
A Pluggable Tool for Measuring Software Metrics from Source Code

Yoshiki Higo, Akira Saitoh, Goro Yamada, Tatsuya Miyake, Shinji Kusumoto, Katsuro Inoue
Graduate School of Information Science and Technology, Osaka University,

1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan
Email: {higo,a-saitoh,g-yamada,t-miyake,kusumoto,inoue}@ist.osaka-u.ac.jp

Abstract—This paper proposes a new mechanism to measure
a variety of source code metrics at low cost. The proposed
mechanism is very promising because it realizes to add new
metrics as necessary. Users do not need to use multiple mea-
surement tools for measuring multiple metrics. The proposed
mechanism has been implemented as an actual software tool
MASU. This paper shows how using MASU makes it easy and
less costly to develop plugins of the CK metrics suite.

Keywords-Software Metrics, Measurement

I. INTRODUCTION

Software metrics are measures for various reasons such
as evaluating software quality, and they are measured from
software produces such as source code [1]. At present,
there are a variety of software metrics. The lines of code
is the simplest and the most popular source code metric
that we use. The CK metrics suite [2], which indicates
features of object-oriented systems, is also widely used.
The cyclomatic complexity [3], which represents an internal
complexity of software modules, is a good indicator to
assume buggy modules. Software metrics are defined on
conceptual modules of software systems, that is, they can
be measured from any programming languages that have
the same conceptual modules.

However, it is extremely costly to obtain such conceptual
information from the source code because it requires deep
source code analyses. At present, there are many software
tools such as compiler-compilers for supporting source code
analysis. Unfortunately, their support is up to syntax analysis
like building abstract syntax trees. If we need more deep
information such as def-use relationship or call relationship,
we have to implement such semantic analyses by hand.

Most of available measurement tools handle only a single
programming language [4], [5], [6], [7], [8]. If we want to
measure source code metrics from multiple programming
languages, we have to prepare measurement tools for every
of them. However, every tool measures different predefined
source code metrics. Also, different tools calculate different
values for the same metrics because the details of the metrics
are differently interpreted by the tools [9]. In order to make
the situation better, it is desirable to realize an unified met-
rics measurement from multiple programming languages.
The proposed mechanism has the following features:

• it handles the source code of multiple programming
languages,

• it realizes an unified metrics measurement from the
languages,

• it takes plugins for new metrics, all users have to do
is writing the metrics measurement logics. They do not
have to implement semantic analysis that they need.

II. RELATED WORK

A. Source Code Analysis tools

Baroni et al. developed a language-independent engi-
neering platform, MOOSE [17]. MOOSE takes the source
code of software systems and outputs software metrics as
well as MASU. However, MOOSE does not directly analyze
the source code. It analyzes intermediate representations
such as CDIF and XMI, which are generated from the
input source code. That means MOOSE provides model-
based information to users. The model-based information is
suitable to visualization, however the amount of it is smaller
than the information directly-extracted from the source code.
Also, MOOSE depends on third party tools in generating
CDIF and XMI. Consequently, it does not have the same
extendability and changeability as MASU.

Collard proposed srcML, which contains the source code
information in XML format [18]. srcML handles C/C++ and
Java source code. srcML provides information extracted by
syntax analysis. Deep information extracted by semantic
analysis is not included in srcML. Consequently, it is less
suitable to software metrics measurement than MASU.

Antoniol et al. developed XOgastan, which is a multilin-
gual source code analysis tool based on GCC [19]. In prin-
ciple, XOgastan can handle all the programming languages
that GCC handles. However, the amount of information
provided by XOgastan is not enough to software metrics
measurement. It does not provide the information about
expressions used in every module. Also, their paper does
not express about artifices for making it easy to add new
analyzers for getting new information.

Fukuyasu et al. developed a CASE tool platform, Sapid
based on fine-grained software repository [20]. Chen et al.
developed a C program abstraction system [21]. These tools
analyze more detail information than MOOSE, srcML, and
XOgastan and provide the same kind of information as
MASU. They can be used as metrics measurement platforms.
The difference between MASU and these tools are follow-
ings:

• MASU provides an unified way to measure metrics from
multiple programming languages;

• logics of metrics measurements are separated from
the main module, which realizes ease of adding new
measurement logics.

It is necessary to analyze templates in order to obtaining
precious information from C/C++ source code. However,
analyzing templates is very complicated and only a small
number of analysis tools can analyze templates richly.
Gschwind et al. developed TUAnalyzer, which uses GCC for
realizing templates analysis [22]. We have a plan to extend
MASU for handing C/C++. Using GCC as a preprocessor for
analyzing templates is an option.

III. PRELIMINARIES

A. Software Metrics

Software metrics are measures used for a variety of
purposes such as evaluating software quality or predicting
development/maintenance cost [1]. The representative met-
rics should be the CK metrics suite [2] and the cyclomatic
complexity [3]. Most of software metrics are defined on the
conceptual modules of software systems such as file, class,
method, function and data flow. That means those metrics
can be measured from any programming languages if they
share the same conceptual modules.

Herein, we introduce every member of the CK metrics
suite and the cyclomatic complexity because they are used
in the latter of this paper.

• WMC (Weighted Methods per Class): This metric
is the sum of the complexities of the methods defined
in the target class. Up to now, several methods mea-
suring method complexity have been proposed, and the
cyclomatic complexity [3] and the Halstead complexity
measurement [10] are commonly used. Sometimes, this
metric is simply the number of methods defined in the
class.

• DIT (Depth of Inheritance Tree): This metric repre-
sents the depth of the target class in the class hierarchy.

• NOC (Number Of Children): This metric represents
the number of classes directly derived from the target
class.

• CBO (Coupling Between Object classes): This metric
represents the number of classes coupled with the target
class. In the definition of this metric, there is a coupling
between two classes if and only if a class uses methods
or fields of the other class.

• RFC (Response For a Class): This metric is the sum of
the number of local methods and the number of remote
methods. A local method is a method defined in the
target class, and a remote method is a method invoked
in local methods with the exception that local methods
invoked in local methods are not counted as remote
methods.

• LCOM (Lack of Cohesion in Methods): This metric
represents how much the target class lacks cohesion.
This metric is calculated as follows: takes each pair of
methods in the target class; if they access disjoint set
of instance variables, increases P by one; if they share
at least one variable access, increases Q by one.

LCOM =
{

P−Q (i f P > Q)
0 (otherwise)

• CYC (CYClomatic complexity): This metric indicates
the number of paths from the method enter to the
method exit. the larger the value is the more complex
it is.

There are many software metrics that do not have com-
plete definitions. For example, WMC, which is a member
of the CK metrics suite, represents the sum of weighted
methods count. However, how methods are weighted is not
defined in WMC. Such ambiguities in metrics definitions
unintentionally have impacts on metrics measurement.

Also, a present metric may not be the best for the specified
purposes. There are often happens that modified metrics
are proposed for the existing metrics or new metrics are
proposed for the same purposes. For example, a member
of CK metrics LCOM is known that it cannot indicate the
lack of cohesion appropriately in the specified situations.
At present there are multiple LCOMs that have different
definitions [11], [12].

B. Java bytecode Analysis Tools

• Soot is a Java bytecode optimization framework that
was developed as a project in McGill University [15].
Soot provides a variety of information extracted from
bytecode for optimization, which can be used for not
only optimization but also other kinds of analyses.

• WALA is a byte code analysis library developed by
IBM Research [16].

Bytecode analysis tools provides useful information ex-
tracted from actually-executed code. However, there is infor-
mation that can be extracted from only the source code, such
as the kind of conditional blocks. Bytecode is a executable
code that are generated from compilers, and not bytecode but
source code is the target of maintenance. Software metrics
are used for evaluating human-made products or predicting
maintenance cost that human has to do. Consequently, in
these contexts, bytecode analysis tools are not appropriate
to be used.

C. Metrics Measurement

Measuring source code metrics generally consists of the
following two steps:

• STEP1: analysis the source code to extract information
required for measuring the specified metrics,

• STEP2: measure the metrics by using the extracted
information.

As mentioned in Subsection III-A, software metrics can
be measured from multiple programming languages that
have the same conceptual modules. However, in STEP1 of
the metrics measurement, we have to prepare source code
analyzers for every of programming languages.

At present, there are many measurement tools [4], [5], [6],
[7], [8]. However, it it difficult to measure multiple metrics
from multiple programming languages in an unified way.
That is caused by the following reasons.

• Implementing a source code analyzer requires much
effort. However source code analyzers have to be
prepared for every programming language. Most of
existing measurement tools handle only a single pro-
gramming language.

• If we measure metrics from multiple programming
languages, we have to prepare measurement tools for
every of the languages. However, most of software met-
rics have ambiguous definitions, so that measurement
results are quite different from measurement tools [9].

• It is difficult to reuse source code analyzers of existing
measurement tools for measuring new metrics because
every software metric requires different information.

All the above problems are in the STEP1, that is, if we
improve STEP1, metrics measurement will be conducted at
lower cost.

D. Source Code Analysis

Source code analysis is a technique to automatically
extract required information from the source code. Extracted
information is used for measuring software metrics or other
activities for the evaluating software systems. However,
many software metrics require deep information in the
source code such as def-use relationship or call relationship.
At present, there are a variety of compiler-compilers such
as JavaCC [13] or ANTLR [14] to support implementing
source code analyzers. Unfortunately, their supports are up
to syntax analysis. If we need deeper information, we have
to implement semantic analyzers by hand, which requires
much efforts.

On the other hand, opportunities of source code analysis
are increased, so that source code analysis is of growing im-
portance in software development and maintenance. For ex-
ample, software companies began to investigate developing
and maintaining software systems with software engineering
methodologies for QA (Quality Assurance). As a part of QA,
source code analysis is performed for metrics mesurement
or other activities. However, activity of source code analysis
is far from satisfactory because of its high cost.

The high cost on source code analysis is caused by
difficulty of implementation of source code analyzer and
shortfall in human resources for implementing it. That
means, engineers who have to evaluate software systems
are suffered from not implementing algorithms of software

metrics measurement but implementing source code analyz-
ers used for extracting required information from the source
code.

IV. REQUIRED MEASUREMENT TOOLS

Herein, we describe functional requirements for measure-
ment tools and our policy for designing and implementing
the functionalities.

A. Functional Requirements

The followings should be functional requirements for
effective and efficient metrics measurements.

Multilingualization: A measurement tool should handle
multiple programming languages that are widely-used.

Unified Definition of a Metric: There should be an
unified definition for every metric. Such unified definitions
realize to measure metrics from multiple programming lan-
guages with the exactly same logics.

Pluggable Interface: Different metrics are used in differ-
ent organizations and different contexts, which means that
a measurement tool should have a pluggable interface for
measuring any kinds of software metrics.

B. Policies for Designing and Implementing a Measurement
Tool

To realize the functional requirements described in Sub-
section IV-A, the following policies should be appropriate
for designing and implementing a measurement tool.

Separation of Source Code Analyzer and Metrics
Measurement Module: This separation realizes to use a sin-
gle metric measurement module for multiple programming
languages, so that it is possible to use unified definitions of
software metrics for multiple languages.

Absorbing Differences between Languages: In the de-
velopment of a measurement tool, building source code
analyzer requires more cost than building metrics measure-
ment module. Consequently, in order to reduce the cost, a
framework for reusing modules in the source code analyzers
must be prepared. To realize this framework, we absorb
the differences between programing languages at the early
stage of source code analysis. After the absorption, common
analysis modules can be used for multiple languages.

One-on-one Correspondence between Measurement
Module and Metric: A measurement module should mea-
sure only a single metric. This design is suitable to
add/remove measurement modules into/from the measure-
ment tool. Adding/removing a measurement module does
not have any impact on other measurement modules.

V. MASU: METRICS ASSESSMENT PLUGIN PLATFORM
FOR SOFTWARE UNIT

Based on the policies described in Section IV-B, we are
developing a measurement tool MASU. Java language is
used for implementing MASU. Currently, MASU consists of

・・・・

Source Code

Analysis Unit

Metrics Values

API for Providing

Result of Analysis

API for Receiving

Metrics Values

Source

Code

Result of Metrics

Measurement

Main ModuleMain ModuleMain ModuleMain Module

End

Analysis

Execution

End

Plug-in

Execution

Metrics Values

Result of Analysis

Data Flow

Process Flow

Plug-in

Management Unit

Metrics

Collecting Unit

Plug-in1

Plug-in2

Plug-in3

Result of

Analysis

Figure 1. Architecture of MASU

519 source files and 102,000 LOCs (41,000 LOCs are auto-
matically generated code by ANTLR). MASU takes source
code of object-oriented programming language and bring
out metrics measurement result. Currently, MASU is under
construction, however it can handle Java full-grammar and
C# partial grammar. MASU is managed in SourceForge,
and it is freely downloadable from http://sourceforge.net/
projects/masu/.

Figure 1 shows the architecture of MASU. MASU consists
of a main module and plugins. Subsections V-A and V-B
describes the main module and plugins respectively.

A. Main Module

The main module is responsible for all the functionalities
of MASU except metrics measurement logics. It includes
three units, Source Code Analysis Unit, Plugin Manage-
ment Unit, and Metrics Collecting Unit.

The execution of MASU proceeds as follows:
1) Source Code Analysis Unit analyzes the source code

and builds language-independent data, which is cor-
respond to conceptual modules of programming lan-
guages.

2) Plugin Management Unit executes plugins that are
registered to the main module in advance. All the
plugins obtain information, which is required for met-
rics measurement, from the main module by using
APIs. After metrics measurement, the plugins send
the measurement results to the main module by using
APIs.

3) Metrics Collecting Unit collects metrics measurement
results and outputs them in the CSV format.

The remainder of this subsection focuses on Source Code
Analysis Unit because it includes technological implementa-
tions to absorb the differences between programming lan-
guages. Other two units are rather simple implementations.

Source Code Analysis Unit consists of AST Building Part
and AST Analysis Part. Firstly AST Building Part builds
language-independent ASTs from the input source code,
then AST Analysis Part extract data by analyzing the ASTs.

1) AST Building Part: In Source Code Analysis Unit,
firstly language-independent ASTs are built from the input
source code. Figure 2 shows an example of a language-
independent AST. In the left side of Figure 2, there are
three code portions of Java, VisualBasic, and C#. Every of
them has a different syntax from one other meanwhile their
semantics are the same. In the right side of Figure 2, there is
a language-independent AST from the three code portions.
In the AST, all the syntax differences between the code
portions are absorbed. Building language-independent ASTs
is quite suitable to reduce cost for developing source code
analyzer because it is only once that we have to implement
AST analyzers for semantic analysis. Note that AST builders
have to be prepared for every programming language.

Absorbing the differences between programming lan-
guages is realized by the following operations:

Definition of Common Nodes: MASU defines a common
AST nodes for preserved keywords that have the same se-
mantics. In Figure 2, the inheritance relationship is presented
by “extends”, “:”, and “inherits” in the three languages. In
AST, this relationship is presented by “INHERITANCE”
node.

Insertion of Definition Nodes: MASU inserts defini-
tion nodes that represent correspondences between its sub
nodes and source code elements. This technique can absorb
the different orders of program elements between different
programming languages. In Figure 2, the order of formal
parameter definition in VisualBasic is different from Java
and C#. In the language-independent AST, MASU inserts
“TYPE” and “NAME” nodes for absorbing the different
orders in the formal parameter defintion.

Moving and Deleting Nodes: MASU moves or deletes
some nodes for absorbing relationships between nodes such
as parent-child or sibling. For example, in Java language,
nodes representing namespaces have sibling relationships
with nodes representing class definitions. On the other
hand, in C# language, they have parent-child relationships.
In MASU, the relationship between namespace and class
definition is defined as a sibling relationship.

2) AST Analysis Part: This part analyzes ASTs built in
AST Building Part and constructs data that has language-
independent structures. Herein, a language-independent
structure is a conceptual element shared by multiple pro-
gramming languages. For example, file, class, method,
field, data flow, namespace, and type are typical language-
independent data structures.

AST Building PartAST Building PartAST Building PartAST Building Part

AST Analysis PartAST Analysis PartAST Analysis PartAST Analysis Part

Source Code

Analysis Unit
package space;

class SampleClass extends SuperClass{

public void sample(String arg) {

System.out.println(arg);

}

}
Java

namespace space {

class SampleClass : SuperClass {

public void sample(String arg){

Console.WriteLine(arg);

}

}

} C#

Namespace space

Class SampleClass Inherits SuperClass

Public Sub Sample(arg as String)

Console.WriteLine(arg)

End Sub

End Class

End Namespace VB

Source Source Source Source CCCCodeodeodeode

入力入力入力入力

01 NAMESPACE_DEFINITION

02 spacename

03 CLASS_DEFINITION

04 NAME

05 SampleClass

06 INHERITANCE

07 SuperClass

08 CLASSBLOCK_START

09 METHOD_DEFINITION

10 MODIFIERS

11 public

12 RETURN_TYPE

13 void

14 NAME

15 sample

16 PARAMETERS

17 PARAM_DEF

18 TYPE

19 String

20 NAME

21 arg

22 BLOCK_START

・

・

Language Independent AST

Language

Independent

AST

Figure 2. An Example of Building Language-Independent AST

Class Analyzer

Method Analyzer

Expression Analyzer

AST Building Part

Common Element

Analyzers

Special Element

Analyzers

Common Elements

Analyzer

・
・
・

Anonymous Inner Class

Analyzer

Java Special Element

Analyzer

・
・
・

Property Analyzer

C# Special Element

Analyzer

・
・
・

Constructing Data

Manager

cooperation

Figure 3. Mechanism of AST Analysis Part

Figure 3 shows a simple example of the mechanism of
AST Analysis Part. This part consists of multiple analyzers
and a constructing data manager. Every analyzer is pre-
pared for a single element in a programming language,
and analyzers extract information for constructing language-
independent data in cooperation with the constructing data
manager.

For example, the method analyzer analyzes only methods
in a software system. It cooperates with the expression
analyzer and the identifier analyzer to extract the detail
information within every method. The method analyzer
cooperates with the constructing data manager to getting its
owner class information.

Syntax differences between different programming lan-

SES2008

AOASIA3

AbstractPlugin

・・・・・・・・・・・・・・・・・・・・・・・・・・・・

(API for providing analyzed information)

AbstractClassMetricPlugin

・・・・・・・・・・・・・・・・・・・・・・・・・・・・

measureClassMetric Method

AbstractMethodMetricPlugin

・・・・・・・・・・・・・・・・・・・・・・・・・・・・

measureMethodMetric Method

MASU Main Module

Plugins Directory

CBOPlugin.jar CyclomaticPlugin.jar

MASU Plug-in Module

CBOPlugin
・・・・・・・・・・・・・・・・・・・・・・・・・・・・

measureClassMetric Method

（Implements measurement logic）

DeployDeployDeployDeploy

CyclomaticPlugin
・・・・・・・・・・・・・・・・・・・・・・・・・・・・

measureMethodMetric Method

（Implements measurement logic）

・・・・・

・・・・・

Figure 4. Class Hierarchy Related to Plugins

guages have already absorbed in AST Building Part, so that
a single analyzer can be used for multiple programming
languages. This architecture reduces the implementation
cost.

B. Plugin

Logics of metrics measurements are contained in not
the main module but plugins. Metrics measurements are
completely separated from source code analysis in MASU.
This separation realizes to add new metrics measurements
and remove unnecessary metrics measurements.

A plugin contains a logic of a single metric measurement.
Plugins obtain information required for measuring metrics
from APIs of the main module. Then, they calculate and
push the metrics values to the main module by using the
APIs.

Figure 4 shows the class hierarchy related to plugins.
MASU provides abstract classes having definitions of APIs
for data exchanges between the main module and plug-
ins. Plugins are implemented as subclasses of the abstract
classes. There are 4 abstract classes and each of them is
correspond to metrics measurement unit. The 4 units are
class, method, field, and file. If a user implements plugins
of the CK metrics suite, s/he uses AbstractClassMetricPlugin,
which is an abstract class for class because the definitions of
the CK metrics suite are on class. The logic of class metric
measurement is implemented in method measureClassMet-
ric.

Implemented plugins are archived as Jar files and placed
on directory “plugins”, then the main module automatically
identifies them and measures the metrics by using the
measurement logics defined in the plugins.

C. Security

Data in the main module is shared by multiple plugins.
This means, if a plugin intentionally or unintentionally
changes the data wrongly, other plugins may not measure
metrics correctly. In order to avoid this problem, in MASU,
every plugin is executed by a different thread. MASU has
a security manager that controls accessibilities to the main
module from plugins on thread level. This security manager
can prevent the above problem from occurring.

VI. EVALUATION

A. Performance

In order to evaluate the performance of MASU, we actually
analyzed source code with MASU. In this evaluation we used
a personal workstation with the following equipment.

• CPU: PentiumIV 3.00 GHz
• Memory: 2.00 GBytes
• OS: Windows XP

In this evaluation, we analyzed two systems.
Java Platform Standard Edition 6: This is a Java

software system. The number of file is 3,852 and the lines of
code is about 1,200,000. The analysis time was 392 seconds,
and the maximum memory usage was 838 MBytes.

CSgL: This is a C# software system. The number of file is
61, and the lines of code is about 30,000. The size of CSgL
is much smaller than the Java software. However, CSgL is
enough to check that language-independent AST generated
from C# correctly works. The analysis time was 59 seconds
and the maximum memory usage was 51 MBytes.

The performance evaluation showed that MASU can be
applied to large-scale software systems with a personal
workstation.

B. Plugin Development

In order to show the ease of plugin development with
MASU, we developed all the members of the CK metrics
suite and the cyclomatic complexity. Table I shows the size

of developed plugins and their development time. All the
plugins are developed by a single developer. He is a master’s
student and a member of MASU development team. At the
time of the experiment, his programming experience was
about 2.5 years. He was familiar with APIs provided by
MASU because he is a development member of MASU.
The column “total LOC” means the total lines of code
of the developed plugins. The numbers inside parentheses
are ones including brank lines and comments. The column
“logic LOC” shows the lines of the method implementing
the metrics measurement logics.

Figure 5 shows the entire source code of the RFC plu-
gin. By using MASU, the measurement logic of RFC was
implemented with only several lines. We do not have to
implement any source code analyzer at all. Also, there are
several methods that have to be implemented in plugins. The
annotation @Override shows the methods. However, every
of them has only a single instruction, which is very easy to
implement.

VII. CONCLUSION

This paper presents a metrics measurement platform,
MASU. MASU has the following features for realizing met-
rics measurements at lower costs:

• MASU handles multiple programming languages,
• MASU has an unified way to measure metrics from

them,
• we only have to write logics of metrics that we want

to measure.
At present, MASU is tenable for practical usage, indeed it

is used in a variety of research related to source code analysis
and metrics measurement. At present, MASU handles Java
and C# source code and we are going to extend it for
handling other languages such as C/C++, Visual Basic. Not
only source code but also other kinds of products are target
of MASU extensions. For example, it is interesting to use
execution histories as a input of MASU for realizing metrics
measurement based on dynamic data.

ACKNOWLEDGMENT

This work is being conducted as a part of Stage Project,
the Development of Next Generation IT Infrastructure, sup-

Table I
SIZE OF PLUGINS FOR CK METRICS SUITE AND THE CYCLOMATIC

COMPLEXITY

Metrics total LOC logic LOC time
WMC 31 (74) 2 10
DIT 35 (81) 8 20
NOC 36 (73) 1 10
CBO 61 (121) 29 20
RFC 56 (117) 7 15

LCOM 114 (221) 48 40
CYC 52 (115) 21 25

public class RFCPlugin extends AbstractClassMetricPlugin {

@Override

protected Number measureClassMetric(TargetClassInfo targetClass) {

final Set<CallableUnitInfo> rfcMethods = new HashSet<CallableUnitInfo>();

final Set<MethodInfo> localMethods = targetClass.getDefinedMethods();

rfcMethods.addAll(localMethods);

for (final MethodInfo m : localMethods){

rfcMethods.addAll(MethodCallInfo.getCallees(m.getCalls()));

}

return new Integer(rfcMethods.size());

}

// A single line description of this plugin

@Override

protected String getDescription() {

return "Measuring the RFC metric.";

}

// A detail description of this plugin

@Override

protected String getDetailDescription() {

return DETAIL_DESCRIPTION;

}

// return the metric name measured by this plugin

@Override

protected String getMetricName() {

return "RFC";

}

@Override

protected boolean useMethodInfo() {

return true;

}

@Override

protected boolean useMethodLocalInfo() {

return true;

}

private final static String DETAIL_DESCRIPTION;

static {

StringWriter buffer = new StringWriter();

PrintWriter writer = new PrintWriter(buffer);

writer.println("This plugin measures the RFC (Response for a Class) metric.");

writer.println();

writer.println("RFC = number of local methods in a class");

writer.println(" + number of remote methods called by local methods");

writer.println();

writer.println("A given remote method is counted by once.");

writer.println();

writer.flush();

DETAIL_DESCRIPTION = buffer.toString();

}

}

Implementation of RFC metric measurement logic

Overriding APIs for cooperating with the main module

Figure 5. Entire Source Code of RFC Plugin

ported by Ministry of Education, Culture, Sports, Science
and Technology. It has been performed under Grant-in-Aid
for Scientific Research (A) (21240002) and Grant-in-Aid for
Exploratory Research (23650014) supported by the Japan
Society for the Promotion of Science.

REFERENCES

[1] P. Oman and S. L. Pleeger, Applying Software Metrics. IEEE
Computer Society Press, 1997.

[2] S. Chidamber and C. Kemerer, “A Metric Suite for Object-
Oriented Design,” IEEE Transactions on Software Engineer-
ing, vol. 25, no. 5, pp. 476–493, June 1994.

[3] T. McCabe, “A Complexity Measure,” IEEE Transactions on
Software Engineering, vol. 2, no. 4, pp. 308–320, Dec. 1976.

[4] I. inc., “CodePro AnalytiX,” http://www.instantiations.com.

[5] C. consulting inc., “JDepend,” http://www.clarkware.com.

[6] V. Machinery, “JHawk,” http://virtualmachinery.com.

[7] A. Cain, “JMetric,” http://www.it.swin.edu.au/projects/
jmetric/products/jmetric/default.htm.

[8] Aqris, “RefactorIT,” http://www.aqris.com.

[9] R. Lincke, J. Lundberg, and W. Lowe, “Comparing Software
Metrics Tools,” in Proc. of International Symposium on
Software Testing and Analysis, July. 2008, pp. 131–141.

[10] M. H. Halstead, Elements of Software Science. Elsevier
Science Inc., 1977.

[11] B. Henderson-Sellors, Object-Oriented Metrics: measures of
Complexity. Prentice Hall, 1996.

[12] M. Hitz and B. Montazeri, “Measuring Coupling and Cohe-
sion in Ojbect-Oriented Systems,” in Proc. of International
Symposium on Applied Corporate Computing, Oct. 1995, pp.
78–84.

[13] “JavaCC,” http://javacc.dev.java.net/.

[14] “ANTLR,” http://www.antlr.org/.

[15] S. R. Group, “Soot: a Java optimization Framework,” http:
//www.sable.mcgill.ca/soot/.

[16] I. T. W. R. Center, “WALA,” http://wala.sourceforge.net/wiki/
index.php/Main page.

[17] A. L. Baroni and F. B. Abreu, “An OCL-based formalization
of the MOOSE Metric Suite,” in Proc. of 7th ECOOP
Workshop on Quantitative Approaches in Object-Oriented
Software Engineering, 2003.

[18] M. L. Collard, J. I. Maletic, and A. Marcus, “Supporting
Document and Data Views of Source Code,” in Proc. of ACM
Symposium on Document Engineering, 2003, pp. 34–41.

[19] G. Antoniol, M. D. Penta, G. Masone, and U. Villano,
“XOgastan: XML-Oriented GCC AST Analysis and Trans-
formations,” in Proc. of 3rd IEEE International Workshop on
Source Code Analysis and Manipulation, 2003, pp. 173–182.

[20] N. Fukuyasu, S. Yamamoto, and K. Agusa, “An OCL-based
formalization of the MOOSE Metric Suite,” in Proc. of
International Workshop on Principles of Software Evolution,
2003, pp. 43–47.

[21] Y. F. Chen, M. Y. Nishimoto, and C. V. Ramaoorthy, “The
C Information Abstraction System,” IEEE Transactions on
Software Engineering, vol. 16, no. 3, pp. 325–334, Mar. 1990.

[22] T. Gschwind, M. Pinzger, and H. Gall, “TUAnalyzer –
Analyzing Templates in C++ Code,” in Proc. of 11th Working
Conference on Reverse Engineering, 2004, pp. 48–57.

APPENDIX
We show all the source code of CK metrics plugins for

presenting their simplicities. Figures 6, 7, 8, 9, and 10 show
all the CK metrics plugins except RFC bacause it is already
shown in Figure 5.

public class DITPlugin extends AbstractClassMetricPlugin {

@Override

protected Number measureClassMetric(TargetClassInfo targetClass) {

ClassInfo classInfo = targetClass;

for (int depth = 1;; depth++) {

final List<ClassTypeInfo> superClasses = classInfo.getSuperClasses();

if (0 == superClasses.size()) {

return depth;

}

classInfo = superClasses.get(0).getReferencedClass();

}

}

@Override

protected String getDescription() {

return "Measuring the DIT metric.";

}

@Override

protected String getMetricName() {

return "DIT";

}

@Override

protected boolean useFieldInfo() {

return false;

}

@Override

protected boolean useMethodInfo() {

return false;

}

}

Implementation of DIT metric measurement logic

Overriding APIs for cooperating with the main module

Figure 6. Entire Source Code of DIT Plugin

public class WmcPlugin extends AbstractClassMetricPlugin {

private final static String DETAIL_DESCRIPTION;

@Override

protected Number measureClassMetric(final TargetClassInfo targetClass) {

int wmc = 0;

for (final MethodInfo m : targetClass.getDefinedMethods()) {

wmc += this.measureMethodWeight(m).intValue();

}

return new Integer(wmc);

}

protected Number measureMethodWeight(final MethodInfo method) {

int weight = this.measureCyclomatic(method);

return weight;

}

private int measureCyclomatic(final LocalSpaceInfo block) {

int cyclomatic = 1;

for (final StatementInfo statement : block.getStatements()) {

if (statement instanceof BlockInfo) {

cyclomatic += this.measureCyclomatic((BlockInfo) statement);

if (!(statement instanceof ConditionalBlockInfo)) {

cyclomatic--;

}

}

}

return cyclomatic;

}

@Override

protected String getDescription() {

return "Measuring the WMC metric.";

}

@Override

protected String getDetailDescription() {

return DETAIL_DESCRIPTION;

}

@Override

protected String getMetricName() {

return "WMC";

}

@Override

protected boolean useMethodInfo() {

return true;

}

@Override

protected boolean useMethodLocalInfo() {

return true;

}

static {

StringWriter buffer = new StringWriter();

PrintWriter writer = new PrintWriter(buffer);

writer.println("This plugin measures the WFC (Response for a Class) metric.");

writer.flush();

DETAIL_DESCRIPTION = buffer.toString();

}

}

Implementation of WMC metric measurement logic

Overriding APIs for cooperating with the main module

Figure 7. Entire Source Code of WMC Plugin

public class NocPlugin extends AbstractClassMetricPlugin {

private final static String DETAIL_DESCRIPTION;

@Override

protected Number measureClassMetric(TargetClassInfo targetClass) {

return targetClass.getSubClasses().size();

}

@Override

protected String getMetricName() {

return "NOC";

}

@Override

protected String getDescription() {

return "measuring NOC metric.";

}

@Override

protected String getDetailDescription() {

return DETAIL_DESCRIPTION;

}

@Override

protected boolean useMethodInfo() {

return true;

}

@Override

protected boolean useMethodLocalInfo() {

return true;

}

static {

StringWriter buffer = new StringWriter();

PrintWriter writer = new PrintWriter(buffer);

writer.println("This plugin measures the NOC metric.");

writer.println();

writer.println("NOC = number of children(subclasses) in a class");

writer.println();

writer.flush();

DETAIL_DESCRIPTION = buffer.toString();

}

}

Implementation of NOC metric measurement logic

Overriding APIs for cooperating with the main module

Figure 8. Entire Source Code of NOC Plugin

public class CBOPlugin extends AbstractClassMetricPlugin {

@Override

protected Number measureClassMetric(TargetClassInfo targetClass) {

SortedSet<ClassInfo> classes = new TreeSet<ClassInfo>();

for (final FieldInfo field : targetClass.getDefinedFields()) {

final TypeInfo type = field.getType();

classes.addAll(this.getCohesiveClasses(type));

}

for (final MethodInfo method : targetClass.getDefinedMethods()) {

{

final TypeInfo returnType = method.getReturnType();

classes.addAll(this.getCohesiveClasses(returnType));

}

for (final ParameterInfo parameter : method.getParameters()) {

final TypeInfo parameterType = parameter.getType();

classes.addAll(this.getCohesiveClasses(parameterType));

}

for (final VariableInfo<? extends UnitInfo> variable : LocalVariableInfo

.getLocalVariables(method.getDefinedVariables())) {

final TypeInfo variableType = variable.getType();

classes.addAll(this.getCohesiveClasses(variableType));

}

}

classes.remove(targetClass);

return classes.size();

}

private SortedSet<ClassInfo> getCohesiveClasses(final TypeInfo type) {

final SortedSet<ClassInfo> cohesiveClasses = new TreeSet<ClassInfo>();

if (type instanceof ClassTypeInfo) {

final ClassTypeInfo classType = (ClassTypeInfo) type;

cohesiveClasses.add(classType.getReferencedClass());

for (final TypeInfo typeArgument : classType.getTypeArguments()) {

cohesiveClasses.addAll(this.getCohesiveClasses(typeArgument));

}

}

return Collections.unmodifiableSortedSet(cohesiveClasses);

}

@Override

protected String getDescription() {

return "Measuring the CBO metric.";

}

@Override

protected String getMetricName() {

return "CBO";

}

@Override

protected boolean useFieldInfo() {

return true;

}

@Override

protected boolean useMethodInfo() {

return true;

}

Implementation of CBO metric measurement logic

Overriding APIs for cooperating with the main module

Figure 9. Entire Source Code of CBO Plugin

public class Lcom1Plugin extends AbstractClassMetricPlugin {

final List<MethodInfo> methods = new ArrayList<MethodInfo>(100);

final Set<FieldInfo> instanceFields = new HashSet<FieldInfo>();

final Set<FieldInfo> usedFields = new HashSet<FieldInfo>();

protected void clearReusedObjects() {

methods.clear();

instanceFields.clear();

usedFields.clear();

}

@Override

protected void teardownExecute() {

clearReusedObjects();

}

@Override

protected Number measureClassMetric(TargetClassInfo targetClass) {

clearReusedObjects();

int p = 0;

int q = 0;

methods.addAll(targetClass.getDefinedMethods());

instanceFields.addAll(targetClass.getDefinedFields());

for (Iterator<FieldInfo> it = instanceFields.iterator(); it.hasNext();) {

if (it.next().isStaticMember()) {

it.remove();

}

}

final int methodCount = methods.size();

boolean allMethodsDontUseAnyField = true;

for (int i = 0; i < methodCount; i++) {

final MethodInfo firstMethod = methods.get(i);

for (final FieldUsageInfo assignment :

FieldUsageInfo.getFieldUsages(VariableUsageInfo

.getAssignments(firstMethod.getVariableUsages()))) {

this.usedFields.add(assignment.getUsedVariable());

}

for (final FieldUsageInfo reference :

FieldUsageInfo.getFieldUsages(VariableUsageInfo

.getReferencees(firstMethod.getVariableUsages()))) {

this.usedFields.add(reference.getUsedVariable());

}

usedFields.retainAll(instanceFields);

if (allMethodsDontUseAnyField) {

allMethodsDontUseAnyField = usedFields.isEmpty();

}

for (int j = i + 1; j < methodCount; j++) {

final MethodInfo secondMethod = methods.get(j);

boolean isSharing = false;

for (final FieldUsageInfo secondUsedField : FieldUsageInfo

.getFieldUsages(VariableUsageInfo.getReferencees(secondMethod

.getVariableUsages()))) {

if (usedFields.contains(secondUsedField.getUsedVariable())) {

isSharing = true;

break;

}

}

if (!isSharing) {

for (final FieldUsageInfo secondUsedField : FieldUsageInfo

.getFieldUsages(VariableUsageInfo.getAssignments(secondMethod

.getVariableUsages()))) {

if (usedFields.contains(secondUsedField.getUsedVariable())) {

isSharing = true;

break;

}

}

}

if (isSharing) {

q++;

} else {

p++;

}

}

usedFields.clear();

}

if (p <= q || allMethodsDontUseAnyField) {

return Integer.valueOf(0);

} else {

return Integer.valueOf(p - q);

}

}

@Override

protected String getDescription() {

return "Measuring the LCOM1 metric(CK-metrics's LCOM).";

}

@Override

protected String getDetailDescription() {

return DETAIL_DESCRIPTION;

}

@Override

protected String getMetricName() {

return "LCOM1";

}

@Override

protected boolean useFieldInfo() {

return true;

}

@Override

protected boolean useMethodInfo() {

return true;

}

private final static String DETAIL_DESCRIPTION;

static {

final String lineSeparator = System.getProperty("line.separator");

final StringBuilder builder = new StringBuilder();

builder.append("This plugin measures the LCOM1 metric(CK-metrics's LCOM).");

builder.append(lineSeparator);

builder

.append("The LCOM1 is one of the class cohesion metrics measured by

following steps:");

builder.append(lineSeparator);

builder.append("1. P is a set of pairs of methods which do not share any field.");

builder.append("If all methods do not use any field, P is a null set.");

builder.append(lineSeparator);

builder.append("2. Q is a set of pairs of methods which share some fields.");

builder.append(lineSeparator);

builder.append("3. If |P| > |Q|, the result is measured as |P| - |Q|, otherwise

0.");

builder.append(lineSeparator);

DETAIL_DESCRIPTION = builder.toString();

}

}

Implementation of LCOM1 metric measurement logic

Overriding APIs for cooperating with the main module

Figure 10. Entire Source Code of LCOM1 Plugin

