
Towards Maintenance Support for Idiom-based Code
Using Sequential Pattern Mining

Tatsuya Miyake, Takashi Ishio, Koji Taniguchi, Katsuro Inoue

Graduate School of Information Science and Technology
Osaka University

1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
{t-miyake, ishio, kou-tngt, inoue}@ist.osaka-u.ac.jp

Abstract

Developers often use an idiom to implement a con-
cern. When a fault is found in an idiom, developers have
to find all source code fragments derived from the origi-
nal. While code-clone detection tools can detect copy-and-
pasted code, such tools cannot detect code fragments mod-
ified after pasted. We are investigating a sequential pattern
mining approach to capture idiom-based code that spread
across modules. This position paper shows our approach
and the result of a preliminary case study.

1. Motivation: Idiom-based Coding

To develop a large scale software, developers use idioms
to implement a particular kind of concerns that are not mod-
ularized in the software [9]. They obtain idioms from the
source code of their software, the coding standard of their
team and other available resources. This idiom-based cod-
ing leads many instances of an idiom crosscutting modules;
a fault in an idiom is also copied and spreads across mod-
ules. When developers found a fault in an idiom, develop-
ers have to inspect all instances of the idiom to fix the prob-
lem [2, 3, 5].

Inspecting all instances of an idiom is time consuming
since developers derive various code for each programming
context from an original idiom. Although code clone detec-
tion tools such as CCFinder can find all copy-and-pasted
code and some variants that are very similar to the origi-
nal code [7], code clone tools cannot cover all derived code
fragments that are no longer code clones. Developers may
use other keyword search tools but developers are hard to
assure that their inspection is completed.

Developers need a tool to find idiom-based code that are
similar to one another and contribute to one specific con-

Code derived from the original idiom

An original idiom

Code clone

Sequential pattern

(developers have to inspect)

Figure 1. Idiom-based code and code clone

cern. This problem is in the boundary area between code
clone analysis and aspect mining since both code clone
analysis and aspect mining techniques detect homogeneous
code crosscutting modules to support software maintenance
[4, 8].

We are planning to investigate the combination of code
clone analysis, sequential pattern mining and other tech-
niques to find all instances of an idiom of interest to devel-
opers as shown in Figure 1. As a first step of the research,
we are investigating whether or not a sequential pattern min-
ing approach detect frequent coding patterns based on id-
ioms.

We have applied PrefixSpan [10], which is a sequen-
tial pattern mining algorithm, to JHotDraw as a preliminary
case study. The result shows that the sequential pattern min-
ing extracted several idiom-based patterns that implement
crosscutting concerns such as undo functionality in JHot-
Draw.

We will combine our sequential pattern mining approach
with code clone analysis to support developers to inspect all

for (Iterator it=list.iterator();
 it.hasNext();) {
 Item item = (Item)it.next();
 if (item.isActive()) {
 item.deactivate();
 }
}

Collection.iterator()
Iterator.hasNext()
LOOP
 Iterator.next()
 Item.isActive()
 IF
 Item.deactivate()
 END-IF
END-LOOP

Figure 2. A sequence extracted from source
code

instances of an idiom. Our approach is related to Fluid AOP
[6]; we focus on finding and managing crosscutting code
rather than directly modularize crosscutting code as an as-
pect.

The structure of the paper is following. Section 2 de-
scribes our sequential pattern mining approach for a Java
program. Section 3 shows the result of case study on JHot-
Draw. Section 4 summarizes our current state and future di-
rections.

2. Sequential Pattern Mining

Sequential pattern mining extracts frequent subse-
quences from a sequence database [1]. We applied PrefixS-
pan [10] to a sequence database extracted from Java soft-
ware. We translated the source code of a Java method into
a sequence that comprises method call, IF and LOOP el-
ements since an idiom is a small code fragments includ-
ing method calls and several control blocks. Figure 2 is an
example of a sequence extracted from a source code frag-
ment.

Method call element A method call is translated into
a call element. To handle dynamic binding, an ele-
ment has a reference to a class that declares the method
in the class hierarchy. For example, a method call
to String.equals(Object) and List.equals(Object)
are not distinguished; a method call element Ob-
ject.equals(Object) is generated for each call.

IF/ELSE/END-IF element An if statement is translated
into a pair of IF and END-IF elements. If the predicate
of the statement calls a method, a method call element
corresponding the method call is inserted before the IF
element.

LOOP/END-LOOP element for and while state-
ments are translated into a pair of a LOOP and an
END-LOOP elements. A method call in a predi-
cate of the loop is translated into a method call ele-
ment inserted before the LOOP element. We focus
on the syntactic structure of a loop instead of pre-
cise control-flow information. We ignore break,
continue and return statements in a loop.

Concern Support Class
Iteration (1) 54 31
Undo (1) 14 14
Undo (2) 12 12
selection of figures 10 10
selection of figures 9 9
Iteration (2) 8 8
Updating views 6 6
Handling mouse input 6 6
Manipulating polygons 6 1
Drawing image 6 1

Table 1. Patterns extracted from JHotDraw

PrefixSpan extracts frequent subsequences from the
database for a Java program. Several extracted pat-
terns form a group that shares the common set of methods.
For example, a pattern “Collection.iterator, LOOP, Iter-
ator.hasNext, Iterator.next, END-LOOP” implies shorter
patterns such as “LOOP, Iterator.hasNext, Iterator.next,
END-LOOP” and “Iterator.hasNext, Iterator.next”. We ag-
gregate these patterns to a single pattern group.

3. Sequential Patterns in JHotDraw

To evaluate whether sequential patterns can cap-
ture idiom-based code or not, we have conducted a pre-
liminary case study. We applied the sequential pattern
mining method described in the previous section to JHot-
Draw, that is a drawing application and well studied in AOP
community. JHotDraw comprises 2,900 methods. Its to-
tal size is 18,000 lines of code.

We extracted method call patterns that involve at least 4
elements and have at least 4 instances in the program. As a
result, we extracted 38 method call patterns.

We have manually investigated what concerns the ex-
tracted patterns implement. Table 1 shows the top 10 fre-
quent patterns extracted from JHotDraw. A row represents
a pattern. The first column Concern is the name of the
concern that the pattern implements. The second column
Support indicates the number of instances of the pattern.
The third column Class shows the number of classes that
involve one or more instances of the pattern in their meth-
ods.

3.1. Patterns of a Crosscutting Concern

We found 22 patterns related to crosscutting concerns in
38 extracted patterns. We recognized two features in these
patterns.

org.jhotdraw.standard. DuplicateCommand

public void execute() {
super.execute();
setUndoActivity(createUndoActivity());
FigureSelection selection = view().getFigureSele・・・
// create duplicate figure(s)
FigureEnumeration figures = (FigureEnumeration) ・・
getUndoActivity().setAffectedFigures(figures);

view().clearSelection();・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
}

setUndoActivity()
createUndoActivity()
getUndoActivityI()
setAffectedFigures()

org.jhotdraw.figures.BorderTool

public void action(Figure figure) {
// Figure replaceFigure = drawing().replace(figur ・・
setUndoActivity(createUndoActivity());
List l = CollectionsFactory.current().createList();
l.add(figure);
l.add(new BorderDecorator(figure));
getUndoActivity().setAffectedFigures(new Fig ・・
((BorderTool.UndoActivity)getUndoActivity()).repl ・・

}

org.jhotdraw. standard.ResizeHandle

public void invokeStart(int x, int y, DrawingView view) {
setUndoActivity(createUndoActivity(view));
getUndoActivity().setAffectedFigures(new Sing ・・
((ResizeHandle.UndoActivity)getUndoActivity()).se・・・

}

AbstractCommand

AbstractTool

AbstractHandle

org.jhotdraw.standard. DuplicateCommand

public void execute() {
super.execute();
setUndoActivity(createUndoActivity());
FigureSelection selection = view().getFigureSele・・・
// create duplicate figure(s)
FigureEnumeration figures = (FigureEnumeration) ・・
getUndoActivity().setAffectedFigures(figures);

view().clearSelection();・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
}

setUndoActivity()
createUndoActivity()
getUndoActivityI()
setAffectedFigures()

org.jhotdraw.figures.BorderTool

public void action(Figure figure) {
// Figure replaceFigure = drawing().replace(figur ・・
setUndoActivity(createUndoActivity());
List l = CollectionsFactory.current().createList();
l.add(figure);
l.add(new BorderDecorator(figure));
getUndoActivity().setAffectedFigures(new Fig ・・
((BorderTool.UndoActivity)getUndoActivity()).repl ・・

}

org.jhotdraw. standard.ResizeHandle

public void invokeStart(int x, int y, DrawingView view) {
setUndoActivity(createUndoActivity(view));
getUndoActivity().setAffectedFigures(new Sing ・・
((ResizeHandle.UndoActivity)getUndoActivity()).se・・・

}

AbstractCommand

AbstractTool

AbstractHandle

Figure 3. Undo patterns

• A particular token frequently appears in the elements
of a pattern. For example, a pattern for undo func-
tionality has the method call elements getUndoMan-
ager() and pushUndo() that have a common token
undo in their name.

• A common token also frequently appears in the name
of methods that involve a pattern. For example, a pat-
tern used to implement mouse handling concern ap-
pears in methods such as mouseUp and mouseDown
that have the same prefix mouse.

These features enables us to easily understand concerns
implemented by idioms. These patterns are important infor-
mation to maintain software. Figure 3 shows three undo im-
plementation patterns in different classes: 11 subclasses of
AbstractCommand, 6 subclasses of AbstractHandle and
9 subclasses of AbstractTool. Our approach successfully
captured these patterns using the same idiom although the
implementation detail for each class are different one an-
other.

3.2. Patterns of Implementation Idioms

The rest of 16 patterns in 38 extracted patterns are imple-
mentation idioms, or general coding patterns that are not in-
teresting in aspect mining research. Figure 4 shows a loop
pattern that has 57 instances in JHotDraw. These patterns
are less important than application-specific patterns but still
useful information for developers inspecting idioms.

4. Summary and Future Direction

Sequential pattern mining found idiom-based implemen-
tation of crosscutting concerns. Although we need further
case studies on other software systems, the result seems
promising.

FigureEnumeration.hasNextFigure()
LOOP
FigureEnumeration.nextFigure()
END-LOOP

org.jhotdraw.standard.StandardDrawingView

public void addAll(Collection figures) {
FigureEnumeration fe = new FigureEnume・
while (fe.hasNextFigure()) {

add(fe.nextFigure());
}

}

FigureEnumeration.hasNextFigure()
LOOP
FigureEnumeration.nextFigure()
END-LOOP

org.jhotdraw.standard.StandardDrawingView

public void addAll(Collection figures) {
FigureEnumeration fe = new FigureEnume・
while (fe.hasNextFigure()) {

add(fe.nextFigure());
}

}

Figure 4. A loop iteration idiom

The next step of our research is combining this approach
and code clone analysis to detect all code fragments derived
from an original idiom. This work will extend the experi-
ment covering a concern using code clones [4] with the re-
sult of sequential pattern mining. We will investigate the
trade-off between recall and precision since we would like
to enable developers to assure that their code inspection is
adequate to fix all defects caused by a fault in an idiom.

Another research direction is an aspect mining based on
sequential pattern mining. Sequential patterns can capture
an idiom that is crosscutting modules and interleaving with
other code fragments. Distinguishing a crosscutting concern
implementation from implementation idioms is also inter-
esting.

References

[1] Agrawal, R. and Srikant, R.: Mining Sequential Patterns,
Proceedings of ICDE 1995, pp.3-14.

[2] Baker, B. S.: A Program for Identifying Duplicated Code.
Computing Science and Statistics, Vol.6, pp.49-57, 1992.

[3] Baxter, I., Yahin, A., Moura, L., Anna, M. and Bier, L.:
Clone Detection Using Abstract Syntax Trees. Proceedings
of ICSM 1998, pp.368-377,

[4] Bruntink, M., van Deursen, A., van Engelen, R. and Tourwe,
T.: On the Use of Clone Detection for Identifying Crosscut-
ting Concern Code. IEEE Transactions on Software Engi-
neering, Vol.31, No.10, pp.804-818, 2005.

[5] Fowler, M.: Refactoring: improving the design of existing
code. Addison Wesley, 1999.

[6] Hon, T. and Kiczales, G.: Fluid AOP Join Point Models. Pro-
ceedings of AOAsia 2006, pp.14-17.

[7] Kamiya, T., Kusumoto, S. and Inoue, K.: CCFinder: A Multi-
Linguistic Token-based Code Clone Detection System for
Large Scale Source Code. IEEE Transactions on Software
Engineering, Vol.28, No.7, pp.654-670, 2002.

[8] Krinke, J.: Mining Control Flow Graphs for Crosscutting
Concerns. Proceedings of WCRE 2006, pp.334-342.

[9] Marin, M.: Reasoning about Assessing and Improving the
Seed Quality of a Generative Aspect Mining Technique. Pro-
ceedings of LATE 2006.

[10] Pei, J., Han. J, Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal,
U. and Hsu, M.: PrefixSpan: Mining Sequential Patterns
by Prefix-Projected Growth. Proceedings of ICDE 2001,
pp.215-224.

