
Experience of Finding Inconsistently-Changed Bugs
in Code Clones of Mobile Software

Katsuro Inoue†, Yoshiki Higo†, Norihiro Yoshida†, Eunjong Choi†, Shinji Kusumoto†,
Kyonghwan Kim‡, Wonjin Park‡, and Eunha Lee‡
†Osaka University ‡Samsung Electronics Co.

Osaka, Japan Suwon, South Korea
{inoue, higo, n-yosida, ejchoi, kusumoto}@ist.osaka-u.ac.jp
{kyonghwan73.kim, wj23.park, leeeunha}@samsung.com

Abstract—When we reuse a code fragment, some of the
identifiers in the fragment might be systematically changed to
others. Failing these changes would become a potential bug in
the copied fragment. We have developed a tool CloneInspector
to detect such inconsistent changes in the code clones, and
applied it to two mobile software systems. Using this tool, we
were effectively able to find latent bugs in those systems.

Keywords-Inconsistent Change, Unchanged Ratio, Bug Can-
didate

I. INTRODUCTION

Software systems for mobile phone (mobile software) are
becoming huge and complex, and debugging and maintain-
ing them are getting difficult and expensive.

A mobile software system needs to adapt its features to
various country/area constraints, and so many code clones
are generated and embedded in the system. Code clones
might introduce their unique bugs.

Consider a type-2 code clone pair X = aibic and
Y = ajbic, where a, b, c, i, and j are tokens, and i and
j are specifically identifiers. Y was copied from X , and all
occurrences of identifier i in X must be changed to j in Y .
However, the second occurrence of i is not changed to j and
it might cause a failure. We call such an unintentional and
inconsistent identifier change an inconsistently-changed bug.
Inconsistently-changed bug is one of the potential risks for
complex software systems such as recent mobile software.

Krinke has analyzed consistency of code clone changes
over revisions of OSS, and found inconsistent change cases
without later consistent changes [3]. Li et al. have de-
veloped a tool named CP-Miner to detect inconsistently-
changed bugs using the clone detection technique based
on the frequent subsequence mining [4]. It seems that CP-
Miner would provide basic features for our requirements,
but we had to customize the tool to fit to the development
environment of Samsung.

We had already developed a prototype tool to de-
tect inconsistently-changed bugs using code clone detector
CCFinder and its post processor [1], [2], [5]. However, this
prototype tool was unable to handle a large size input, and
it did not have industry-required strength.

We have restructured and modified various parts of the
prototype tool, and have built a tool named CloneInspector.

In this paper, we will show an overview of CloneInspector,
and present our experience of applying CloneInspector to
Samsung’s large mobile software.

II. CLONEINSPECTOR

Figure 1 shows the process of CloneInspector.

1) First, code clones in the input source files are detected
by code clone detector CCFinder [2]. The positions of
code clones are generated.

2) Using the positions, code fragments for the detected
code clones are tokenized. At the same time, the
occurrences of identifiers are examined.

3) For each clone pair (S, T), mapping of every identifier
is checked. If there is an identifier m with multiple
occurrences in S, and m is mapped to more than one
identifiers such as n and o, then we say that clone pair
(S, T) is inconsistently changed (either n or o may be
the same as m.). Only inconsistently changed clones
are extracted as the initial bug candidates here.

4) Unchanged Ratio for an identifier m in S is the ratio
of the m’s occurrences in T over all m’s occurrences
in S. For example, if S has three m’s occurrences and
they are mapped to two n’s occurrences and one m’s
occurrence in T , then the unchanged ratio for m in S
is 0.33. An unchanged ratio takes a value between 0
to 1, and a smaller value close to zero means that a
small number of the original identifier’s occurrences
remain unchanged. This would suggest the existence
of possible bugs. In this step, the unchanged ratios
for all identifiers in inconsistently changed clones are
computed.

5) The identifiers with unchanged ratios larger than the
criterion are removed from the initial bug candidates.
Also, the identifiers which are mapped to more than
two different identifiers are removed since we would
consider that those are intentionally mapped to many
different identifiers including the original one. The

978-1-4673-1795-5/12/$31.00 c© 2012 IEEE IWSC 2012, Zurich, Switzerland94

1) Clone
Detection

by CCFinder

2) Lexical
Analysis

3) Mapping
Analysis

4)Unchanged
Ratio

Computing

5) Unchanged

Ratio
Filtering

Input: Source Files Output:
Bug Candidates

Clone Inspector

Clone
Position

Tokenized
Clone Pairs

Inconsistently
Changed Clones

Unchanged
Ratios

Figure 1. Process of CloneInspector

Table I
TARGET MOBILE SOFTWARE SYSTEMS AND APPLICATION RESULTS

System A System B
Feature Communication Application
Language C C
Size (LOC) 4,275,952 136,554
Clone Set 38,192 4,053
Reported Bug 63 5
Validated Bug 25 1
Exec. Time (CCFinder) 300sec 40sec
Exec. Time (Others) 143sec 4sec

remaining identifiers are reported as the (final) bug
candidates.

CloneInspector has been implemented mostly in Java
(except for CCFinder), and it can handle C, C++, and Java
as its input languages. We have validated it’s scalability with
about 10M LOC input files.

III. APPLICATIONS

We have applied CloneInspector to two mobile software
systems of Samsung. The various characteristics of those
systems and the execution results are shown in Table I.

The execution environment of these applications was
2.67GHz Intel Core i5 CPU with 4.0GB main memory.
The minimum token length of CCFinder was 50, and the
maximum unchanged ratio criterion was 0.3.

In the case of System A, about 4M LOC target program
has been inspected, and 63 bug candidates were reported.
Among these candidates, 25 have been identified as true
bugs by our manual inspection.

In the case of System B, we have found 1 true bug from
5 reported candidates.

All of these bugs were not known bugs. Therefore, those
bugs were reported to the development section, and they
have been fixed in the newer versions.

The overall performance of CloneInspector is very fine,
because it quickly reports small number of bug candidates.
The execution times are several minutes even for fairly large
systems.

We have examined the output bug candidates with un-
changed ratio 0.4. By this setting, CloneInspector reported
193 bug candidates for System A and 7 for System B, which

are more than the cases of 0.3. However, all of increased
candidates were identified as intentional inconsistencies (not
bugs). This would suggest that an upper bound of the
practical unchanged ration would be less than 0.4. We will
explore other settings to find the best unchanged ratio.

IV. CONCLUSION

In this paper, we have shown our experience of devel-
oping CloneInspector and applying it to Samsung’s mobile
software. The result is very fine, and we are currently using
it and will continue to use it in practice.

Current CloneInspector cannot find bugs with the mapping
to more than two different identifiers. We will analyze such
cases and find a way to detect such bugs.

Now we have a plan to extend CloneInspector to generate
more less false positive bug candidates, by introducing
various cases of intentional inconsistency. Also, we will add
new Web-based GUI to share the output report with many
developers.

ACKNOWLEDGEMENT

This work has been fully supported by Samsung Elec-
tronics Co. We are grateful to many colleagues, including
Yasuhiro Hayase and Yong Lee Yii, who have contributed
to the development of CloneInspector.

REFERENCES

[1] Y. Hayase, Y. Yii, K. Inoue: “A Criterion for Filtering Code
Clone Related Bugs”, Proceedings of International Workshop
on Defects in Large Software Systems (DEFECTS 2008),
Seattle, WA, pp.37-38, July 2008.

[2] T. Kamiya, S. Kusumoto, K. Inoue, “CCFinder: A Multilin-
guistic Token-Based Code Clone Detection System for Large
Scale Source Code”, IEEE Trans. on Software Engineering,
Vol. 28, No. 7, pp. 654-670, July 2002.

[3] J. Krinke, “A Study of Consistent and Inconsistent Changes to
Code Clones”, 14th WCRE, pp. 170-178, Vancouver, Canada,
October 2007.

[4] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding
Copy-Paste and Related Bugs in Large-Scale Software Code”,
IEEE Trans. Software Engineering, 32(3), pp. 176-192, March
2006.

[5] Y. Yii, Y. Hayase, M. Matsushita, and K. Inoue, “Token
Comparison Approach to Detect Code Clone-Related Bugs”,
Technical Paper of IEICE, SS2007-57 75, Vol.107, No.505,
pp.37-42, March 2008.

95

