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Abstract—In software maintenance, both product metrics and 
process metrics are required to predict faults effectively. 
However, process metrics cannot be always collected in practical 
situations. To enable accurate fault prediction without process 
metrics, we define a new metric, ImpactScale. ImpactScale is the 
quantified value of change impact, and the change propagation 
model for ImpactScale is characterized by probabilistic 
propagation and relation-sensitive propagation. To evaluate 
ImpactScale, we predicted faults in two large enterprise systems 
using the effort-aware models and Poisson regression. The results 
showed that adding ImpactScale to existing product metrics 
increased the number of detected faults at 10% effort (LOC) by 
over 50%. ImpactScale also improved the predicting model using 
existing product metrics and dependency network measures. 

I. INTRODUCTION 
Software fault prediction has achieved a great outcome as a 

mean of supporting reviews and tests, controlling qualities, and 
managing risks [1][2]. However, in the maintenance or post-
release phase of software lifecycle, fault prediction is a 
relatively difficult task. Fault prediction requires metrics 
correlated with faults as explanatory variables. Several studies 
have reported the set of faulty modules in pre-release phase 
differs from the set of ones in post-release phase [3][4]. Metrics 
useful in pre-release phase may often become useless in post-
release phase. For example, Fenton et al. [3] reported the case 
that McCabe’s cyclomatic complexity correlated with pre-
release faults but little correlated with post-release faults. 

To improve predictive performance in maintenance, 
process metrics have been used in addition to product metrics. 
Product metrics are metrics extracted from a snapshot of source 
code, and process metrics are metrics extracted from project 
activity records such as histories of changes, inspections and 
defects [5]. Some studies have reported that formerly changed 
code fragments tend to be fault-prone and metrics extracted 
from such changes improved predictive performance [4][5][6]. 

However, in practical maintenance activities, documents, 
records and human knowledge are often lost. In such situations, 
process metrics cannot be obtained. Our goal is to define a new 
product metric which correlates with faults and improves 
predictive performance in maintenance. 

Even in long maintained software systems, one of surviving 
factors of faults is software dependency [7][8]. When a module 
is changed in a system, some of the modules dependent on it 

should be also changed if needed. The process of change is 
repeated until no change is needed. If modules under such a 
ripple effect of changes [9] were not fully captured, faults may 
happen. Logical coupling [7] is co-change information in 
software products, and it is well-known that metrics based on 
logical coupling have relations with faults [5]. Hassan et al. [8] 
reported that logical coupling can be used to recognize change 
propagation. Logical coupling can be regarded as the 
observation of implicit dependency through software changes. 

There are various types of software dependencies. Product 
metrics regarding direct dependencies are categorized into 
syntactic dependency, and process metrics regarding logical 
coupling are categorized into logical dependency [7]. Cataldo 
et al. [10] compared the strengths of the correlations between 
various dependencies and faults. Their examination showed 
that the correlation between syntactic dependency and faults 
was insignificant or weak and that the correlation between 
logical dependency and faults was significant and the strongest. 
The results are one of the cases that product metrics are 
insufficient for fault prediction in maintenance. 

Zimmermann et al. applied social network analysis (SNA) 
on a software dependency graph representing relationships 
between binary modules of software systems [11]. They 
reported that adding network measures from SNA literature 
could improve the performance of fault prediction. Although 
the network measures are product metrics, they are not covered 
by the syntactic dependency categorized by Cataldo. 

We assumed that the network measures used by 
Zimmermann and the logical dependency used by Cataldo 
share common factors of fault-proneness. Therefore, we 
assumed that change impact analysis [12] on source code 
enables us to extract implicit dependency, such as relations 
exposed by logical coupling. Change impact analysis is a 
technique that detects affected areas of source code when some 
part is changed. In Cataldo’s examination the number of logical 
couplings of a given module was most correlated with faults. 
Therefore, we expected the scale of estimated areas affected by 
any changes correlates with fault-proneness as well as the 
number of logical couplings, and we hypothesized as follows:  

Hypothesis 1: A metric that quantifies the scale of change 
impact can improve the performance of fault prediction in 
large software systems.  
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However, it is difficult to compute the exact affected areas 
of change impact. Static analysis [13] has a nature that it may 
derive excessive (false positive) areas. Besides, it requires 
enormous computation time to improve the accuracy. Dynamic 
analysis [14] can easily capture dynamically bound areas, but it 
has a nature that it may fail to capture affected areas which are 
seldom used. In reality, there are many cases for which 
dynamic analysis cannot be performed. A practical technique to 
find the affected areas has been proposed for the case where the 
change to a given module is already known [15]. However, 
since we need to know the area before the change is given, it is 
difficult to compute the areas while minimizing false positives.  

Fortunately, to meet our goal it is not necessary to solve the 
problem of computing the affected areas. It is enough to solve a 
more relaxed problem of calculating the total approximate 
quantity of the affected areas. We defined a propagation model 
in which change impact is propagated probabilistically and 
relation-sensitively, and we hypothesized as follows and called 
the quantity ImpactScale. 

Hypothesis 2: The propagation model with relation-
sensitive propagation has enough predictive performance 
to substitute for an accurate but expensive analysis. 

The remainder of the paper is organized as follows: we will 
define ImpactScale in section II. The change propagation 
model for ImpactScale will be also described. In section III, we 
will evaluate the improvement of the predictive performance 
by adding ImpactScale. In section IV, we will discuss about 
ImpactScale and its definition. The threats to validity of 
ImpactScale will be discussed in section V. We will talk about 
related works in section VI and will conclude in section VII. 

II. IMPACTSCALE 
In this section, we define a new metric, ImpactScale (abbr. 

as IS), and we describe the change propagation model for it. 

A. Dependency Graph and Propagation Graph 
In this paper, a dependency graph is a multi-relational 

directed graph, where the nodes are code entities (methods, 
functions, and so on) and data entities (database tables, global 
variables, and so on), and where the edges represent the 
relationships or dependencies between nodes. The edges are 
labeled with the relation type, such as call, data, import or 
inheritance dependency. In a dependency graph, multiple edges 
between any two nodes are allowed. Formally, the dependency 
graph GD is defined as GD = <V, E>, where V is a set of nodes 
and E is a set of edges. Edge e  E is defined as e = <s, t, rel>, 
where s  V is a source node, and t  V is a target node, and 
rel  Rel is a relation type. Rel is the set of all relation types. 
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Figure 1.   Example of dependency graph GD (left part) and propagation 

graph GP (right part) 

The left part of Figure 1 shows an example of a dependency 
graph. In the figure, there are three relation types, CALL, READ, 
and WRITE. When function A calls function B, it is said that 
“there is a CALL relationship from function A to function B.” 
Function A and B may share some status through arguments. 
Since it can be hardly determined whether two functions A and 
B were designed under the top-down-approach or the bottom-
up-approach, either change propagation from A to B or from B 
to A cannot be ruled out. In order to capture remote logical 
dependencies, we take a very conservative policy that change 
propagation in a dependency graph has bidirectional nature. 

A propagation graph consists of a dependency graph and 
the reversed edges of all of its edges. A propagation graph 
corresponding to GD=<V, E> is defined as GP = <V, EP>, 
where EP is defined as EP = E  {reverse(e) | e  E}. reverse(e) 
means the reversed edge <t, s, R_rel> of an edge e = <s, t, rel>. 
Relation type R_rel means the reversed relation type of rel. The 
quantity of change impact is calculated on a propagation graph. 
The right part of Figure 1 shows the propagation graph GP 
corresponding to the dependency graph GD in Figure 1. 

B. Probabilistic Propagation 
Haney [9] proposed an analysis model that a change in a 

module probabilistically propagates to another module, and 
there are some studies which assumed that changes propagate 
probabilistically [16][17]. In the propagation graph in Figure 2, 
it is assumed that the change impact from v0 to v1 is propagated 
with probability r1, when there is edge e1 from v0 to v1. The 
same goes for v1 and v2. It is also assumed that the change 
impact from v0 to v2 is propagated with probability r1r2.  

v0

Pr=r1 Pr=r2

v1 v2e1e1 e2e2
 

Figure 2.    Example of probabilistic propagation 

C. Relation-sensitive Propagation 
Since we took the aforementioned conservative propagation 

policy, there is a worry that the affected areas are 
overestimated. To prevent excessive estimation, we introduced 
some light-weight constraints to the propagation policy. In call 
graph analysis, context-sensitive analysis, which refers 
previous call and status histories, is often used to improve the 
accuracy of the analysis [13]. Since the analysis requires 
enormous computation time, we could not use it. However, we 
borrowed an idea from it to solve our problem. 

To prevent explosion of computation time, we used a 
minimal context, the relation type of the previous edge, which 
is practically collectable and requires minimal computation 
time. Concretely, whether propagation from one node to its 
next is cut or not is determined by the projection Cut. Cut is a 
projection whose domain is a pair of the relation type of the 
previous edge and the relation type of the next edge, and it is 
defined as Cut: Rel  Rel  {True, False}. For example, in the 
propagation graph in Figure 3, at node v, the relation type of 
the previous edge e1 is relprev1, and the relation type of the next 
edge e3 is relnext3. The projection Cut for the graph is given for 
in the bottom half of the figure. The change impact from edge 
e1 to edge e3 does not propagate, because Cut(relprev1, relnext3) is 



 

 

True. We call such propagation controlled by relation types 
relation-sensitive propagation. 
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Figure 3.   Example of relation-sensitive propagation 

D. Definition of ImpactScale 
In this subsection, we give the definition of ImpactScale. In 

the propagation graph GP=<V, EP>, path p from node s to node 
t is denoted as p = (e1, e2 ... en), where edge ei is each edge in 
path p in the order of pass. The source of e1 is s, and the target 
of en is t. The same node can be passed two or more times in a 
path. Strictly speaking, the path is a trail, in the terminology of 
graph theory. The propagation rate ri of each edge ei is given as 

)m( iPi eRr  , 
where RP is the base propagation rate and is hypothetically 0.5 
in this paper, and m(ei) is the propagation modifier attached to 
edge ei, and it is normally 1.01, though it can take any value in 
the range of (0, 1] or 1/RP. Qpath(p), the quantity of change 
impact via path p, is given as 
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Ps,t is  the set of all paths reachable from s to t. Ps,t is 
calculated by path finding in the propagation graph. When a 
search reaches a node in a path, projection Cut determines 
whether the search goes forward to the next node through the 
next edge or is terminated. The previous edge of the starting 
node is not defined, thus the propagation from it must occur. 
Q(s, t), the quantity of change impact from s to t, is given as 
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Calculating Q(s, t) is essentially equivalent to solving the 
shortest path problem. ImpactScale, the quantity of change 
impact from s, is denoted as IS(s), and it is given as 
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(V\s means a set of all elements of V except s). Finally, the 
quadruplet ImpactScale = <IS, RP, Rel, Cut> is the definition of 
ImpactScale. 

E. Cut Rules 
The set Rel and projection Cut can be configured arbitrarily. 

In this paper, Rel is given as Rel = {CALL, READ, WRITE, 
R_CALL, R_READ, R_WRITE}. CALL means a function call, READ 

                                                           
1 Values other than 1.0 are used to adjust propagation rates, e.g., among 

different abstraction levels of entities such as database tables and variables. 

means a read access, and WRITE means a write access (which 
also implies a read access). R_CALL, R_READ, and R_WRITE are 
the reversed relation types, respectively. Cut is given as 
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The condition part of the above notation of projection Cut is 
called cut rules. 

The above cut rules are heuristic. Their validity will be 
discussed in section IV. In this paragraph we explain their 
intent. The propagation from CALL to CALL is assumed to be 
under the top-down-approach design. The propagation from 
R_CALL to R_CALL is assumed to be under the bottom-up-
approach design. Rule 1 and Rule 2 cut propagations out of the 
both design. These rules are designed on the assumption that 
the propagation will rarely switch from one design approach to 
the other. Rule 3 is designed based on the analogy of dataflow 
analysis.  

F. Computational Complexity 
Most of the calculation of ImpactScale is occupied by path 

finding. Since a propagation graph for ImpactScale is a multi-
relational graph, ordinary graph algorithms cannot be applied. 
Whaley et al. [18] presented a technique for context-sensitive 
analysis. The technique duplicates nodes and reduces a 
complex path finding problem with context to a simple path 
finding problem without context. By using the technique, path 
finding for ImpactScale is also reduced to path finding of a 
simple-relational graph, and ordinary algorithms can be applied. 
When Dijkstra’s algorithm is applied to a propagation graph 
GP=<V, EP>, the computational complexity of the problem is 
O(R|EP| + R|V|(log(R|V|)), where R is the number of relation 
types. It can be calculated in practical time, even if the target 
software system is fairly large.  

G. Examples 
The left part of Figure 4 is an example of calculating 

ImpactScale of node C. Paths (CA), (CD), (CX), (CX, 
XF), (CX, XF, FE), and (CX, XF, FH) are 
found. Since rel(CA) is R_CALL and rel(AB) is CALL, path 
(CA, AB) is cut by Rule 2 at edge AB. Similarly, path 
(CX, XF, FH, HG) is cut by Rule 1 at edge HG. 
ImpactScale of C is the sum of Q(C,A), Q(C,D), Q(C,X), 
Q(C,F), Q(C,E) and Q(C,H); that is 4.0. 

The right part of Figure 4 is an example of calculating 
ImpactScale of node J. It has a peculiar pattern of relation-
sensitive propagation. Though path (JK, KL) is cut by 
Rule 1 at edge KL, path (JK, KY, YK, KL) is not 
cut. As a result, the change impact from node J propagates to 
node L. ImpactScale of J is the sum of Q(J,K), Q(J,Y) and 
Q(J,L); that is 1.625. Data node Y works as the medium 
between node J and node L. If node Y was missing, only path 
(JK) would be found, and ImpactScale of J would equal 1.0.  



 

 

CB

A

X

W
RITE

CA
LL

READ

D H

G

E

F

Q=1.0 Q=1.0

Q=1.0

Q=0.5

Q=0.25

Q=0.25

IS(C) = 1.0x3 + 0.5 + 0.25x2 IS(J) = 1.0 + 0.5 + 0.125

Rule2

Rule1

Y

Rule1J L

KQ=1.0

Q=0.5

Q=0.125

Q=0.25

W
R

ITE

CALL

R_CALL

CALL

R_C
ALL R

_W
R

ITE

CALL

CALLR_C
ALL

 
Figure 4.   Examples of calculating ImpactScale 

H. Use Cases 
ImpactScale is used in various situations. We have been 

using it in the following cases. 

 Quality improvement in the restricted budget and 
schedule. This topic is further discussed in this paper. 

 Rapid effort estimation of bug-fixing tasks. It is 
assumed that size of the change impact of the focused 
source code affects the man-hours of fixing tasks. 

 Rapid quality assessment of a whole software system 

 Watching code change activities to keep software 
modularity. A prominent increase of ImpactScale may 
be a symptom of modularity violations. 

III. EVALUATION 
To test Hypothesis 1, 2 and the significance of ImpactScale, 

the following research questions are our main concerns. 

RQ1: Does adding ImpactScale to existing product metrics 
improve predictive performance? 

RQ2: Does adding ImpactScale to existing product metrics 
and network measures improve predictive performance? 

Following subsections are organized as follows. 

 In subsection A-C, we describe the experimental setup. 

 For RQ1, we evaluate prediction performances using 
binary classification in subsection D and using fault-
density prediction and effort-aware models [22] in 
subsection E. 

 For RQ2, we evaluate using effort-aware models and 
hierarchical model analysis in subsection F. 

A. Target Software Systems 
For evaluation, we chose large enterprise accounting 

software systems from two different companies. The criteria of 
selecting them were that they are maintained for the long term, 
considerably large, and described in languages that can be 
easily analyzed. The intent of the last criterion is to minimize 
the influence of the quality of the source code analysis in this 
evaluation. The collected data sets of the two systems are 
called DS1 and DS2. The profiles of them are shown in Table I. 

Both systems are written in COBOL language. We collected 
fault reports of both systems from over 40 months. 

TABLE I.   PROFILES OF TARGET SOFTWARE SYSTEMS 

Data set Modules Total LOC Faults Faulty 
modules 

     DS1 5.8k 1.6M 269 215 
DS2 7.6k 3.7M 250 208 

One module is one “program” in COBOL language, which 
is a unit of the target of a call operation and corresponds to a 
function in other languages. One “program” is also one source 
code file. The collected metrics are described in Table II.  

TABLE II.   COLLECTED PRODUCT METRICS 

Metrics Description 
LOC Number of lines of code without comments and blank lines 

WMC Total sum of McCabe’s Cyclomatic Complexity of sections 
MaxVG Max value of McCabe’s Cyclomatic Complexity of sections 

Sections Number of sections (which corresponds to the number of 
blocks in a given module) 

Calls Number of calls 
Fan-in Number of modules which call a given module 
Fan-out Number of modules which are called by a given module 

IS ImpactScale 

B. Measuring ImpactScale 
The procedure of measuring ImpactScale is as follows. 

First, we extracted call operations (CALL) and read/write 
operations to databases and files (READ, WRITE) from the target 
software system by using static analysis. Then, we built a 
dependency graph. Next, for each node in the graph, we 
calculated ImpactScale. In this evaluation, m(e) is always 1.0. 
Total calculation time was at most several tens of seconds (the 
CPU used was a Core2Duo 2.5GHz). Figure 5 shows the 
distributions of the measured ImpactScale and its statistics. In 
the figure, most of modules have small ImpactScale and only 
small part of modules have large ImpactScale. In our 
experience, the distributions of ImpactScale of most systems 
have similar tendencies. Figure 6 shows an example of 
calculating ImpactScale of a module in DS1. 
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Figure 5.    Measured ImpactScale 

C. Cross Validation 
To evaluate predictive performance using the data sets, we 

performed 100 times random sub-sampling cross validations 
for each evaluation. For each validation, we randomly selected 
2/3 of all modules of the target data set as a training set, and the 
remaining 1/3 of modules were used as a test set.  



 

 

D. Binary Classification (RQ1) 
We evaluate how much the predictive performance is 

improved by adding ImpactScale to existing product metrics 
set using a binary classifier. 

1) Logistic regression 
As a classifier, we used logistic regression model. An 

expression of logistic regression model is represented as 
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where y is a response variable, and each xi is an explanatory 
variable, and each bi is a partial regression coefficient. The 
expression b1x1+b2x2+ … +b0 is called a linear predictor. To 
estimate the partial regression coefficients, the maximum 
likelihood estimation method is used. A response variable y 
(0<y<1) is interpreted as the probability of fault-proneness.  

2) Model selection 
To select the best prediction model, the set of the optimal 

explanatory variables should be selected for the training set of 
each validation. To build predicting models, we prepared 
metrics in Table II as the candidate set of explanatory variables. 
For each metric X, log(X) (or log(X+1), if the metric contains 
zero value) was also added into the set as the alternative 
candidate. That is, for each metric X, there were three choices, 
X, log(X), or without X. Log-transformation for skewed data is 
a standard technique. To select the best model, we used AIC 
(Akaike’s Information Criteria). If the likelihood of the model 
is higher, and if the number of parameters is fewer, AIC 
becomes less. Less AIC means the model is better. To select 
the best model without ImpactScale, 37 combinations were 
tried, and the model with the least AIC was taken. To select the 
best model with ImpactScale, 38 combinations were tried. To 

avoid multicollinearity, we rejected the models with a variable 
whose VIF (Variance Inflation Factor) is more than 10 [19].  

3) Training and testing 
For each validation, we selected and trained the best model, 

“MET”, using existing product metrics in Table II excluding 
ImpactScale, and we selected and trained the best model, 
“MET+IS”, using existing product metrics and ImpactScale. 
For training, if the number of faults is more than zero, it is 
regarded as a positive. Otherwise it is regarded as a negative. 

Then, we predicted all modules in the test set. For each 
module in the test set, if the response variable y is more than 
given cutoff value, the module is classified as a faulty module. 
Since both DS1 and DS2 had low fault rate (3.7% and 2.7%), 
we chose 0.1 for cutoff. 

4) Performance measures 
To evaluate predictive performance, for each validation, we 

computed precision, recall and F1 values using a confusion 
matrix shown in Table III. “FP” means the number of modules 
predicted as faulty but observed as not faulty, and vice versa. 
Recall is calculated as TP/(TP+FN). Recall close to 1.0 means 
most faults are detected. Precision is calculated as TP/(TP+FP). 
Precision close to 1.0 means few modules are mis-predicted as 
faulty. F1 is a summarizing measure of recall and precision and 
calculated as their harmonic mean, 2/(1/recall+1/precision). 

TABLE III.   CONFUSION MATRIX 

  Predicted 
  positive negative 

Observed positive TP FN 
negative FP TN 

 
Figure 6.   Example of calculating ImpactScale in the actual software 

Source Module 

The left image is the visualization of the whole 
system of DS1. Each rectangular-shaped group 
of modules represents a subsystem of the 
system.  
The process of calculating ImpactScale of the 
source module is drawn in the figure. The paths 
of change propagation are drawn as arrows (up 
to 3 steps), and the affected modules are 
drawn in yellow. The colors of modules become 
fainter in proportion to the steps from the 
source module. 
 
ImpactScale of the source module is 261.2. 
This value is considerably larger than the mean 
value (86.0) of the system. 
From the figure, it is found that calls, reads, 
and writes between different subsystems break 
the modularity of the system. Therefore, a wide 
area might be affected by a change of the 
source module, and it seems that the 
maintenance task of the module is difficult. 
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5) Results 
Table IV shows the averages of performance measures of 

the 100 times validations for both data sets. “Model MET” and 
“Model MET+IS” columns show the calculated measures for 
both models. “Imprv. by IS” column shows each improvement 
from MET to MET+IS. The results show adding ImpactScale 
improves the predictive performance statistically significantly 
for every performance measure in both DS1 and DS2. This 
evaluation supports RQ1 is YES.  

TABLE IV.   PERFORMANCE IMPROVEMENT IN BINARY CLASSIFICATION 

Data 
set 

Perf. 
measure 

Model MET Model MET+IS Imprv. 
by IS† mean (stddev) mean (stddev) 

DS1 
Precision 0.148 (0.029) 0.168 (0.031) +0.020 

Recall 0.315 (0.051) 0.392 (0.048) +0.077 
F1 0.200 (0.033) 0.234 (0.034) +0.034 

DS2 
Precision 0.139 (0.030) 0.162 (0.033) +0.023 

Recall 0.253 (0.042) 0.334 (0.057) +0.081 
F1 0.177 (0.029) 0.216 (0.034) +0.039 

†All improvements are significant (P<0.001) in Wilcoxon’s signed rank test. 

E. Effort-aware evaluation (RQ1) 
1) Effort-aware model and performance measures 

Recent studies pointed out that the effort of testing modules 
should be taken into consideration in predictive performance 
evaluations [20][21][22][23]. Modules classified as fault-prone 
tend to be large because of the correlation between faults and 
size [3]. Arisholm et al. reported the effort of testing a module 
is roughly proportional to the size of the module [20]. In 
practical maintenance tasks, budget and schedule are often very 
demanding. Therefore, cost-effectiveness of fault prediction 
had become important concerns for practitioners. 

To involve this discussion, we use the effort-aware model 
proposed by Mende et al [22]. In the effort-aware model, the 
relative risk Rdd(x) is used to prioritize modules to test or 
inspect.  Rdd(x) is defined as #errors(x) / E(x), where #errors(x) 
is the number of faults in module x and E(x) is the required 
effort for module x. We use LOC for E(x) as previous studies 
[22][23]. In this case, Rdd(x) means fault density. In the effort-
aware model, Rdd(x) (i.e., fault density) is predicted, and 
modules are tested or inspected in the descending order of fault 
density. To review predictive performance, effort-based 
cumulative lift chart is used as shown in Figure 7. In the figure, 
the solid curve represents the overall prediction outcome. The 
curve is called cost-effectiveness curve [20] or effort-vs-PD 
curve [21]. The X coordinate of the curve represents the 
relative cumulative effort, and the Y coordinate represents the 
fault detection rate at the spent effort. If the curve is steeper, 
the prediction is more effort-effective. If the curve is under the 
diagonal line, the prediction is almost random and meaningless. 
The dashed curve labeled as “Optimal Model” is the outcome 
of the perfect prediction and the upper limit of the performance. 

  Figure 7 also explains two performance measures used in 
this paper. “AUC” is the Area Under the effort-vs-PD Curve 
[21]. AUC represents the accumulated performance in all range. 
If AUC is close to 1 or its upper-limit, it means the predictive 
performance is high. If AUC is around 0.5 or less, the 
prediction is meaningless. “ddr” is the “defect detection rate” 
[22]. In this paper, “ddrx” means fault detection rate at the x% 

of effort. In maintenance, affordable effort is usually low. Thus, 
this measure directly answers to practitioners’ questions such 
as, “How many faults are detected in the review of the first 
10% of LOC?” High ddrx means high predictive performance. 
Though some previous studies used 20% as x, 20% is too big 
for large systems in our industrial experience. Therefore, we 
mainly use ddr10 rather than ddr20 in this paper. If ddr10 is less 
than 0.1, it means the benefit of the prediction is nothing. 
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Figure 7.   Example of effort-based cumulative lift chart, AUC and ddr 

2) Fault density prediction using Poisson regression 
To predict fault density, a predicting model which outputs a 

continuous value or count value is required. In this paper, we 
used Poisson regression model [24], which is a common model 
to predict the count of probabilistic events and has been used in 
the software fault prediction literature [5][25]. An expression 
of Poisson regression model is generally represented as 

y =exp( b1x1+b2x2+ … +b0 ). 

To estimate the partial regression coefficients, the 
maximum likelihood estimation method is used. A response 
variable y (0<y) is interpreted as the expectation of the number 
of faults. Since its response variable is count of events, the 
density of events can be straightforwardly derived. To predict 
density, an offset term “log(LOC)” with a fixed coefficient 1.0 
is added to the linear predictor as follows: 

y =exp( b1x1+b2x2+ … +b0+log(LOC)). 

Notwithstanding the existence of the offset term, “log(LOC)” 
can be still added to explanatory variables. 

3) Model Selection, training and testing 
We selected best models, trained and tested as subsection D 

except that the number of faults is directly for training. 

4) Results 
Table V and Figure 8 show the results of 100 times 

validations. In the figure, each red dashed curve shows the 
performance of the model without ImpactScale (DS1-MET / 
DS2-MET). Each blue solid curve shows the performance of 
the model with ImpactScale (DS1-MET+IS / DS2-MET+IS). 
White dots on the curves are measured points of ddr10 and ddr20 
shown in Table V. In both DS1 and DS2, MET+IS models 
outperform MET models in most range of the curves and all 
three measures in the table. Especially, the improvement of 
ddr10 is remarkable. The results mean that 1.5 times faults can 
be detected in the 10% of effort. This evaluation supports RQ1 
is YES. 



 

 

F. Comparison with network measures (RQ2) 
Zimmermann et al. introduced social network analysis 

(SNA) on a software dependency graph to predict faults [11]. 
They and several replication studies [26][27] showed the 
effectiveness of network measures. Since ImpactScale is also 
measured on a dependency graph, in order to confirm its 
meaningfulness, RQ2 must be assessed. 

RQ2: Does adding ImpactScale to existing product metrics 
and network measures improve predictive performance? 

1) Network measures in SNA 
Network measures are measures of various network 

topological characteristics. Zimmerman collected 58 network 
measures using UCINet tool [28] and predicted faults with 
them. To see the complete list of the measures and their 
explanation, refer to [11] and [29]. We also used UCINet as 
previous studies [11][26][27]. We collected network measures 
on the same dependency graph of DS1 on which ImpactScale 
was measured. Since the dependency graph of DS2 is too large 
for UCINet, we used only DS1 in this evaluation.  

2) Principal Component Regression 
We also use fault density prediction by Poisson regression 

and the effort-aware model. Explanatory variables are so many 
(over 60) that multicollinearity problem is inevitable. To cope 
with multicollinearity, we use principal component analysis 
(PCA) [30] as previous studies. PCA is an unsupervised 
algorithm to find principal components (PCs). Since all PCs are 
orthogonal, multicollinearity can be avoided in regression 
using PCs as explanatory variables. This combination is called 
principal component regression. 

3) Model selection, training and testing 
We set up four models as follows. 

MET a model consisted of existing product 
metrics 

MET+IS a model consisted of existing product 
metrics and ImpactScale 

MET+SNA a model consisted of existing product 
metrics and network measures 

MET+SNA+IS a model consisted of existing product 
metrics, network measures and ImpactScale 

For each validation, for each model, all of metrics and 
measures were log-transformed and then were transformed to 
PCs using PCA. Next, PCs up to 99% cumulative variance 
were used as explanatory variables in Poisson regression. The 
average numbers of used PCs were 6.0 (MET), 7.0 (MET+IS), 
27.8 (MET+SNA), and 28.8 (MET+SNA+IS). Testing 
procedure is the same with subsection E. 

4) Results 
To compare the models, we use hierarchical modeling. The 

results are shown in Figure 9.  Four circles represent the four 
predicting models with their performance measures, AUC and 
ddr10.  Each solid arrow means a simpler model is extended to a 
more complex model by adding a set of variables. For example, 
arrow (a) shows that adding ImpactScale to MET improves the 
predictive performance by 0.054 in AUC and by 0.074 in ddr10. 
It is consistent with the results of subsection D and E. Arrow 
(b) shows the effectiveness of network measures, and it 
supports previous SNA studies.  

TABLE V.   PERFORMANCE IMPROVEMENT IN FAULT DENSITY PREDICTION AND EFFORT-AWARE MODEL 

Perf. DS1-MET DS1-MET+IS Imprv.  Perf. DS2-MET DS2-MET+IS Imprv. 
measure mean (stddev) mean (stddev) by IS†  measure mean (stddev) mean (stddev) by IS† 

AUC 0.635 (0.027) 0.680 (0.027) +0.045  AUC 0.669 (0.025) 0.714 (0.025) +0.045 
ddr10 0.186 (0.042) 0.296 (0.051) 1.60  ddr10 0.225 (0.047) 0.343 (0.046) 1.53 
ddr20 0.325 (0.043) 0.470 (0.055) 1.45  ddr20 0.374 (0.053) 0.518 (0.051) 1.39 

The upper-limit of the AUC is 0.977.  The upper-limit of the AUC is 0.984. 
†All improvements are significant (P<0.001) in Wilcoxon’s signed rank test. 
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Figure 8.   Effort-based comparison between models without ImpactScale (MET) and with ImpactScale (MET+IS)  

(100 times average) 



 

 

To assess RQ2, we focus on arrow (d) and (e). Arrow (d) 
shows that adding ImpactScale to MET+SNA is significant. It 
means that ImpactScale contains distinct explanatory factor 
from network measures and that adding ImpactScale is always 
meaningful. Arrow (e) shows that ImpactScale has higher 
detection rate than network measures in the case effort is 
restricted. However, overall predictive performance is slightly 
lower. At any rate, it can be said the predictive performance 
delivered by solo ImpactScale is comparable to a set of 
network measures. These results support RQ2 is YES. Network 
measures will be discussed further in Related works section. 

MET
AUC: 0.619
ddr10: 0.192

MET+IS
AUC: 0.673
ddr10: 0.266

MET+SNA
AUC: 0.684
ddr10: 0.240

MET+SNA+IS
AUC: 0.698
ddr10: 0.279

(c) +SNA
+0.025
+0.013*

(b) +SNA
+0.065
+0.048

(e) −SNA+IS
−0.009
+0.026**

(a) +IS
+0.054
+0.074

(d) +IS
+0.014
+0.039

 
Figure 9.   Hierarchical model comparison between network measures and 

ImpactScale. All improvements and deterioration are significant in Wilcoxon’s 
signed rank test. (*: P<0.05, **: P<0.01, unmarked: P<0.001) 

IV. DISCUSSION 
In this section, we discuss whether ImpactScale surely 

contributes to fault prediction and whether the definition of 
ImpactScale in section II is valid. 

A. Contribution to Fault Prediction 
First, we tested the correlations between ImpactScale and 

other metrics. Table VI shows the Spearman rank correlations 
of all pairs of metrics in Table II in DS1. In the table, the 
correlations of ImpactScale are at most 0.38 and obviously low. 
The result in DS2 is similar. For network measures, the 
correlations between ImpactScale and them are at most 0.60 
and enough low to deliver the improvement shown in Figure 9. 
The results mean ImpactScale is independent of other metrics. 

TABLE VI.    SPEARMAN RANK CORRELATIONS BETWEEN METRICS 
(THE FIGURES OVER 0.5 ARE SHOWN IN BOLD LETTERS.) 

  WMC MaxVG Section Calls Fan-in Fan-out IS 
         LOC  0.90 0.71 0.80 0.69 -0.26 0.66 0.18 

WMC  - 0.88 0.59 0.51 -0.13 0.48 0.11 
MaxVG   - 0.35 0.34 -0.05 0.32 0.04 
Section    - 0.78 -0.33 0.79 0.31 
Calls     - -0.32 0.94 0.33 

Fan-in      - -0.32 0.17 
Fan-out       - 0.38 

Next, we predicted the fault density by Poisson regression 
with single metric. The results (100 times average) of the 
prediction are shown in Figure 10. For each metric except 
ImpactScale, its AUC is only slightly higher than 0.5, and its 
ddr10 is around 0.1; therefore, it has little predictive ability. In 
contrast, ImpactScale delivers obviously high predictive 
performance. Therefore, ImpactScale strongly contributes to 
the fault prediction in DS1. The same goes for DS2. 

Metrics AUC ddr10

LOC 0.591 0.137 
WMC 0.586 0.107 

MaxVG 0.578 0.073 
Sections 0.596 0.156 

Calls 0.579 0.173 
Fan-in 0.549 0.139 
Fan-out 0.580 0.162 

IS 0.654 0.242 0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

LOC

WMC

MaxVG

Sections

Calls

Fan-in

Fan-out

IS

 
Figure 10.    Results of fault density predictions with single metric 

On the basis of the results of RQ1, RQ2 and this subsection, 
we can say that Hypothesis 1 is valid in this paper.  

Hypothesis 1: A metric that quantifies the scale of change 
impact can improve the performance of fault prediction in 
large software systems. 

 

B. Validity of ImpactScale Definition 
In this subsection, we tested the validity of the definition of 

ImpactScale. We modified the definition of ImpactScale and 
examined how much the predictive performance of the model 
varies by using the ddr10. 
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Figure 11.    Effect of considering distant nodes 

First, we tested the meaningfulness of considering distant 
nodes on a propagation graph. We limited the maximum length 
of path for calculating ImpactScale. Figure 11 shows the effect 
of considering distant nodes by changing the definition of 
ImpactScale using the best model in subsection III.E including 
modified ImpactScale for DS1 and DS2. For each box plot, the 
horizontal axis shows each limit value of the maximum graph 
distance for path finding. When the limit is 1, ImpactScale is 
very similar to the sum of Fan-in and Fan-out. Therefore, if 
ddr10 at limit 1 were large enough, considering distant nodes 
would be meaningless. In the figure, the ddr10 curve of DS1 is 
increasing until limit 5, and the ddr10 curve of DS2 is 
increasing until limit 3. These results mean that the 
consideration is meaningful. Besides, the minimum distances to 
be considered are different depending on the software systems. 
Since distant enough nodes hardly influence the ddr10 of both 
DS1 and DS2, the limit distance has only to be an adequately 
large number. 
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Figure 12.    Effect of relation-sensitive propagation 

Next, we tested the meaningfulness of the relation-sensitive 
propagation. In each box plot in Figure 12, the model MET+IS 
is the best model with ImpactScale, which was selected in the 
manner in subsection III.E. The model MET is the best model 
without ImpactScale. The model NoCut is the best model with 
modified ImpactScale that does not cut any propagation3. On 
the basis of the comparison, the ddr10 of NoCut has very little 
improvement over the ddr10 of MET. Therefore, it can be said 
that the definition without the cut rules is meaningless. 
Conversely, it can be said that the cut rules make the 
correlation between ImpactScale and faults higher. The results 
examined by using ddr20 and AUC were similar to Figure 11 
and Figure 12. Consequently, we can say that Hypothesis 2 is 
valid in this paper.  

Hypothesis 2: The propagation model with relation-
sensitive propagation has enough predictive performance 
to substitute for an accurate but expensive analysis. 

V. THREATS TO VALIDITY 
In this section we discuss the threats to the validity of our 

proposal and results. ImpactScale has no language specific 
feature in its definition, but the target systems of our evaluation 
are written in COBOL. Since COBOL differs from other 
languages in paradigms and manners, some consideration 
should be made to expand the discussion in this paper to other 
languages. For example, we used a function (a program in 
COBOL) as a unit for predicting faults, but in other languages 
such a unit may usually be a class or a source file, which is a 
group of functions. The target systems are in the domain of 
accounting software. Further evaluations for systems in various 
domains of software should be performed. 

We used seven traditional metrics to evaluate our results. If 
target systems were written in object oriented (OO) languages, 
many existing OO metrics [31] should be considered. We still 
need to study further whether ImpactScale is even meaningful 
in addition to a rich set of metrics in such OO languages. 

The measurement of ImpactScale requires miscellaneous 
dependency information such as a call graph. If the accuracy of 
the information is low, the calculated ImpactScale may not 
correctly reflect the total quantity of the affected areas. Since 
ImpactScale is a summary statistic, it is expected not to be 
sensitive to the accuracy, but we have not estimated the 
influence of the accuracy yet. In this paper, to avoid the 
influence, we chose systems written in COBOL because 
dynamic bindings in such systems are usually small.  

                                                           
3 That is, for p,n  Rel, projection Cut(p,n) = False. 

VI. RELATED WORKS 
Some existing code metrics, such as Fan-in, Fan-out, 

LCOM and CBO [31], are used to measure the software 
structure consisting of code entities and their relations [2]. 
They consider only direct relations between adjacent nodes in a 
dependency graph, but our evaluation proved that indirect and 
distant nodes in the graph strongly affect faults. Therefore, we 
should take those nodes into consideration to predict faults. 

Process metrics regarding the amount of changes work well 
as explanatory variables in fault prediction [4][5][6]. It is 
interesting whether ImpactScale is independent of such process 
metrics. Cataldo et al. [10] reported that the amount of changes 
and logical coupling are independent of each other and both 
correlate with the faults. Since logical coupling and 
ImpactScale share common factors such as dependencies and 
change impact, we expect that ImpactScale is also independent 
of the amount of changes. 

Geiger et al. showed some relations between code clones 
and logical couplings [32]. Since code clones cannot be fully 
captured by call dependencies and data dependencies, some 
parts of logical couplings are not covered by ImpactScale. It is 
easy to add relations of code clones into a propagation graph 
for ImpactScale (e.g., add a new relation type CLONE), and the 
addition may improve predictive performance further. 

In recent studies, metrics traversing software dependency 
graphs are emerging. Inoue et al. proposed Component Rank 
[33] to find significant components by considering use depen-
dencies between software components by using a Markov 
Chain model. Hayase et al. proposed Maintenance Point [1] to 
estimate the maintenance effort using a dependency graph 
constructed by change impact analysis. Maintenance Point is 
calculated as the weighted sum of efforts of the affected 
modules. Several studies [16][17] have proposed change 
prediction models based on the assumption that change impact 
propagates probabilistically. Tsantalis’s model [17] predicts the 
change probability of a module using change history. Each 
change must be identified as propagated or originating change 
by human intervention, thus the model has scalability problem. 

Zimmermann et al. [11] regarded binary modules as actors 
and applied SNA to the dependency graph. They and 
replication studies [26][27] analyzed the target system with 
principal component regression by using over 50 network 
measures in SNA and existing product metrics. They showed 
that adding network measures to existing product metrics 
improved the predictive performance. The principal 
components composed of a lot of variables are very difficult to 
interpret by human analysts. In contrast, since ImpactScale is a 
designed and stand-alone metric correlated with faults, its 
interpretation is easy and intuitive. Besides, ImpactScale can 
capture data dependency handily by relation-sensitiveness.  

VII. CONCLUSION 
We defined a new product metric ImpactScale based on the 

hypothesis that the scale of change impact is the significant 
factor of faults in large software systems. The change 
propagation model for ImpactScale is characterized by 
probabilistic propagation and relation-sensitive propagation. 
ImpactScale can be calculated in practical time for fairly large 
systems, and its interpretation is intuitive. 



 

 

We predicted faults of two large enterprise software 
systems and evaluated the predictive performance using 
precision/recall/F1 measures and the effort-aware models. In 
all evaluations, the predicting models with ImpactScale more 
accurately predicted faults than did the models without 
ImpactScale. By adding ImpactScale to existing product 
metrics, the number of faults detected in the first 10% of the 
total LOC increased by 50% or more. We also compared 
ImpactScale with network measures. The predictive perform-
ance of ImpactScale was comparable with over 50 network 
measures, and adding ImpactScale enhanced the model with a 
set of network measures and existing product metrics. These 
results support the effectiveness of a new metric, ImpactScale. 

We have already applied ImpactScale to our customers’ 
enterprise systems to support quality assurance by using fault 
prediction. In one case, we performed extra review and 
inspection of modules in order of predicted fault density with 
the effort equivalent to 1/20 of annual man-hours in a system. 
In the result, eight faults were found, and system failures were 
prevented in advance (the system failed several times per year). 

For future work, we would like to prove the effectiveness of 
ImpactScale on other languages such as Java. When we 
designed ImpactScale, we intended that it would be a predictor 
for the effort and the decay of software structure. Thus, we 
would like to apply ImpactScale to estimate them. 
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