
Cross-application Fan-in Analysis for Finding Application-specific Concerns

Makoto Ichii† Takashi Ishio† Katsuro Inoue†

†Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

E-mail: {m-itii, ishio, inoue}@ist.osaka-u.ac.jp

Abstract

Automatic detection of crosscutting concerns helps com-
prehension and refactoring of large-scale software system.
Some of the detection techniques use occurrence frequency
of program entities to detect concerns; however, the de-
tected concerns include generic idioms such as a loop us-
ing iterator. The generic idioms are less interesting than
application- or domain-specific concerns in many cases.
Therefore, some techniques use heuristics to filter the con-
cerns, where developers should adjust the filter carefully or
actual concerns may be accidentally filtered out. In this
paper, we propose a metric named universality that repre-
sents how widely a class is used in applications. Using the
universality, we filter concerns comprising only universally-
used classes. We apply the method to coding patterns that
include crosscutting concerns in various open source appli-
cations and discuss the result.

Keywords:Crosscutting concern, Coding pattern, Fan-
in analysis

1 Introduction

Crosscutting concern detection techniques help develop-
ers to refactor or comprehend the target software system.
There are some techniques automatically detecting cross-
cutting concerns based on their nature: their implementa-
tion appears across the source code [1, 5, 6]. Coding pattern
detection [5] is one of such methods using a data mining
technique. A coding pattern consists of frequent sequence
of method calls with control statements.

However, detected patterns include some generic pat-
terns (idioms) such as the iterator idiom in addition to the
application- or domain-specific concerns1. The generic pat-
terns are less helpful for developers because they are not
interested in already-known patterns. This matter is not

1In this paper, “application” means a software system; “domain” means
a group of applications having a common horizontal/vertical feature.

unique to the coding pattern detection technique, but com-
mon in almost all of the methods based on the occurrence
frequency of concerns. Marin et al. [6] excludes all libraries
from target application as default settings of their fan-in
analysis in order to exclude generic utilities; however, such
filtering accidentally removes concerns with library classes.

In this paper, we propose cross-application fan-in anal-
ysis to find classes universally used across various ap-
plications/domains. Coding patterns comprising only
universally-used classes can be filtered out as generic pat-
terns. We define universality metric for a class that how
widely a class is used. We have computed the universality
metric values for a collection of open-source software, and
applied the metric to filtering coding patterns that comprise
only universal classes, such as loops using iterator.

This paper is constructed as follows: Section 2 describes
the related works on detection of the crosscutting concerns
as the background. Then we explain our analysis method in
Section3 and its case study in Section 4. We conclude this
paper in Section 5.

2 Background

The crosscutting concern detection (or the aspect min-
ing) techniques help developers to manage idiomatic code
fragments. Fung [5] is a tool to detect coding patterns in-
cluding crosscutting concerns from an application. A cod-
ing pattern detected by Fung consists of an ordered list of
method calls and control statements. Figure1 is an example.
The left code snippet and the right box are a Java imple-
mentation of a loop using an iterator and its coding pattern
representation, respectively. Marin et al. proposes fan-in
analysis method to extract method calls that consists cross-
cutting concerns [6]. Bruntink et al. applies code clone
detection for finding crosscutting concerns [1]. However,
frequent code fragments include not only crosscutting con-
cerns but well-known implementation idioms such as a loop
with an iterator since the idioms are also frequently used in
programs. To filter out implementation idioms, Marin’s fan-
in analysis excludes library classes from the result. Config-

1: iterator()

2: hasNext()

3: LOOP

4: next()

5: hasNext()

6: END_LOOP

...

Iterator it = c.iterator();

while (it.hasNext()) {

 Object o = it.next();

 ...

}

...

Figure 1. Coding pattern example

uring a library filter requires developers to distinguish ap-
plication classes from library classes for each application.
Without an appropriate configuration, a library filter may
accidentally remove interesting code fragments.

3 Cross-application Fan-in Analysis

In this paper, we propose cross-application fan-in anal-
ysis in order to automatically distinguish implementation
idioms from coding patterns. The key idea is that im-
plementation idioms appear in various applications, while
application- and domain-specific coding patterns are in-
volved in only a particular set of applications. We propose
a metric named universality to measure how widely a class
is used across applications. We use a collection of appli-
cations to compute universality metric for each class and
apply the metric to extract crosscutting concerns in a target
application.

3.1 Cross-application use-relation

First of all, an application collection is set up so that the
application collection contains the target application, the li-
braries used by the application and other applications using
the libraries.

Then, static use-relation between the classes in the appli-
cation collection is analyzed.

We construct a use-relation graph, or a directed graph
whose node represents a class and edge represents use-
relation between classes respectively. An edge represents
one or more of the following relation [4] :

• A class or an interface extends another class or inter-
face respectively.

• A class implements an interface.

• A class or an interface declares a variable (a local
variable, a field, a parameter, or the return type of a
method) of a class or an interface.

Warehouse

Liquor

Store

Liquor
Paper

WarehouseApp StoreApp

(Liquor2; a copy
of Liquor1)

Shelf

(Liquor1)

Figure 2. Component graph example

• A class instantiates a class object.

• A class calls a method of a class or an interface. If the
callee method is inherited from a parent class (or inter-
face) of the callee class (or interface), we interpret that
the method of the parent class (or interface) is called.

• A class or an interface refers to a field of a class or
an interface. If the referenced field is inherited from
a parent class (or interface) of the referenced class (or
interface), we interpret that the field of the parent class
(or interface) is referred to.

If there are multiple copies of a class in different ap-
plications, we employ all of the classes as used classes.
Figure2 is an example of the use-relation graph that con-
sists of six classes from two applications (WarehouseApp
and StoreApp). WarehouseApp contains two classes,
where Warehouse uses Luquor (Liquor1). StoreApp
comprises four classes: Store, Shelf, Paper and
Liquor (Liquor2) that is a copy of Liquor1. In
StoreApp, Store uses Shelf, Luquor (Liquor2) and
Paper; Shelf uses Liquor (Liquor2) and Paper. Be-
cause Liquor2 is a copy of Liquor1, Warehouse, Store
and Shelf, the classes containing references to “Liquor”,
have use-relations to both of the two Liquor classes.

3.2 Class universality

The universality metric is measured using the con-
structed use-relation graph. The universality uses follow-
ing two kind of fan-in: the class fan-in and the application
fan-in. The class fan-in of a class c is the number of classes
using the class c, that is, the number of incoming edges of
the node corresponding to the class c. For example, both of
the Liquor classes of Figure 2 have the value of 3. The
application fan-in ac is the number of distinct applications
using the class c. For example, the Liquor classes have
the value of 2 because they are used from WarehouseApp
and StoreApp.

2

The universality of a class c is defined as follows:

universality(c) =
log(ic + 1)
log(imax)

× log(ac + 1)
log(amax)

where ic is the class fan-in of c; imax is the max value of the
class fan-in of all classes; ac is the application fan-in of c;
amax is the max value of the application fan-in of all classes.
This metric is designed so that classes used in various appli-
cations have a high value. We employ log value instead of
raw value because the distribution of the fan-in follows the
power-law, i.e., a small number of classes have extremely
large fan-in meanwhile almost all classes have small fan-in
[3].

3.3 Pattern universality

We define pattern universality based on the universality
metric. The pattern universality of a pattern p is the mini-
mum value of the universality values of the classes whose
methods are invoked in the pattern p. If the pattern uni-
versality of a pattern goes over the threshold value k, the
pattern is filtered out as a generic pattern. Since method
calls contained in a Fung’s coding pattern do not have class
name, classes used in a pattern are acquired from its in-
stances in the original source code.

4 Case studies

We have set up two case studies to evaluate our analysis
method. In Case Study 1, we have collected various open
source software packages and measured the universality for
all classes. Based on the result of the Case Study 1, Case
Study 2 measured pattern universality for each coding pat-
tern detected by Fung to filter out the coding patterns.

4.1 Case Study 1

In order to measure and observe the universality value
for actual classes, we collected the source files of 39
application packages involving 131,328 classes; the total
LOC is 18,778,821. The applications include Java SE
API and various open source software packages covering
a broad range of domains in addition to applications ana-
lyzed in [5]. For example, the applications include Eclipse
3.3 (IDE), Netbeans 5.5.1 (IDE), jEdit 4.3 (Text editor),
Azureus 3.0.3.4 (Network Client), Apache Tomcat 6.0.14
(Network Server), Spring framework 2.5.5 (Application
framework), Freemind 0.8.1 (Drawing), JHotDraw 7.0.9
(Drawing), HSQLDB 1.8.0 (Database) and so on.

We analyzed the cross-application use-relation of the ap-
plications and measured the universality for all classes. We
have investigated following data in the case study.

Table 1. Top 20 classes in the universality
Rank Class name Univ. Fan-in

1 java.lang.String 0.933 69,324
2 java.lang.Object 0.915 55,628
3 java.util.List 0.793 12,981
4 java.lang.System 0.780 11,191
5 java.lang.Class 0.776 10,590
6 java.lang.Throwable 0.775 10,467
7 java.util.Iterator 0.773 10,191
8 java.util.ArrayList 0.772 10,135
9 java.lang.Exception 0.761 8,840
10 java.util.Map 0.757 8,476
11 java.lang.Integer 0.748 7,568
12 java.util.Set 0.741 6,954
13 java.io.File 0.736 6,554
14 java.lang.StringBuffer 0.735 6,907
15 java.io.PrintStream 0.730 6,132
16 java.util.HashMap 0.730 6,129
17 java.io.IOException 0.725 6,115
18 java.util.Collection 0.724 5,690

19
java.lang

0.714 5,057.IllegalArgumentException
20 java.lang.Runnable 0.699 6,790

The top-20 classes in the universality We can see what
types of classes have high universality value by uni-
versality ranking.

Difference between the universality and the fan-in In
order to observe whether or not the universality can
distinguish the general-purpose classes precisely than
the raw fan-in, we present classes whose universality
is high but fan-in is low and classes whose universality
is low but fan-in is high, respectively.

Distribution of the universality This list indicates thresh-
old that separates general-purpose classes, domain-
specific classes and application-specific classes.

Result The top-20 classes in the universality are listed at
Table 1. We can see that the fundamental classes of the
Java SE API have especially high values, followed by the
general-purpose utilities such as collection-related classes.
We guess that almost all Java programmers have used the
listed classes.

Table 2 lists five of the 47 classes that the order (ranking)
in the universality < 100 meanwhile the order in the fan-in
> 100. We can see that all of the classes (including the omit-
ted ones) belongs to Java SE and have fundamental/utility
role. For example, LinkedList and Stack provide data
model and operations for collection manipulation.

On the other hand, the classes that have high fan-in
but low universality includes the classes for application-

3

Table 2. Classes with high universality but
low fan-in

Class name Univ. Rank Fan-in Rank
java.lang.Character 39 104
java.util.LinkedList 41 105
java.io.FileOutputStream 56 177
java.lang.Comparable 78 240
java.util.Stack 95 354

Table 3. Classes with high fan-in but low uni-
versality

Class name Univ. Rank Fan-in Rank
org.eclipse.swt.widgets.Control 213 25
org.eclipse.swt.SWT 221 34
org.eclipse.core

.resources.IResource 564 69
org.openide.util.NbBundle 1,398 24
org.openide.ErrorManager 1,496 54

specific crosscutting concerns such as resource manage-
ment (NbBundle, IResource) and error management
(ErrorManager), as listed in Table 3. We found 47
classes that are out of the top 100 of universality ranking in
the top 100 of fan-in ranking. These classes have high class
fan-in value because they are frequently used in a large ap-
plication (e.g., Eclipse or NetBeans), but have low univer-
sality because they are used from a few applications.

This result shows that it is required to consider the appli-
cation border for measuring how widely a class is used be-
cause classes implementing crosscutting concerns in a large
application occasionally have large fan-in.

Table 4 presents the distribution of the universality value.
The general-purpose classes exist at the range of 1.0–0.5.
The domain-specific classes such as GUI, networking utility
or logger are found at the range of 0.5–0.2. The classes
used locally appears at the range of 0.2–0. Therefore, the
threshold k = 0.5 seems appropriate to filter the generic
patterns, k = 0.2 seems appropriate to filter the domain-
specific patterns, respectively.

4.2 Case Study 2

We apply our method to coding patterns detected by
Fung [5] in order to evaluate the filtering ability of the
universality metric. We analyzed the patterns of Azureus,
Apache Tomcat and SableCC. The pattern universality is
measured using the same application collection used in the
Case Study 1. We categorized patterns into three categories
according to their pattern universality values. We refer to
patterns whose universality are higher than 0.5 as generic
patterns, patterns whose universality are in the range of 0.5

and 0.2 as domain-specific patterns and classes whose uni-
versality are lower than 0.2 as application-specific patterns
respectively.

Result — Azureus We found the text manipulation pat-
terns such as combination of the String.substring()
and String.indexOf() and the collection manipula-
tion patterns such as the iterator idiom as generic patterns.

As domain-specific patterns, we found I/O classes in the
java.nio package and the collection manipulation using
LinkedHashMap, that is an implementation of Map in-
terface with an additional feature.

The application-specific patterns of Azureus in-
clude logging patterns using application-local Debug
class and a synchronization process with a pair of
AEMonitor.enter() and AEMonitor.exit().

Eight of ten Azureus’s patterns reported in [5] are cat-
egorized to application-specific patterns; the other patterns
are recognized as a generic pattern because both of them are
error management concerns comprising List, Iterator
and Exception, who are found in Table 1.

Result — Apache Tomcat The generic patterns of Tom-
cat are similar to the ones of Azureus. There are text ma-
nipulation and collection manipulation.

We found JDBC-related patterns using classes
of java.sql package and I/O patterns using
BufferedOutputStream as domain-specific pat-
terns.

The application-specific patterns of Tomcat include log-
ging concerns using application-local Log classes and
HTTP processing with Http11NioProtocol.

Ten of eleven patterns of Tomcat reported in [5] are dis-
tinguished as application-specific; the other pattern is cat-
egorized to domain-specific pattern because it consists of
ResourceBundle, that is a resource management class
in Java SE.

Result — SableCC The patterns filtered as generic pat-
terns include Map and List operations.

As a domain-specific pattern, we found a pattern using
ListIterator, a variation of iterator which has some
additional operation such as previous().

We found syntax tree manipulation patterns using Tree
or Token as application-specific patterns.

The all seven patterns reported in [5] are distinguished
as application-specific patterns.

4.3 Discussion

Using the universality metric, we succeeded to distin-
guish the generic concerns such as string/collection manip-
ulation concerns and the domain-specific patterns such as

4

Table 4. Distribution of universality
Univ. #classes packages

1.0–0.9 2 java.lang
0.9–0.8 0 (none)
0.8–0.7 17 java.util, java.lang, java.io
0.7–0.6 18 java.lang, java.util, java.io, java.net, java.awt
0.6–0.5 49 java.util, java.lang, java.io, javax.swing, java.awt,...
0.5–0.4 80 java.io, java.lang, javax.swing, javax.swing, java.awt,...
0.4–0.3 196 org.eclipse.swt.widgets, javax.swing, java.util, java.awt.event, java.lang, ...
0.3–0.2 348 org.eclipse.swt.widgets, org.eclipse.swt.graphics, javax.swing, javax.management, java.awt, ...

0.2–0.1 1,385
org.eclipse.swt.widgets, org.eclipse.swt.dnd, javax.management,

org.gudy.azureus2.core3.util, org.bouncycastle.asn1, ...
0.1–0 96,604 soot.jimple.parser.node, org.apache.poi.....functions, test, soot.coffi, ...

database connection patterns. It is notable that the univer-
sality metric prevents that the classes used in a few huge
applications such as Eclipse are accidentally categorized
into generic classes. Our method can provide configurable
filtering of concerns without deep domain- or application-
knowledge: high threshold value filters out generic con-
cerns; low threshold value enables to recognize application-
specific concerns.

An interesting point of our universality is that some
domain-specific class may have higher class univer-
sality than general-purpose classes. For example,
java.awt.Component has high universality value
of 0.632 although it is a GUI-related class; on
the other hand, java.util.LinkedHashMap and
java.util.ListIterator have low universality
value of 0.358 and 0.467 respectively although they are
general-purpose collection-related classes. Although this
may not be a matter because famous domain-specific con-
cerns are filtered out and less-popular generic concerns are
not filtered out, we have several ideas to improve distin-
guishing ability of our method. For example, treating a
method call against an overridden method as method calls
to all overriding/overridden methods as Marin et al. pro-
posed [6] may be effective to find a universally-used class
hierarchy such as collection classes. Another idea is using
our method with other method or metrics such as utilityhood
[2], that measures how a method is likely to be a utility.

Universality metric value depends on a set of applica-
tions. Although we have collected famous open source soft-
ware, we need further case study in different target, e.g. ap-
plications developed in an industry.

5 Conclusions

In this paper, we propose cross-application fan-in
analysis to automatically filter generic or application-
independent concerns from coding patterns, or crosscutting

concern candidates. Our method is constructed for Fung’s
pattern mining; however, we believe that our method works
with other crosscutting concern detection methods. Com-
bining with such methods is a future work. We are also
planning to improve our analysis method as discussed in4.3

Acknowledgements This work has been supported by
Japan Society for the Promotion of Science, Grant-in-Aid
for Exploratory Research (18650006), and the Microsoft
IJARC CORE4 Project, and has been conducted as a part
of Stage Project, the Development of Next Generation IT
Infrastructure.

References

[1] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwe.
On the use of clone detection for identifying crosscutting con-
cern code. IEEE Trans. Software Eng., 31(10):804–818, Oct.
2005.

[2] A. Hamou-Lhadj and T. Lethbridge. Summarizing the content
of large traces to facilitate the understanding of the behaviour
of a software system. In Proc. 14th Intl’ Conf. Program Com-
prehension (ICPC 2006), pages 181–190, June 2006.

[3] M. Ichii, M. Matsushita, and K. Inoue. An exploration of
power-law in use-relation of java software systems. In Proc.
19th Australian Software Eng. Conf. (ASWEC 2008), pages
422–4311, Mar. 2008.

[4] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and
S. Kusumoto. Ranking significance of software compo-
nents based on use relations. IEEE Trans. Software Eng.,
31(3):213–225, Mar. 2005.

[5] T. Ishio, H. Date, T. Miyake, and K. Inoue. Mining coding
pattern to detect crosscutting concerns in java programs. In
Proc. 15th Working Conf. Reverse Eng. (WCRE 2008), pages
123–132, Oct. 2008.

[6] M. Marin, A. V. Deursen, and L. Moonen. Identifying cross-
cutting concerns using fan-in analysis. ACM Trans. Software
Eng. and Methodology, 17(1):3, Dec. 2007.

5

