
Towards an Investigation of Opportunities for Refactoring to Design Patterns

Norihiro Yoshida, Katsuro Inoue
Graduate School of Information Science and Technology, Osaka University

1-3, Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
{n-yosida, inoue}@ist.osaka-u.ac.jp

Abstract

Refactoring is a well-known process to improve the
maintainability of object-oriented software. Recently, it is
said that refactoring to design patterns can improve design
quality of maintaining software. However, there are a few
case studies of refactoring to design patterns. This position
paper shows our approach to investigate opportunities for
refactoring to design patterns in software systems. In our
approach, we will develop an automated tool that identifies
opportunities for refactoring to design patterns, and then
will carry out the investigation using our tool.

1 Introduction

Motivation Refactoring[2] is the process of changing a
software system in such a way that it does not alter the ex-
ternal behavior of the code yet improves its internal struc-
ture. That is to say, refactoring is a process to improve the
maintainability of software systems. Recently, it is said that
refactoring to design patterns[3] can improve design quality
of maintaining software systems that have lack of applica-
tion of design patterns[5][7]. However, since there are a few
practical case studies of refactoring to design patterns[7], it
is not clear what kind of refactoring opportunities there are
in software systems. Therefore, we are planning to investi-
gate opportunities for refactoring to design patterns in soft-
ware. And for that purpose we are also planning to develop
an automated tool that identifies opportunities for refactor-
ing to design patterns.

An Example of Refactoring to Patterns J. Kerievsky
made a catalogue of refactorings to patterns[5]. His cata-
logue includes 27 pairs of a description of a refactoring op-
portunity and the corresponding procedure for performing
refactorings using a design pattern. Here, as an example,
we explain the refactoring is called Introduce Polymorphic
Creation with Factory Method described in his catalogue.
The refactoring opportunity in his catalogue is defined as

“Classes in a hierarchy implement a method similarly ex-
cept for an object creation step”. Similar method can be
called code clone[4] or duplicated code[2]. Code clone is
generally considered as one of factors that make software
maintenance more difficult[4]. Figure 1 shows an example
of the refactoring described in his catalogue. As shown in
Figure 1(a), the targets of the refactoring are test classes
DOMBuilderTest and XMLBuilderTest for DOMBuilder
and XMLBuilder, respectively. Because target classes have
similar methods except for an object creation step, they
imply the opportunity for Introduce Polymorphic Creation
with Factory Method. This refactoring is comprised of two
steps. As shown in Figure 1(b), first, a common superclass
(AbstractBuilderTest) for the target classes is introduced,
and similar methods in the target classes are merged into
new method in the common superclass. Second, a Fac-
tory Method[3] is introduced in each of the common su-
perclass (AbstractBuilderTest) and the subclasses (DOM-
BuilderTest and XMLBuilderTest). Factory Method means
a method is primarily intended to create an object. Be-
cause of removing code duplication and introducing Fac-
tory Method, it is easier to add new test class as a subclass
of AbstractBuilderTest than before.

2 Investigation Plan

Automation of Identifying Opportunities For our inves-
tigation, we will develop the automated tool that identifies
opportunities for refactoring to design patterns. To identify
codes shown in Figure 1(a), the automated method has to
find codes that satisfy the following conditions:

C1 Similar methods belong to classes have common parent
classes

C2 Only difference among similar methods is an object
creation step

Figure 1 is a special case of Form Template Method
Refactoring[2], thus we presented C1. C2 is presented for
introducing Factory Method. We are planning to judge
those conditions by the steps below.



+testAddAboveRoot() : void

DOMBuilderTest XMLBuilderTest

junit::framework::TestCase

・・・
builder = new DOMBuilder(“orders”);・・・ ・・・

builder = new XMLBuilder(“orders”);・・・
+testAddAboveRoot() : void

Similar methods (Code clones)

+testAddAboveRoot() : void

DOMBuilderTest XMLBuilderTest

junit::framework::TestCase

・・・
builder = new DOMBuilder(“orders”);・・・ ・・・

builder = new XMLBuilder(“orders”);・・・
+testAddAboveRoot() : void

Similar methods (Code clones)

(a) Before refactoring

Factory Method: Creator

#createBuilder(rootName : String) : OutputBuilder

+testAddAboveRoot() : void

AbstractBuilderTest

junit::framework::TestCase

#builder: OutputBuilder ・・・
builder = createBuilder(“orders”);・・・

DOMBuilderTest

Factory Method: ConcreteCreator

return new DOMBuilder(rootName); return new XMLBuilder(rootName);

#createBuilder(rootName:String) 
: OutputBuilder

XMLBuilderTest

#createBuilder(rootName:String)
: OutputBuilder

Factory Method: Creator

#createBuilder(rootName : String) : OutputBuilder

+testAddAboveRoot() : void

AbstractBuilderTest

junit::framework::TestCase

#builder: OutputBuilder ・・・
builder = createBuilder(“orders”);・・・

DOMBuilderTest

Factory Method: ConcreteCreator

return new DOMBuilder(rootName); return new XMLBuilder(rootName);

#createBuilder(rootName:String) 
: OutputBuilder

XMLBuilderTest

#createBuilder(rootName:String)
: OutputBuilder

(b) After refactoring

Figure 1. Introduce Polymorphic Creation
with Factory Method[5]

Step1 Detect similar methods using a code clone detection
tool such as CCFinder[4].

Step2 Evaluate whether detected methods belong to
classes that have common superclasses and whether
they include object creation statements.

Except that 4 kinds of opportunities do not correspond to
refactoring that introduces design pattern, J. Kerievsky’s
book includes 23 refactoring opportunities. Also, it is able
to identify the other 3 kinds of opportunities based on code
clone detection and syntactic analysis. They are Replace
Conditional Logic with Strategy, Form Template Method,
Replace One/Many Distinctions with Composite, and In-
troduce Null Object. Otherwise, because the descriptions
of other 3 kinds of opportunities include existence of de-
sign pattern instances, it is necessary to use design detec-
tion methods[8] for identifying those opportunities. They
are Encapsulate Composite with Builder, Extract Compos-
ite, and Extract Adapter. For the rest of kinds of opportu-
nities, we have to need further discussion. The novelty of
our tool is the identification based on code clone and the
opportunities proposed by J. Kerievsky.

Investigation points In the investigation, we will focus
on the following points:

• How many refactoring opportunities exist in OSS
(Open Source Software) written in Java?

• Is it possible to improve maintainability by performing
refactoring to design patterns?

For evaluating whether maintainability is improved, we are
planning to use CK Metrics[1] and Design principles[6].
We use them to evaluate software quality by both quanti-
tative and qualitative criteria.

Anticipated Results We believe that there are differences
among design patterns about a number of refactoring op-
portunities and how much maintainability is improved. In
addition, from refactoring perspective, we expect to discuss
the quality of each design patterns based on the result of the
investigation.

3 Concluding Remarks

In this paper, we showed a plan for investigating op-
portunities for refactoring to design patterns in OSS. First,
we introduced an example of refactoring to design patterns.
Then, we described an automated tool that identifies oppor-
tunities for refactoring to design patterns. Finally, we ex-
plained our investigation points and anticipated results.

Acknowledgment This work is being conducted as a part
of Stage Project, the Development of Next Generation IT
Infrastructure, supported by MEXT.

References

[1] S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering,
20(6):476–493, 1994.

[2] M. Fowler. Refactoring: improving the design of existing
code. Addison Wesley, 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison Wesley, 1995.

[4] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Transactions on Software Engineer-
ing, 28(7):654–670, 2002.

[5] J. Kerievsky. Refactoring to Patterns. Addison Wesley, 2004.
[6] R. C. Martin. Agile Software Development: Principles, Pat-

terns, and Practices. Printice Hall, 2003.
[7] J. Rajesh and D. Janakiram. JIAD: A tool to infer design

patterns in refactoring. In Proc. of PPDP 2004, pages 227–
237, 2004.

[8] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T.
Halkidis. Design pattern detection using similarity scoring.
IEEE Transactions on Software Engineering, 32(11):896–
909, 2006.


