
212

ModiChecker: Accessibility Excessiveness

Analysis Tool for Java Program

Dotri Quoc　Kazuo Kobori　Norihiro Yoshida　

Yoshiki Higo　Katsuro Inoue

In object-oriented programs, access modifiers are used to control the accessibility of fields and methods

from other objects. Choosing appropriate access modifiers is one of the key factors for easily maintainable

programming. In this paper, we propose a novel analysis method named Accessibility Excessiveness (AE)

for each field and method in Java program, which is discrepancy between the access modifier declaration

and its real usage. We have developed an AE analyzer - ModiChecker which analyzes each field or method

of the input Java programs, and reports the excessiveness. We have applied ModiChecker to various Java

programs, including several OSS, and have found that this tool is very useful to detect fields and methods

with the excessive access modifiers.

1 Introduction

To realize good encapsulation in Java programs,

we have to choose appropriate access modifiers of

methods and fields in a class, which may be possibly

accessed by other objects. However, inexperienced

developers tend to set all of the access modifiers

public or none as default indiscriminately.

For example, Figure 1 is a case of bad access

modifier setting. Suppose that we have 2 meth-

ods: Method A and Method B in class X. Method

A keeps an initialization process for Method B. It

means Method A must be called before Method B

is called. Otherwise, Method B can not work prop-

erly. In this case, Method B should be always called

via Method A, and the access modifier of Method

B should be set private. However, a novice devel-

oper might set that access modifier public without

ModiChecker :Java プログラムのアクセス修飾子過剰性
分析ツール.

Dotri Quoc, 小堀一雄, 肥後芳樹, 井上克郎, 大阪大学大学
院情報科学研究科コンピュータサイエンス専攻, Dept. of

Computer Science, Graduate School of Information

Science and Technology, Osaka University.

吉田則裕, 奈良先端科学技術大学院大学情報科学研究
科, Graduate School of Information Science, Nara

Institute of Science and Technology.

コンピュータソフトウェア,Vol.29,No.3 (2012),pp.212–218.

[研究論文 (レター)] 2011 年 10 月 20 日受付.

thinking seriously. In a meanwhile, other developer

would want to use Method B and he/she can di-

rectly call it since the access modifier of Method B

allows direct access to it. This may cause a fault

due to lack of the initialization process performed

by Method A.

In this example, the access modifier of Method B

is public, but the current program accesses Method

B from private method (Method A only in this

case) and the access modifier of Method B should

be private. Such discrepancy between the declared

accessibility and actual usage of each method and

field is called Accessibility Excessiveness(AE) here.

Existence of AE would be a bad smell of pro-

gram, and it would indicate various issues on the

designs and developments of program as follows.

(1) Immature Design and Programming Issue:

An AE would cause unwilling access to a method or

Fig. 1 Inappropriate Access Modifier 　
Declaration

Vol. 29 No. 3 Aug. 2012 213

field which should not be accessed by other objects

in a latter development or maintenance phases as

shown in the example. This is an issue of design

and development processes from the view point of

encapsulation [1]. This problem shows the immatu-

rity and carelessness of the designer and developer.

(2) Maintenance Issue: Sometimes developer in-

tentionally set field or method excessive for future

use or for the purpose of being called from out-

siders. It is not easy to distinguish whether AE is

intentionally set by developer or it is a case of Issue

1, so that the maintenance of such program is not

straightforward and complicated.

(3) Security Vulnerability Issue: A program with

AE has potential vulnerability of its security in

the sense that an attacker may access an AE field

and/or method against the intention of the pro-

gram designer and developer [2].

In this paper, we discuss on an AE analysis

method mostly focusing on its application to Is-

sue 1 and 2, and Issue 3 will be a further research

topic.

We propose an AE analysis tool named

ModiChecker, which takes a Java program as input,

then analyzes and reports the excessiveness of each

access modifier declared for each method and field.

ModiChecker is based on static program analysis

framework MASU [6][7][8], which allows a flexible

composition of various analysis tools very easily.

Using ModiChecker, we have analyzed sev-

eral open source software(OSS) such as Ant and

jEdit. Also, MASU itself has been analyzed by

ModiChecker. The analysis results show that some

OSS contain many AE methods and fields, which

should be set to more restrictive access modifiers.

There are some previous works related to ours.

Tai Cohen studied the distribution of the number of

each Java access modifier in some sample methods

[3]. Security vulnerability analysis has been studied

using static analysis approaches [4]. Among these

researches, an issue of access modifier declaration

has been discussed by Viega et al. [2], where a pro-

totype system Jslint has been presented without

any detailed explanation of its internal algorithm

and architecture. Also, Jslint only gives warning for

the fields/methods which are undeclared private,

while our tool supports all kinds of access modifier

declarations based on analyzing actual usage.

In the following, we will define AE in Section 2.

Table 1 Accessibility Excessiveness Map

Section 3 describes ModiChecker and MASU. In

Section 4, we will show our experimental results.

Section 5 will conclude our discussions with a few

future works.

2 Accessibility Excessiveness Map

Table 1 is called Accessibility Excessiveness Map

(AE map), which lists all the cases where an AE

happens. The vertical column shows the declara-

tion of an access modifier for a method or field in

the source code. The horizontal row shows its ac-

tual usage from other objects. Each element in AE

map is an AE Identifier (AE id) which identifies

each AE case. For example, if a method has public

as the declaration of the access modifier, and it is

accessed only by the objects of same class, the AE

id is “pub3” meaning it could be set to private.

Note that “default” means the case that there is

no explicit declaration of the access modifier and it

is the same as package.

An AE id “ok-xxx” means that there is no dis-

crepancy between the declaration and actual usage,

and it is an ideal way of quality programming. An

AE id “x” means that these cases are detected as

error at the compilation time and they are out of

the scope of the AE analysis. An AE id in shaded

cells means that the declaration is excessive one

from the actual usage of the access modifier.

Purpose of the AE analysis is to identify an AE

id for each method and field in the input source

code. Also, we are interested in the statistic mea-

sures of AE ids for the input program, which would

be important clues of program quality.

3 AE Analysis Tool ModiChecker

3. 1 Approach to AE Analysis

To perform the AE analysis, we need to know the

declaration of the access modifiers of each method

and field of the input program. This is easily done

by parsing the program. Also, we have to investi-

gate into the actual usage of each method and field.

214 コンピュータソフトウェア

For this work, we employ a static source-code anal-

ysis, which identifies other classes that may pos-

sibly access the target method or field. For these

purposes, we have used a Java program analysis

framework MASU [6][7][8].

MASU has been originally designed to implement

pluggable multi-purpose metrics infrastructure, but

it is very useful as a Java program analysis frame-

work. MASU transforms the input Java program

into an Abstract Syntax Tree (AST), and then it

analyzes AST for actual usage of the methods and

fields in the input.

ModiChecker is a system with 521 source files and

102,250 LOC in Java, developed based on MASU

framework [8]. MASU framework itself accounts for

519 source files and 102,000 LOC in Java (41,000

LOC are automatically generated code by ANTLR

[9]).

3. 2 Overview of ModiChecker

Architecture

Figure 2 shows the architecture of ModiChecker.

Firstly, ModiChecker reads source program and all

of the required library files (normally, the library

files are often in .jar files) in Java. The source code

is transformed to an AST associated with various

static code analysis results.

After analyzing source, we get the access mod-

ifier declaration and also usage of each field and

method. From the AST database, we can easily

know which class may access that method/field.

By comparing the declaration of the access mod-

ifier and real usage of the field and method,

ModiChecker reports AE for each field and method.

ModiChecker treats some special cases as follow:

• ModiChecker does not give any report for

methods of abstract classes or interfaces be-

cause they are overridden by the method of

other classes. One more reason is that an ab-

stract class or interface does not generate any

object so that its methods will never be called

and those access modifiers do not affect main-

tenance processes.

• In the case of a method overriding another

method, the overriding method in a subclass

must have an access modifier with an equal

or more permissive level to the access modi-

fier of the overridden method. ModiChecker

detects such an overriding method and reports

Fig. 2 Architecture of ModiChecker

Fig. 3 Access Modifier of Overriding Method

an AE id between the access modifier of the

overridden method and its actual usage. For

example, in Figure 3, assume that we have

two classes Class A and Class B with Method

A.C and Method B.C of access modifier public

for both. Method B.C overrides Method A.C

so ModiChecker does not report private for

Method B.C even if Method B.C is actually

used inside Class B only. In dynamic bind-

ing cases, if a class accesses a method of a su-

perclass, ModiChecker will consider that class

also accesses the method of all subclasses of

the superclass. By this way, dynamic binding

cases should not bring about any bad effect to

ModiChecker analysis result.

4 Experiments and Discussions

4. 1 Overview

We have conducted case studies with some open-

source code projects to evaluate the AE analysis.

In the evaluation, we have focused on the following

points.

• The total number of each AE id is measured

to evaluate how program is well designed.

• Based on the above result, we have closely

Vol. 29 No. 3 Aug. 2012 215

Table 2 Size and Running Time of Target

Table 3 Number of Detected AE ids for

Fields in MASU

Table 4 Number of Detected AE ids for

Methods in MASU

investigated the reasons of setting the access

modifiers excessively. Sometime an access

modifier would be intentionally set excessively

by the developers for the future purpose, or

sometime they would be set excessively by au-

tomatic code generator.

The target software products are 3 Java pro-

grams: MASU, Ant 1.8.2, jEdit 4.4.1.

We did these experiments on a PC workstation

with the specification of OS : Windows 7 Enter-

prise 64bit, CPU : Intel Xeon 5160(3.00 GHZ, 2

processors), Memory: 8.0 GB.

Table 2 shows the size and running time of each

experiment.

4. 2 Experiment Result

4. 2. 1 MASU

By analyzing MASU, we got the number of de-

tected AE ids as shown in Table 3 and Table 4.

We have found 280 fields with the excessive access

modifiers. Out of these 280 fields, 255 fields were

identified as automatically generated code by our

hand-analysis. We have interviewed the developer

of MASU and asked the reason of the excessiveness

of other fields. 20 fields have been found that they

Table 5 Number of Detected AE ids for

Fields in Ant

Table 6 Number of Detected AE ids for

Methods in Ant

are intentionally set excessively for future uses. Fi-

nally, 5 fields have been identified actually exces-

sive and those access modifiers have been changed

to proper ones.

We have also found 253 methods with the exces-

sive access modifier. And by our hand-analysis, 6

methods were found to be automatically generated

code. Out of those 253 methods, 181 methods are

intentionally set excessively for future uses. Finally,

66 methods have been identified actually excessive

and those access modifiers have been changed to

proper ones.

4. 2. 2 Ant 1.8.2

We have investigated into the newest version of

Ant 1.8.2 and got the number of detected AE ids for

fields and methods as shown in Table 5 and Table

6.

We have found 611 fields and 1520 methods

with the excessive access modifiers. By our hand-

analysis, we were unable to find any field with

excessive access modifier generated by some auto-

matic code generator.

Looking at the ratio of excessive access modi-

fier, the ratio of excessive fields is 18.9%(shown

in the shaded cells in Table 5) while ratio of ex-

cessive methods is 35.5%(shown in shaded cells in

Table 6). Since a standard design strategy might

be to make all fields private and to provide public

getter/setter methods for them, methods has more

probability to be set excessively for future use than

fields. That would be the reason why the ratio of

excessive methods is higher than ratio of excessive

fields.

216 コンピュータソフトウェア

Table 7 Number of Detected AE ids for

Fields in jEdit

Table 8 Number of Detected AE ids for

Methods in jEdit

4. 2. 3 jEdit 4.4.1

The result of detected AE ids for fields and meth-

ods for jEdit 4.4.1 is shown in Table 7 and Table

8.

For jEdit, we have found 604 fields and 981 meth-

ods with the excessive access modifiers. We were

unable to find any field or method with excessive

access modifier generated by some automatic code

generator by our hand-analysis.

For jEdit 4.4.1, the ratio of excessive fields is

24.5%(shown in the shaded cells in Table 7) while

the ratio of excessive methods is 30.4%(shown in

the shaded cells in Table 8). Like the case of Ant

1.8.2 shown above, the ratio of excessive fields is

lower than the ratio of excessive methods.

4. 3 Discussions

To validate the analysis result of ModiChecker,

we have changed all the excessive access modifiers

of above three programs to suggested access modi-

fiers. All the modified programs have been com-

piled and executed without any error. This in-

dicates that the output report of ModiChecker is

proper one in the sense that the reported excessive

access modifiers can be changed to more restrictive

access modifiers without causing any error.

As mentioned before, our tool gives the developer

the AE analysis result for each field/method in the

current target program, but it still can not make

sure that some of them were intentionally set ex-

cessive for future use. Only designer and developer

can identify that those fields/methods are really ex-

cessive or not. Thus, we need a tool by which a

developer can select each access modifier found as

excessive and to be changed to more restrictive one

by her/his decision.

By using AE analysis, we could propose quality

metrics in the following ways.

• We set a value called AE index for each AE id

and sum up each AE index as metrics value.

• We set a value for each method and field based

on the number of other classes accessing those

fields and methods. Those values for each

method/field are accumulated as this metrics

value.

These metrics would indicate bad smell of pro-

gram such as immaturity of design and implemen-

tation, low maintainability, security vulnerability,

and so on. We need further experiments for the

validation of effectiveness of such metrics.

The idea of using access modifier metrics would

be related to our previous work [5]. In that paper,

the number of each Java access modifier is used as

one of the metrics for checking the similarity be-

tween Java source codes.

To recognize intentional AE fields/methods for

future use without interviewing developers is not

easy. As a simple estimation method, we propose

the following approach which can figure out some

part of the excessive fields/methods for future use,

using test files associated with the target program.

The first step is checking the source files with-

out test files and we get the result of ModiChecker

for the target program itself. Then we add the

test files and check them together without count-

ing the fields/methods in test files. The excessive

fields/methods found in the first step but not in the

second step could be the fields/methods for future

use, since they were actually accessed by the ob-

jects of test files. The test designer anticipated that

those fields/methods should be access from outside

the program in the future.

In this experiment we have not counted for

the fields/methods which are not accessed by

any objects (we would like to call them no ac-

cess fields/methods). The reason of no access

fields/methods might be developers’ carelessness

and intentional future use. Investigating into no

access fields/methods would be an interesting fu-

ture research topic.

Vol. 29 No. 3 Aug. 2012 217

5 Conclusions

In this paper, we have proposed an analysis

method named AE for each field and method in

Java program, which is discrepancy between an ac-

cess modifier declaration and the real usage of the

field and method. We have also introduced AE Map

which lists all of the cases where an AE happens.

We have developed a tool named ModiChecker,

which finds excessive method/field and reports AE

id of each excessive method/field. We have also

used ModiChecker to analyzed several OSS such as

MASU, Ant, jEdit, and found that our system is

quite useful to detect fields and methods with the

excessive access modifiers.

Since there is no other tool to analyze access

modifiers as discussed here, we think ModiChecker

will be an important tool to support quality pro-

gramming in Java.

Currently we are analyzing other Java programs

including industrial systems, and are trying to iden-

tify the relation between the AE analysis results

and other program quality indicators such as bug

frequency.

Acknowledgements This work is supported

by JSPS, Grant-in-Aid for Scientific Research (A)

(No. 21240002) and Grant-in-Aid for Exploratory

Research (No. 23650015). This is also supported

by MEXT Stage Project, the Development of Next

Generation IT Infrastructure.

References

[1] Booch, G., Maksimchuk, R.A., Engel, M.W.,

Young, B.J., Conallen, J. and Houston, K.A.:

Object-Oriented Analysis and Design with Applica-

tions, Addision Wesly, 2007.

[2] Viega, J., McGraw, G., Mutdosch, T. and Fel-

ten, E.: Statically Scanning Java Code: Finding

Security Vulnerabilities, IEEE software, Vol. 17 No.

5(2000) pp. 68–74.

[3] Cohen, T.: Self-Calibration of Metrics of Java

Methods towards the Discovery of the Common Pro-

gramming Practice, The Senate of the Technion,

Israel Institute of Technology, Kislev 5762, Haifa,

2001.

[4] Evans, D. and Larochells, D.: Improving Secu-

rity Using Extensible Lightweight Static Analysis,

IEEE software, Vol. 19, No. 1(2002), pp. 42–51.

[5] Kobori, K., Yamamoto, T., Matsushita, M. and

Inoue, K.: Java Program Similarity Measurement

Method Using Token Structure and Execution Con-

trol Structure, Transactions of IEICE, Vol. J90-D

No. 4 (2007), pp. 1158–1160.

[6] Higo, Y., Saito, A., Yamada, G., Miyake, T.,

Kusumoto, S. and Inoue, K.: A Pluggable Tool

for Measuring Software Metrics from Source Code,

in The Joint Conference of the 21th International

Workshop on Software Measurement and the 6th

International Conference on Software Process and

Product Measurement, 2011 (to appear).

[7] Saito, A., Yamada, G., Miyake, T., Higo, Y.,

Kusumoto, S. and Inoue, K.: Development of Plug-

in Platform for Metrics Measurement, in Interna-

tional Symposium on Empirical Software Engineer-

ing and Measurement, Poster Presentation, Lake

Buena Vista, 2009.

[8] MASU, http://sourceforge.net/projects/masu/

[9] ANTLR, http://antlr.org

[10] Ant, http://ant.apache.org

[11] jEdit, http://jedit.org

Dotri Quoc

2005年ベトナムの郵政電信工芸学院

(Institute of Posts and Telecommu-

nications Technology)に入学，2007

年同大学中退．2008年大阪大学基礎

工学部情報科学科入学，2012年卒業．現在楽天 (株)

に所属．日本ソフトウェア科学会会員．

小 堀 一 雄

1979 年生．2005 年大阪大学大学院

情報科学研究科修士課程修了．同年

(株)NTTデータ入社．ソフトウェア

テストやソフトウェアプロセスの研

究に従事．2010年大阪大学大学院情報科学研究科博

士課程入学．

吉 田 則 裕

2004年九州工業大学情報工学部知能

情報工学科卒業．2009年大阪大学大

学院情報科学研究科博士後期課程修

了．2010年奈良先端科学技術大学院

大学情報科学研究科助教．博士 (情報科学)．コード

クローン分析手法やリファクタリング支援手法に関す

る研究に従事．ソフトウェア科学会，情報処理学会，

218 コンピュータソフトウェア

電子情報通信学会，人工知能学会，IEEE，ACM 各

会員．

肥 後 芳 樹

2002年大阪大学基礎工学部情報科学

科中退．2006年同大学大学院博士後

期課程修了．2007年同大学大学院情

報科学研究科コンピュータサイエン

ス専攻助教．博士 (情報科学)．ソースコード分析，特

にコードクローン分析やリファクタリング支援に関す

る研究に従事．日本ソフトウェア科学会，情報処理学

会，電子情報通信学会，IEEE各会員．

井 上 克 郎

1984年大阪大学大学院基礎工学研究

科博士後期課程修了 (工学博士)．同

年，大阪大学基礎工学部情報工学科

助手．1984～1986年，ハワイ大学マ

ノア校コンピュータサイエンス学科助教授．1991年大

阪大学基礎工学部助教授．1995年同学部教授．2002

年大阪大学大学院情報科学研究科教授．2011年 8月

より同研究科研究科長．ソフトウェア工学，特にコー

ドクローンやコード検索などのプログラム分析や再

利用技術の研究に従事．

