumulated data on a configura-
tion management system, a mailing-list system, and a bug-
tracking system. The result is shown by graphical repre-
sentation. The aim of EPM is sharing information about
ongoing development project among developers and man-
agers, by extracting effective metrics. We think EPM is ef-
fective tool for an objective grasp of progress and current
status of the project. However, on the EPM, the analysis for
source codes is only LOC and so insufficient. We think that
EPM provides more significant information by integrating
our method.

6. Conclusion

In this paper, we suggest an update-evaluation model
based on component rank. In the model, we use the degree
of change of each component rank as a quantified measure

of impact about source code update. The application result
to open source projects shows that our metric can capture
important updates which include major internal changes,
such as refactoring, changes to core component, and so
forth. We think the proposed metric can contribute for pro-
cess management by using it for postmortem and monitor-
ing. As future works, we are planning a refinement of the
proposed metric and further application to projects in di-
verse development styles.
Acknowledgments

This research project is supported by Pache Research
Subsidy 2006 I-A-2 in Nanzan University.

References

[1] Galleon. http://galleon.tv/.
[2] Ganttproject. http://ganttproject.

sourceforge.net/.
[3] D. German and A.Mockus. “Automating the measurement

of open source projects”. In Proceedings of the 3rd Work-
shop on Open Source Software Engineering, pages 63–67,
Portland, Oregon, 2003.

[4] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter.
“An empirical study of global software development: Dis-
tance and speed ”. In Proceedings of the 23rd international
conference on Software Engineering, pages 81–90, Toronto,
Canada, 2001.

[5] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Mat-
sushita, and S. Kusumoto. “Component Rank: Rela-
tive Significance Rank for Software Component Search”.
In 25th International Conference on Software Engineering
(ICSE2003), pages 14–24, Portland, Oregon, 2003.

[6] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and
S. Kusumoto. “Ranking Significance of Software Compo-
nents Based on Use Relations”. IEEE Transactions on Soft-
ware Engineering, 31(3):213–225, 2005.

[7] JBidWatcher. http://www.jbidwatcher.com/.
[8] JEdit. http://www.jedit.org/.
[9] P. M. Johnson, H. Kou, J. M. Agustin, Q. Zhang, A. Ka-

gawa, and T. Yamashita. “Practical automated process and
product metric collection and analysis in a classroom set-
ting: lessons learned from Hackystat- UH”. In Proceedings
of the 2004 intl. Symposium on Empirical Software Engi-
neering (ISESE2004), pages 136–144, Redondo beach, CA,
2004.

[10] M. Ohira, R. Yokomori, M. Sakai, K. ichi Matsumoto, K. In-
oue, and K. Torii. “Empirical Project Monitor: A Tool for
Mining Multiple Project Data”. In International workshop
on Mining Software Repositories(MSR2004), pages 42–46,
Edinburgh, Scotland, UK, 2004.

[11] PMD. http://pmd.sourceforge.net/.
[12] SOURCEFORGE.net. http://sourceforge.net/.
[13] SPARS-J demo. http://demo.spars.info/.
[14] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller.

“Mining version histories to guide software changes”. In
Proceedings of the 26th international conference on Soft-
ware Engineering, pages 563–572, Edinburgh, Scotland,
2004.

8

