Analysis of the Linux Kernel Evolution Using Code Clone Coverage

Simone Livieri' Yoshiki Higof

Makoto Matsushita’

Katsuro Inoue’

fGraduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

E-mail:

Abstract

Most studies of the evolution of software systems are
based on the comparison of simple software metrics. In this
paper, we present our preliminary investigation of the evo-
lution of the Linux kernel using code-clone analysis and the
code-clone coverage metrics. We examined 136 versions of
the stable Linux kernel using a distributed extension of the
code clone detection tool CCFinder. The result is shown as
a heat map.

1. Introduction

Evolution is essential and indispensable for a software
system “else it will become progressively less satisfac-
tory”[7]. Usually, software evolution is understood and
characterized by changes in the version number, number of
lines of code, the release date, or other simple metrics.

Code-clone analysis is a good vehicle to quantitatively
understand the differences and improvements between two
versions of the same software system [4, 6]. It is more pre-
cise than simple string-matching analysis for what concerns
identifying code changes in the case of renaming of files or
code relocation; therefore, it’s possible to characterize the
evolution of a software system using code-clone analysis.

However, code-clone analysis is generally resource ex-
pensive and there is a limitation in its application to large
source code repositories. In order to break this limitation,
we have developed a distributed system for code-clone anal-
ysis, named D-CCFinder[8].

We have analyzed the evolution of the Linux kernel using
D-CCFinder, computed the change ratios between different
versions, and visualized the results using a heat map graph,
in which each square represent the value of the code clone
coverage ratio (see Section 3) between versions of the Linux
kernel, and its width and height are proportional to the size
of the kernels.

Similar studies have been conducted in the past: Van
Rysselberghe ef al. reconstructed the evolution of a

{simone, y-higo, matusita, inoue}@ist.osaka-u.ac.jp

software system using code-clone detection techniques[9];
Godfrey et al. have conducted a thorough investigation of
the evolution of the Linux kernel measuring various char-
acteristics of the source code[2]; more recently, a similar
study has been conducted by Izurieta et al.[5].

However, no extensive investigation of the software sys-
tem evolution using large-scale code clone analysis has
been performed. In this paper, we will see the code clone
coverage between any two versions of 136 stable Linux ker-
nels.

In Section 2, we will describe these target versions, and
in Section 3 we will show our approach. In Section 4 the
results and discussion are presented, and in Section 5 we
will conclude our discussions with some future remarks.

2. The Linux Kernel

The Linux Kernel was created 15 years ago by Linus
Torvalds, and the first stable version (1.0) was released in
March 1994. This release contained 313 . c files for a total
of 141,388 lines of code with a size of 3.8 MBytes.

The Linux kernel is maintained in two versions: stable
and development. By convention, the middle number in a
kernel version identifies the type of kernel: stable releases
are identified by even numbers (e.g. 2.0.5) while releases in
the development branch are identified by odd numbers (e.g.
2.3.32).

At the time of writing, the most recent stable kernel is
version 2.6.18.3. It contains 8415 files, 5,476k line of codes
(including comment and blank lines) and has a size of 157
MBytes.

This study examined 136 versions of the stable kernel as
shown in Table 3. Only the . c files were considered, the
size of each release was measured using the Unix command
du -k, and the number of lines of code was counted using
the Unix command wc -1.

3. Methodology

For each pair (V;,V;) of kernel versions we computed
the code clone coverage ratio Coverage;;(i, j) defined as
follows:

L Loc(C;j)
Coverageu (%J) - Loc(Vi) + Loc(Vj)

with:
Ci;: code clone segments between V; and Vj;
Loc(z): the total number of lines of code in x.

We have also measured some aspects of the growth of
Linux in order to validate the findings from the code clone
analysis.

The analysis was performed by running D-CCFinder
and all associated tools, with a detectable minimum token
length of 50 tokens. Figure 4 shows the resulting heat map.
Because code-clone coverage of each kernel version against
itself is obviously 100%, we didn’t compute it. The heat
map has been generated by normalizing the code clone cov-
erage values to 1.0.

The maximum code clone coverage has been measured
as 67%; a value close to 100% would be expected but two
factors contributed to decreasing it:

e in order to remove redundancy and uninteresting
clones consisting in simple repeated patterns, the Re-
peated Token Ratio (RNR) metrics has been used to
perform a filtering of the code clone data[3] (in our ex-
periments we set the threshold value for RNR to 0.5);

e because of the method used, the reported count of
line of codes is greater than the number of non-
commentary lines of code.

4. Results and Observations

In this section we analyze and present the results of the
examination of the 136 different kernel versions. This anal-
ysis is a preliminary research that we plan to further conduct
and integrate with new findings.

e The heat map in Figure 4 shows, as expected, the
highest code coverage ratios near the diagonal: be-
cause changes between consecutive releases are usu-
ally small, the code clone coverage is high.

e The first observation is that, for major versions 2.0,
2.2 and 2.4 the color pattern of the triangular sector
is the same. Interpreting this pattern, we can infer a
considerable and steep growth of the size of the kernel
during its life cycle.

Version Loc | Size (KBytes) | Number of versions
1.0 141K 3926 1

1.2.0~ 234K 6534 14

1.2.13 238K 6596

2.0.0~ 563K 16076 41

2.0.40 768K 21952

2.2.0~ 1310K 37056 27

2.2.26 1970K 58812

2.4.0~ | 2366K 69200 34

2.4.33.4 | 3865K 112148

2.6.0~ | 4120K 120030 19

2.6.18.3 | 5476K 157290

Total number of versions 136
Number of .c files 376,596
Total lines of code 266,943,565
Total size 7.4 GBytes

Table 1. Characteristics of the analyzed ker-
nel versions.

The growth of the kernel is confirmed by Figure 4,
showing the number of lines of code for each of the
examined versions of the Linux kernel, normalized re-
spect to the size of the most recent release (at the time
of writing) of its major version (e.g. version 1.2.4 has
been normalized respect to version 1.2.13). Itis easy to
see how the kernel size changed greatly between ver-
sion 2.0.29 and 2.0.37, version 2.2.10 and 2.2.19, and
version 2.4.9 and 2.4.25. A closer investigation of the
source code has shown that these changes are mostly
due to the introduction of new hardware drivers, sup-
ported architectures, and features (network protocols,
file system drivers, etc.). We assume that most of these
additions were “back-ported” from the parallel devel-
opment branches, and for some of them our assump-
tion has been proven right by the developers’ comment
in the source code. Figure 3 shows the growth rate of
the arch, drivers, fs and net subsystems com-
pared with the growth of the whole source tree for each
version of the kernel.

e The next interesting fact is that from the observation of
Figure 4 it is easy to discern the development path of
the various versions. Let’s consider, for example, the
area relative to the major version 2.4.

The green part (&) represents the code-clone coverage
for the kernel versions from 2.4.0 to 2.4.21 and from
2.4.22 t0 2.4.40: the value is relatively low and it indi-
cates a low degree of similarity among these versions.

The upper and lower red-orange triangle (B and C) rep-
resents the code-clone coverage for the kernel versions

Kernel version

Figure 2. Normalized growth in the number of
lines of code measured using the Unix com-
mand wc -1

from 2.4.0 to 2.4.21, and from 2.4.22 to 2.4.40 respec-
tively. The value is high and it indicates that these ver-
sions don’t differ very much in size and composition.
The zones with a more yellow color in B can be ac-
counted to small changes that were made in the first
releases (see Figure 4).

e We noted that the number of code clones in the Linux
kernel is somewhat proportional to the size of the
source tree. This can be partially explained consid-
ering that the Linux kernel can be divided in ten main
subsystems, of which the fastest growing one is the
driver subsystem[2]. Every driver must implement
a uniform interface conforming to its hardware cat-
egory (e.g. a driver for a network card must im-
plement functions for sending and receiving packets),
and, while drivers generally tend to be relatively self
contained, drivers for the same family of hardware
are likely to be very similar, often being implemented
modifying already tested code. It is likely, then, that
adding new drivers also adds new code clones.

e Versions 2.0, 2.2 and 2.4 present a similar evolution-
ary pattern, different from that of kernel 2.6, and has a
code-clone coverage ratio near the diagonal distinctly
higher than that exhibited by kernel 2.6. The main
reason of these differences is the absence of a paral-
lel development branch for technology testing and bug
fixes: the new features and fixes are directly added to
the main source tree. This is in contrast with what was
done in the previous releases: new features and bug
fixes were integrated in the stable branch after a period
of incubation and testing in the development branch.
Therefore contiguous versions of kernel 2.6 are rela-
tively more different than contiguous versions of ker-
nels 2.0, 2.2 and 2.4.

180000

160000 -

140000

120000

100000

Loc

80000

60000 -

40000

20000

Figure 3. Growth of the arch, drivers,
fs and net subsystems compared with the
growth of the kernel source tree.

5 Conclusions

We have shown our preliminary results of the evolution
analysis of the Linux kernel using code-clone based metrics.
They might not be surprising, in the sense that most of them
could be expected from the history of Linux[1]. However,
by using code clone analysis, we were able to get a quanti-
tative measurement of the evolution, and the metric values
have been visualized. The nature of the evolution can be
intuitively understood with the help of this visualization.

In order to scale the code clone analysis, we have used
D-CCFinder which works on a 80 computers cluster in our
student lab. We are using this system for the analysis of var-
ious targets such as different open source systems or propri-
etary applications.

We offered a coarse overview of the evolution of the var-
ious kernel versions using an heat map. In addition to this,
we believe essential to investigate the details of the obtained
clones, to precisely identify the characteristics of the code
changes. We are going to elaborate the analysis presented
in this paper to address this point.

Acknowledgments

This work has been conducted as a part of EASE
Project, Comprehensive Development of e-Society Founda-
tion Software Program, and Grant-in-Aid for Exploratory
Research(186500006), both supported by Ministry of Edu-
cation, Culture, Sports, Science and Technology of Japan.
Also it has been performed under Grant-in-Aid for Scien-
tific Research (A)(17200001) supported by Japan Society
for the Promotion of Science.

References

[1] The linux kernel archives. http://www.kernel .org.

linux-2.2

HHHHH
{ARRARARARI
HH

4.
4.

linux-2.4.

linux-2.4.19 § I

linux-2.4.20 I | |

linux-2.4.22

linux-2.4.23 T O

linux-2.4.24 [sl

linux-2.4.26 [T 8=

linux-2.4.27
linux-2.4.28
linux-2.4.29
linux-2.4.30

linux-2.4.32
linux-2.4.33.4
linux-2.6.0
linux-2.6.1

linux-2.6.4
linux-2.6.5
linux-2.6.6
linux-2.6.7
linux-2.6.8.1

linux-2.6.13.5 i [H{ Al
linux-2.6.14.7 BHEECE

linux-2.6.17.14

linux-2.6.18.3

linux-2.2

Figure 1. Heat map of the code clone coverage ratio between different Linux kernel versions.

[2] M. W. Godfrey and Q. Tu. Evolution in opensource software:

3

[4

[5

[6

[

]

]

—_

A case study. In Proc. of the 2000 International Conference
on Software Maintenance, pages 131-142, 2000.

Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Method
and implementation for investigating code clones in a soft-
ware system. Information and Software Technology, February
2007. To appear.

Y. Higo, N. Yoshida, T. Kamiya, S. Kusumoto, and K. Inoue.
Code clone analysis tool: ICCA. In Proceedings of the Second
Internation Workshop on Biologically Inspired Approaches to
Advanced Information (Bio-ADIT 2006), 2006.

C. Izurieta and J. Bieman. The evolution of freebsd and linux.
In ISESE ’06: Proceedings of the 2006 ACM/IEEE interna-
tional symposium on International symposium on empirical
software engineering, pages 204-211, New York, NY, USA,
2006. ACM Press.

T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large

(7]

(8]

(9]

scale source code. IEEE Transactions on Software Engineer-
ing, 28(7):654-670, July 2002.

M. Lehman, D. Perry, and J. Ramil. Implications of evolu-
tion metrics on software maintenance. In ICSM °98: Pro-
ceedings of the International Conference on Software Main-
tenance, page 208, 1998.

S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Very-large
scale code clone analysis and visualization of open source
programs using distributed CCFinder: D-CCFinder. In Proc.
of the 2007 International Conference on Software Engineer-
ing, Minneapolis, MN, USA, 2007. To appear.

F. V. Rysselberghe and S. Demeyer. Reconstruction of suc-
cessful software evolution using clone detection. In Proceed-
ings of the Sixth International Workshop on Principles of Soft-
ware Evolution, pages 126-130, 2003.

