
Refactoring Effect Estimation based on Complexity Metrics

Yoshiki Higo† Yoshihiro Matsumoto† Shinji Kusumoto† Katsuro Inoue†

†Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

{higo, y-matsu, kusumoto, inoue}@ist.osaka-u.ac.jp

Abstract

Refactoring is a set of operations to improve main-
tainability or understandability or other attributes of a
software system without changing the external behavior
of it, and it is getting much attention recently. However
it is difficult to perform appropriate refactorings since
the impact of refactoring should justify the cost. There-
fore, before a refactoring is really performed, the effect
and the cost of it should be estimated. The estimation
makes it possible for us to adequately assess whether
each refactoring should be performed or not. This pa-
per shows that it is difficult for developers to perform
appropriate refactorings, and proposes a method esti-
mating refactoring effect. The method has been imple-
mented as a software tool, and a case study was con-
ducted with it. The result of the case study showed
that the estimation of the tool helped a developer of the
target software system to perform an appropriate refac-
toring.

1 Introduction

Refactoring is one of trenchant countermeasures to
handle software systems getting bigger and more com-
plex recently. The concept of refactoring is to improve
the internal structure of a software system for future
development or maintenance without the external be-
havior of it. Nowadays, the importance of refactoring
has been accepted widely.

Since a certain cost is required to complete a refac-
toring, the impact of refactoring should justify the cost.
However, it is difficult to precisely estimate the ef-
fect of refactorings and inappropriate refactorings may
be performed instead of appropriate ones. Inappro-
priate refactorings become software systems less main-
tainable, or requires much cost to operate source code
change and regression test.

This paper proposes a method estimating refactor-

ing effect. After developers input refactorings that they
are going to perform, the method outputs the effect es-
timation result of each of the refactorings. Using the
proposed method, developers can approximately know
the effect of the refactorings that they are going to
perform, which makes it possible to objectively assess
whether or not they should really perform the refactor-
ings.

The method uses CK metrics suite, which is one of
the most popular and widely-accepted software com-
plexity indicators. In other words, the method es-
timates refactoring effect by considering structural
changes of the source code, which is described as fol-
lows,

• how coupling between classes will change,

• how cohesion of each class will change,

• how inheritance relationships between classes will
change.

The method outputs quantitative result of the effect es-
timation from the viewpoint of the three type changes.

The method has been already implemented as a soft-
ware tool, and a case study was conducted by using the
tool. The target of the case study is a software system
developed by a master student of our lab. The result
of the case study indicates the followings.

• It is difficult for developers to assess which refac-
toring is better than the other refactorings.

• By using the proposed method, the developer of
the target software system could perform effective
refactorings.

In Section 2, this paper describes about CK metrics,
and the proposed method is presented in Section 3.
Section 4 introduce the tool that we have developed.
In Section 5, we show the case study, and in Section
6, we discuss the proposed method and the case study.
In Section 7, related works are presented. Finally, we
conclude our paper with a few remarks in Section 8.

2 CK Metrics suite

Measuring complexity metrics of a software system
is one of usual practices to evaluate maintainability of
it. The greater measurement result is the more com-
plex the software system is, in other words, the more
difficult it is to maintain the software system. One
of the most popular and widely-accepted complexity
metrics is CK metrics suite, which is proposed by Chi-
damber and Kemerer [3].

CK metrics suite consists of six metrics, and each
of them measures complexity of object-oriented soft-
ware system from the different viewpoints. Basili et al.
experimentally evaluated CK metrics suite and some
other software metrics, and concluded that CK met-
rics suite is a better indicator to estimate occurrences
of faults than other metrics [1].

Each of CK metrics is count by classes, briefly de-
scribed as follows.

WMC (Weighted Methods per Class) : This
metric is the sum of the complexities of the
methods defined in the target class. Up to now,
several methods measuring method complexity
have been proposed, and Cyclomatic number [17]
and Halstead complexity measurement [10] are
commonly used. Sometimes, this metric is simply
the method count for the class.

DIT (Depth of Inheritance Tree) : This metric
represents the depth of the target class in the class
hierarchy.

NOC (Number Of Children) : This metric repre-
sents the number of classes directly derived from
the target class.

CBO (Coupling Between Object classes) : This
metric represents the number of classes coupled
with the target class. In the definition of this met-
ric, there is a coupling between two classes if and
only if a class refers to methods or fields of the
other class.

RFC (Response For a Class) : This metric is the
sum of the number of local methods and the num-
ber of remote methods. A local method is a
method defined in the target class, and a remote
method is a method invoked in any of local meth-
ods with the exception that local methods invoked
in any of local methods are not counted as remote
methods.

LCOM (Lack of Cohesion in Methods) : This
metric represents how much the target class lacks
cohesion. This metric is calculated as follows;

Take each pair of methods in the target class. If
they access disjoint set of instance variables, in-
crease P by one. If they share at least one variable
access, increase Q by one.

LCOM =
{

P − Q (ifP > Q)
0 (otherwise)

It is noted that the definition of LCOM has some
drawbacks, and other researchers have re-defined
LCOM with other definitions [11, 12].

3 Proposed Method

This section describes the proposed method. The
method uses CK metrics to estimate the effect of refac-
torings. Figure 1 illustrates the overview of the pro-
posed method. The proposed method takes the source
code of the target system and the refactoring that de-
velopers are going to perform, and it outputs how much
the refactoring is effective based on the difference of
the metrics between the original source code and the
revised one. The remainder of this section describes
each step marked on Figure 1.

STEP1

The whole of the target program is parsed and a
structure representing it is constructed. The structure
includes all information required to calculate CK met-
rics.

STEP2

CK metrics are calculated from the structure con-
structed in STEP1. These metrics represent the com-
plexity of the original program.

STEP3

The refactorings that developers are going to per-
form are input. They have to input two kinds of in-
formation for each refactoring: one is where of the tar-
get program is refactored; the other is how the part is
refactored.

STEP4

The structure is changed based on the refactorings
input in the previous step. However it is impossible to
automatically perform all operations forming the refac-
toring. Some operations require developer’s intention.
Here, we assume that a developer is going to move
method a1 in class A to class B, shown in Figure 2.

Firstly, all classes affected by the refactoring are
identified automatically. In this example, all classes

refactoring pattern
original structureA BC D
revised structureA B’C’ D

source code
DCBA ・・・・・・・・・・・・・・・・・・D ・・・・・・・・・・・・・・・・・・C ・・・・・・・・・・・・・・・・・・B ・・・・・・・・・・・・・・・・・・A LCOMFRCCBONOCDITWMC

metrics of the original structure
・・・・・・・・・・・・・・・・・・D ・・・・・・・・・・・・・・・・・・C’ ・・・・・・・・・・・・・・・・・・B’ ・・・・・・・・・・・・・・・・・・A LCOMFRCCBONOCDITWMC

metrics of the revised structure

input
comparison result

output
STEP1 STEP2
STEP3 STEP4 STEP5

STEP6
STEP6refactoring patternrefactoring pattern

original structureA BC Doriginal structureA BC D
revised structureA B’C’ Drevised structurerevised structureA B’C’ D

source code
DCBAsource code
DDCCBBAA ・・・・・・・・・・・・・・・・・・D ・・・・・・・・・・・・・・・・・・C ・・・・・・・・・・・・・・・・・・B ・・・・・・・・・・・・・・・・・・A LCOMFRCCBONOCDITWMC

metrics of the original structure ・・・・・・・・・・・・・・・・・・D ・・・・・・・・・・・・・・・・・・C ・・・・・・・・・・・・・・・・・・B ・・・・・・・・・・・・・・・・・・A LCOMFRCCBONOCDITWMC
metrics of the original structure

・・・・・・・・・・・・・・・・・・D ・・・・・・・・・・・・・・・・・・C’ ・・・・・・・・・・・・・・・・・・B’ ・・・・・・・・・・・・・・・・・・A LCOMFRCCBONOCDITWMC
metrics of the revised structure ・・・・・・・・・・・・・・・・・・D ・・・・・・・・・・・・・・・・・・C’ ・・・・・・・・・・・・・・・・・・B’ ・・・・・・・・・・・・・・・・・・A LCOMFRCCBONOCDITWMC
metrics of the revised structure

input
comparison result

output
STEP1 STEP2
STEP3 STEP4 STEP5

STEP6
STEP6

Figure 1. Overview of the proposal

A
a1()a2()

call a1() call a1()

call a1()

D
d1()

B
b1()

C
c1()

A
a1()a2()
A

a1()a2()

call a1() call a1()

call a1()

D
d1()
D

d1()
B

b1()
B

b1()

C
c1()
C

c1()
(a) Original structure

call a1()

call a1()

D’
d1()

C’
c1()

B’
b1()a1()

A’
a2()

call a1()

call a1()

D’
d1()

C’
c1()
C’
c1()

B’
b1()a1()

A’
a2()
A’
a2()

(b) Revised structure

Figure 2. Refactoring example

in which a1 is invoked are affected. Since the exam-
ple refactoring moves a1 to another class, all of the a1
invocations have to be changed. As shown in Figure
2(a), classes B, C, and D are affected by the refactor-
ing because they have a1 invocations.

Next, all of the identified classes are changed. The
following describes automatic change and interactive
change respectively. Figure 3 illustrates both changes.

automatic change : This kind of change is a com-
pletely automatic processing, not require devel-
oper’s interventions. In the example, The fol-
lowing two changes are classified into automatic
change.

• Delete method a1 from class A, and add it to
class B.

• In class B, a1 invocations are changed as in-
ternal method invocations.

interactive change : Some operations forming a
refactoring require developer’s interventions, that
is, they cannot be completed automatically. In the
example, a developer needs to determine which in-
stance invokes method a1 of class B in class C and
D. The method automatically identified such in-
teractive change operations and asks to him/her.
After receiving answer, the method changes the
structure based on it.

STEP5

CK metrics are calculated from the structure
changed in the previous step. These metrics represent

Aa1()a2()
Dd1()

Cc1()
Bb1()a1()move automatically (ClassA)instanceA.a1()*** instructionoffset Method b1()・・・・・・

(ClassB)a1()modify automaticallyAa1()a2()Aa1()a2()
Dd1()Dd1()

Cc1()Cc1()
Bb1()a1()move automatically (ClassA)instanceA.a1()*** instructionoffset Method b1()・・・・・・・・・・・・

(ClassB)a1()modify automatically
(a) Automatic changeDd1() Cc1()

Bb1()a1()(ClassA)instanceA.a1()*** instructionoffset Method d1()・・・・・・ (ClassA)instanceA.a1()*** instructionoffset Method c1()・・・・・・
(ClassB)???.a1() (ClassB)???.a1()Can’t modify automatically Can’t modify automaticallyAa2()

Dd1()Dd1() Cc1()Cc1()
Bb1()a1()(ClassA)instanceA.a1()*** instructionoffset Method d1()・・・・・・・・・・・・ (ClassA)instanceA.a1()*** instructionoffset Method c1()・・・・・・・・・・・・

(ClassB)???.a1() (ClassB)???.a1()Can’t modify automatically Can’t modify automaticallyAa2()Aa2()
(b) Interactive change

Figure 3. structure change based on refactoring pattern

the complexity of the revised program.

STEP6

In the final step, the method outputs how the com-
plexity of the target software will change by performing
the refactoring. The output is the comparison result
between CK metrics of the original structure and ones
of the revised structure.

The comparison is performed on each metric. We
call the comparison result change rate. The follow-
ing formula is for calculating the change rate of metric
WMC of the example refactoring;∑

y∈A′,B′,C′,D′ WMC(y) −
∑

x∈A,B,C,D WMC(x)∑
x∈A,B,C,D WMC(x)

A, B, C, and D are classes in the original structure,
and A’, B’, C’, and D’ are ones in the revised structure.
Also, WMC(x) is the value of metric WMC for class
x. The change rates of other metrics are calculated by
the same formula.

In this step, only the classes affected by the refactor-
ing are used for calculating change rate. For example,
if there were class E which is not affected by the refac-
toring, E wouldn’t be used for calculating change rate.

4 Implementation

We have implemented a software tool based on the
proposed method. At the present time the tool can
process only the software systems written in Java lan-
guage.

The tool uses java bytecode as the structure repre-
senting the program. It may be more natural to use
abstract syntax tree (AST) or program dependency
graph (PDG). However, there are useful and practi-
cal tools/libraries to handle bytecode, and we thought
that using them allowed us to develop a software tool
at low cost.

The software tool that we developed consists of the
following components.

• Input and output component,

• Bytecode change component,

• Metrics measurement component.

The remainder of this section describes each compo-
nent closely.

Window for selecting the target softwareWindow for selecting the target software
(a) Input the target software

Pop up menu for selecting the refactoring pattern

Tree view for selecting the place refactored

Pop up menu for selecting the refactoring pattern

Tree view for selecting the place refactored

(b) Input how the software is refactored

CK Metrics values measured from bytecodeCK Metrics values measured from bytecode
(c) Outout the CK-metrics

Figure 4. Snapshot of input and output com-
ponent

Input and output component

This component is the user interface of the software
tool. Developers input the target software system, and
specify where they are going to perform a refactoring
(see Figure 4(a)) and which refactoring pattern they
are going to apply (see Figure 4(b)). The tool provides
the CK metrics values measured from the bytecode,
and also provides the change rate through this compo-
nent (see Figure 4(c)). This component plays a role of
STEP1 and STEP3 in Figure 1.

Bytecode change component

This component change the structure based on the
refactoring specified by developers. This component
uses Class Construction Kit1 to process bytecode.
Based on the refactoring that developers are going to
perform, Class Construction Kit changes the bytecode.
Before changing the bytecode, this component iden-
tifies all the classes affected by the refactoring. If
the changes cannot be processed automatically, this
component requires developers to input how to change
the bytecode (See STEP3 of the proposed method de-
scribed in Section 3.). This component plays a role of
STEP4 in Figure 1.

At present, the method supports some of refactor-
ing patterns involving structural change [9], which are
remarked below.

• Move Field, Pull Up/Down Field,

• Move Method, Pull Up/Down Method,

• Extract Class, Extract Super/SubClass,

Metrics measurement component

This component measures CK metrics from the
bytecode of the original program and the revised one,
and also computes change rates of them. This com-
ponent uses ckjm2 to measure CK metrics from byte-
code. The proposed method uses Cyclomatic number
for calculating metric WMC. The metrics values and
the change rates are provided to developers through the

1Class Construction Kit is a tool for visualize and change
bytecode, it is implemented with BCEL and Swing [15]. If de-
velopers want to know the structure of a software system without
the source code, this tool is very useful. Also bytecode change
with this tool allows them to downsize the bytecode or process
something that is difficult with the source code.

2ckjm is a metrics measurement tool. This tool measures CK
metrics from java bytecode, and outputs the result in several
formats like CSV [5]. It is implemented with BCEL. ckjm also
measures three metrics Ce, Ca, and NPM besides CK metrics
as you can see in Figure 4(c). But, in our method threse three
metrics are not used. If you are interested in the metrics, please
refer to [5].

CLExtract Panel ep;setExtractPanel()setStartClass()
GVP

BPFLGV
CP

GUI classes
CLExtract Panel ep;setExtractPanel()setStartClass()
CLExtract Panel ep;setExtractPanel()setStartClass()

GVPGVP
BPBPFLGVFLGV

CPCP

GUI classes

Figure 5. Problem of existing code

input and output component. This component plays a
role of STEP2, STEP5, and STEP6 in Figure 1.

5 Case Study

5.1 Outline

We conducted a case study to evaluate the usefulness
of the proposed method. The target of this case study
is a program developed by a master student of our lab,
and it has been maintained for a year. The program is
written in Java language, the number of classes is 37,
and the LOC is 4,815.

We manually identified which modules of the tar-
get software had undesirable conditions with the mas-
ter student. After the identification, we thought out
4 refactoring candidates to improve the modules. The
below describes the problem and the refactoring can-
didates.

Problem

Class ComponentList (CL) was designed not related to
GUI originally. However, after 1-year maintenance, CL
has a function related to GUI: There is a field whose
type is ExtractPanel, which is one of GUI parts, and
also there are two methods setExtractPanel and set-
StartClass referring to the variable. Figure 5 illustrates
the coupling between class CL and GUI classes. Each
connector in this figure means that there is a coupling
between the classes being in its both ends. We can
see that class CL has couplings with GUI classes GVP,
FLGV, and CP.

Refactoring Candidates

We thought that the variable and the methods should
be moved to another class related to GUI. The follow-

-3.00%-2.00%-1.00%0.00%1.00%2.00%3.00%4.00%

case1 case2 case3 case4

CBO RFC

Figure 6. Comparison of 4 candidates

ing 4 classes are the candidates that they are moved
to.

CASE1 FeatureLocationGraphViewer (FLGV)

CASE2 BirdPanel (BP)

CASE3 ComponentPanel (CP)

CASE4 GraphViewPanel (GVP)

The proposed method estimates the refactoring ef-
fectiveness of each candidate. On the other hand, the
master student judged a candidate to be the best by
his subjectivity.

5.2 Master Student’s Decision

The master student selected CASE3 because he
thought that class CP had a similar function to the
methods moved. His decision was based on his instinct
rather than objective basis like bug information or soft-
ware metrics or design patterns.

5.3 Proposed Method’s Estimation

Table 1 and Figure 6 illustrate the estimation of the
proposed method. They represent the change rates of

Table 1. Change rates of each refactoring
CASE1 CASE2 CASE3 CASE4

WMC 0.00 0.00 0.00 0.00
DIT 0.00 0.00 0.00 0.00
NOC 0.00 0.00 0.00 0.00
CBO -1.90 1.67 3.03 0.60
RFC 0.18 0.09 0.40 0.00

LCOM 0.00 0.00 0.00 0.00

metrics values between the original program and the
revised one. Figure 6 represents only the metrics whose
change rates are not zero due to limitations of space.
They tell us the following things.

• All refactorings will not change the sum of metrics
WMC, DIT, NOC, and LCOM at all.

• All refactorings will have a little bit of change on
the sum of metric RFC.

• CASE1 will be able to greatly reduce the sum of
metric CBO while all of the other refactorings will
increase.

We predicted that change rates of DIT and NOC
would be zero because all refactorings don’t change
the inheritance hierarchy. This refactoring consists of
Move Field and Move Method, and doesn’t reconstruct
the insides of the methods, which is the reason why
the sum of metric WMC was zero: we used Cyclomatic
number for calculating metric WMC. We did not pre-
dicted that the sum of LCOM doesn’t change at all, it
seems to be a coincidence.

After the estimation, we actually performed all of
the four refactorings on the source code, and measured
CK metrics from the revised source code and computed
the change rates. All of the metrics values and the
change rates were the same as ones measured form the
revised bytecode, which means that the estimation by
using bytecode is precise.

6 Discussion

6.1 Validity of the Method

Unfortunately, no research has revealed obvious
foundation that good refactorings lead to lower CK
measures. There are various reasons for performing
refactorings, so some good refactorings should lead to
higher CK measures. For example, applying design
patterns to the source code for getting higher expand-
ability for the future often increases coupling between
the specific classes. The method should not match such
refactorings as applying degisn patterns.

When a maintainer performs a refactoring, there is
a obvious goal of it. For example,

• Class C is too big and complicated, it should be
divided into some small classes,

• Method M locates in an inappropriate class, it
should be moved to another class.

By using the method, the maintainer can know whether
the goal can be accomplished with the refactoring.

Moreover, side-effects of the refactoring can be repre-
sented by the ratio of CK metrics, so the maintainer
can avoid regret the refactoring after acturelly perform-
ing it.

6.2 About the Case Study

In this case study, the proposed method estimated
the refactoring effects of 4 refactoring candidates. All
of them are conceived by us and the master student
who is the developer of the target program.

The master student considered CASE3 as the best
in the four refactoring candidates while the proposed
method estimated that CASE3 is not an effective refac-
toring because of the increase of CBO. We reported the
estimation result of the proposed method to the mas-
ter student after his determination. He recognized that
the estimation was better than his determination, and
adopted the refactoring recommended by the proposed
method.

From the result of this case study, we can say the
followings.

• The master student subjectively determined which
refactoring seems to be more effective than other
refactorings.

• The refactoring that he selected was not effective
because of increase of complexity.

From the above results, we can conclude it diffi-
cult for developers to figure out the complexity of the
software system. And it is also more difficult not to
increase the complexity unnecessarily in performing
refactorings. Therefore, the method proposed in this
paper can appropriately navigate developers to effec-
tive refactorings, and it is useful in the refactoring pro-
cess.

This case study has the following limitations.

The examinee is a single master student

In order to get more calculable evidences that the pro-
posed method practically helps developers to perform
effective refactorings, we need to conduct experiments
involving more examinees. Also, we should conduct ex-
periments for different level programmers: in this case
study, examinee is a single master student. If the ex-
aminee was a real software engineer, he might be able
to select the refactoring regarded the best by the pro-
posed method. The experience of the person doing the
refactoring is a factor in case study outcome.

The target program size is not practical

The target program of the case study was developed by
a single master student. Therefore its size is not large:
the number of classes is 37, and the LOC is 4,817. We
should conduct more experiments on more practical-
size software systems. But, this case study revealed
that it is difficult to perform effective refactorings on
even a small-size program. Therefore, we can consider
that it is much more difficult on practical-size software
systems.

Only the change of complexity metrics values
was considered as the effect of refactorings

In this case study, Only the complexity change of
classes was considered as the effect of refactorings.
However, in reality, completing a refactoring requires
the source code modification cost and the regression
test cost and might further costs for something. In or-
der to estimate refactoring effectiveness more precisely,
we have to consider those costs.

7 Related Work

Leitch et al. has proposed a method for assessing
maintainability benefits of refactoring [16]. Their goal
is to develop a well-defined way for estimating the costs
and benefits of refactoring. In their context, the cost of
a refactoring is operations for regression tests to guar-
antee that the refactoring doesn’t change the observ-
able behavior of the software system, and the benefit
is the maintenance saving by the refactoring. Both
the cost and the benefit are calculated based on the
COCOMO II model, which was proposed by Boehm et
al. [2]. In the method, control and data dependency
graphs are required to compute maintenance costs of
the original system and the revised one. However,
those graphs are constructed by manual code inspec-
tion, which means it difficult to apply the method to
middle-scale or large-scale software systems. On the
other hand, our proposed method almost automatically
3 calculates metrics of both the original system and the
revised one. Therefore, we can say that our proposed
method is more scalable.

Counsell et al. has divided seventy two refactor-
ing patterns, which are described in Fowler’s book [9],
into categories from the viewpoint of regression test [6].
Some refactorings change an interface of the classes of
the software system, and others do not. If the interface
is not changed by a refactoring, the set of existing tests
can be adapted to the revised software system. That

3Our method requires user decisions when constructing re-
vised structure. The detail is described in Section 3.

requires a little cost to guarantee the external behav-
ior preservation. However, if the interface was changed
by a refactoring, new test suite has to be created for
confirming the correctness of the refactoring, which re-
quires much more costs. The categories were originally
made by Deursen et al. [8], and were extended by
Counsell et al. A refactoring pattern sometimes in-
cludes other refactoring patterns: for example, Extract
Class pattern includes Move Method pattern and Move
Field patterns. The original refactoring pattern cate-
gorization doesn’t consider dependency between refac-
toring patterns while the extended categorization does
consider. This categorization allows us to estimate the
cost of regression cost, and may be a indicator whether
a refactoring should be performed or not.

Kataoka et al. suggested a method measuring the
effect of refactorings [14]. They use coupling between
methods as the indicator of refactorings effects. The
coupling is calculated from three kinds of program el-
ements, return-value, arguments, and shared-variables.
The couplings of the original system and the revised
one are compared for evaluating the refactoring. This
method is applied to the system after the source code
is changed. That is, this is not a estimation method
of refactoring but an evaluation of them. However, we
think it is possible to calculate this metric from the
structure representing the source code as well as CK
metrics. This metric should be able to estimate the
effect of refactorings.

Maruyama has proposed an undo mechanism for
refactorings [18]. Existing editors and IDEs like Eclipse
support undo for a single source file while the mecha-
nism can handle undo involving multiple source files.
The mechanism should become a great help of the
refactoring process from the viewpoint of the follow-
ing points.

• Before performing a refactoring, developers can-
not estimate the impact of it completely. There-
fore they sometimes have to cancel the refactor-
ing performed because of the unexpected result of
it. Undo mechanism allows them to readily cancel
refactorings performed.

• Many refactorings tend to rewrite multiple source
files rather than a single source file. Therefore,
undo functions implemented in existing editors or
IDEs are not sufficient to cancel refactorings per-
formed.

The possible of easy cancel of refactorings performed
should be one factor that developers decide whether
they perform refactorings or not.

Several methods for automated refactoring have
been proposed [4, 13, 19, 20]. The methods automat-
ically detect parts that refactorings should be applied
to. The parts are identified by using software metrics or
heuristics based on author’s experiences. Refactoring
patterns and design patterns are the ways that those
method automatically applied refactorings to the parts.
The source code change can be done full-automatically,
which means that the cost of rewriting files will dras-
tically decrease. However, the automatic transforma-
tion may tend to unexpected results rather than man-
ual source code rewriting. We consider that the undo
mechanism as described in the above will be a comple-
mentary technique to the automatic refactorings.

Weissgerber et al. has proposed a method iden-
tifying refactoring performed in the past [21]. The
method is a hybrid approach of source code analy-
sis and code clone detection, and in the experiments
of the paper it could identify past refactorings with
high recall and high precision. Demeyer et al. also
has proposed a refactoring identification method [7].
The method identifies past refactorings based on the
change of metrics, and identification accuracy is little
lower than Weisserber’s hybrid approach. We think
it important to identify and evaluate refactorings per-
formed in the past. If we could know what kinds of past
refactorings were effective in the development or main-
tenance process of the software system, we can predict
that the same kinds of present refactorings would be
also effective.

8 Conclusion

In this paper, a method for refactoring effect estima-
tion was proposed. The method measures CK metrics
from the original program and the revised one without
actually performing the refactoring, and compares the
metrics values. The comparison result represents how
the complexity of the program will change by perform
the refactoring. Also, a tool was developed based on
the proposed method and a case study was conducted
to evaluate the usefulness of the proposed method.

In the case study, the proposed method recom-
mended a refactoring candidate because of the reduc-
tion of metric CBO while the examinee, who is a mas-
ter student, couldn’t select the refactoring candidate
although he developed the program. From this exam-
ple, we conclude that the proposed method is useful for
navigating developers/maintainers to perform effective
refactorings.

Of course, the proposed method remains several
points to be improved, which are described as follows.

• Extend to be able to handle other refactoring pat-

terns like Inline Class.

• Consider other cost required to complete refactor-
ings like source code modification and regression
test.

• Evaluate other refactoring patterns handled in the
proposed method.

Acknowledgement

This work is being conducted as a part of Stage
Project, the Development of Next Generation IT In-
frastructure, supported by Ministry of Education, Cul-
ture, Sports, Science and Technology.

References

[1] V. R. Basili, L. C. Briand, and W. L. Melo. A valida-
tion of object-oriented design metrics as quality indi-
cators. IEEE Transactions on Software Engineering,
22(10):751–761, Oct 1996.

[2] B. W. Boehm, C. Abis, A. W. Brown, S. Chulani,
B. K. Clark, E. Horowitz, R. Madachy, D. Reifer, and
B. Streece. Software Cost Estimation with COCOMO
II. Prentice Hall, 2000.

[3] S. Chidamber and C. Kemerer. A metric suite for
object-oriented design. IEEE Transactions on Soft-
ware Engineering, 25(5):476–493, Jun 1994.

[4] M. O. Cinne’ide. Automated refactoring to introduce
design patterns. In Proc. of the 22th International
Conference on Software Engineering (Doctral Work-
shop), pages 722–724, May 2000.

[5] ckjm. http://www.spinellis.gr/sw/ckjm/.

[6] S. Counsell, R. M. Hierons, R. Najjar, G. Loizou, and
Y. Hassoun. The effectiveness of refactoring, based
on compatibility testing taxonomy and a dependency
graph. In Proc. of the Testing: Academic and Indus-
trial Conference on Practice and Research Techniques,
pages 181–192, Oct 2006.

[7] S. Demeyer, S. Ducasse, and O. Nierstrasz. Find-
ing refactoring via change metrics. In Proc. of the
15th ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 166–177, Oct 2000.

[8] A. V. Deursen and L. Moonen. The video store re-
visited - thoughts on refactoring and testing. In Proc.
of the 3rd International Conference on eXtreme Pro-
gramming and Flexible Processes in Software Engi-
neering, pages 71–76, May 2002.

[9] M. Fowlor. Refactoring: improving the design of ex-
isting code. Addison Wesley, 1999.

[10] M. H. Halstead. Elements of Software Science. Else-
vier Science Inc., 1977.

[11] B. Henderson-Sellors. Object-Oriented Metrics: Mea-
sures of Complexity. Prentice Hall, 1996.

[12] M. Hitz and B. Montazeri. Measuring coupling and
cohesion in object-oriented systems. In Proc. of Inter-
national Symposium on Applied Corporate Computing,
pages 78–84, Oct 1995.

[13] S.-U. Jeon, J.-S. Lee, and D.-H. Bae. An automated
refactoring approach to design pattern-based program
gransformation in java programs. In Proc of 9th Asia-
Pacific Software Engineering Conference, pages 337–
345, Dec 2002.

[14] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A
quantitative evaluation of maintainability enhance-
ment by refactoring. In Proc. of the 18th IEEE Inter-
national Conference on Software Maintenance, pages
576–585, Oct 2002.

[15] C. C. Kit. http://bcel.sourceforge.net/cck.html.
[16] R. Leitch and E. Stroulia. Assessing the maintainabil-

ity benefits of design restructuring using dependency
analysis. In Proc. of the 9th International Symposium
on Software Metrics, pages 309–322, Sep 2003.

[17] T. Macabe. A complexity measure. IEEE Transaction
on Software Engineering, 2(4):308–320, Dec 1976.

[18] K. Maruyama. An accurate and convenient undo
mechanism for refactorings. In Proc. of the 13th Asia-
Pacific Software Engineering Conference, pages 309–
316, Dec 2006.

[19] L. Tahvildari and K. Kontogiannis. Improving design
quality using meta-pattern transformations: A metric-
based approach. Journal of Software Maintenance
and Evolution: Research and Practice, 16(4-5):331–
361, Jul 2004.

[20] A. Trifu and U. Reupke. Towards automated restruc-
turing of object oriented systems. In Proc. of the 11th
European Conference on Software Maintenance and
Reengineering, pages 39–48, Mar 2007.

[21] P. Weissgerber and S. Diehl. Identifying refactorings
from source-code changes. In Proc. of the 21st IEEE
International Conference on Automated Software En-
gineering, pages 231–240, Sep 2006.

