
Method Differentiator Using Slice-based Cohesion Metrics

Akira Goto1, Norihiro Yoshida2, Masakazu Ioka1, Eunjong Choi1, Katsuro Inoue1

1Graduate School of Information Science and Technology, Osaka University, Japan
{a-gotoh, m-ioka, ejchoi, inoue}@ist.osaka-u.ac.jp

2Graduate School of Information Science, Nara Institute of Science and Technology, Japan
yoshida@is.naist.jp

ABSTRACT
It is important to understand semantic differences between
a pair of Java methods during maintenance. However, tex-
tual or syntactic difference is insufficient to give clear idea
which code fragment realizes a single functionality in Java
methods. In this paper, we present an Eclipse plugin for
semantic differentiation of a given pair of Java methods.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Experimentation

Keywords
Cohesion metrics, Program slicing

1. INTRODUCTION
Developers often need to understand semantic differences

between a pair of Java methods during software maintenance
(e.g., enhancement, form template method refactoring[3]).
However, textual or syntactic difference is insufficient to give
clear idea which code fragment realizes a single functionality
in Java methods.
Therefore, we have developed an Eclipse plugin for se-

matic differentiation of a given pair of Java methods. This
plugin firstly identifies syntactic differences a given pair of
Java methods, and then finds cohesive code fragments in-
cluding at least one syntactic difference. Finally, this plugin
proposes (highlights) two sets of cohesive code fragments as
sematic differences between a given pair of Java methods.
The cohesiveness of code fragments is calculated by slice-
based cohesion metrics [4, 2] (i.e., Tightness, Coverage, and
Overlap) which represent the functional uniqueness of a code
fragment or method.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’13 Companion, March 24-29, 2013, Fukuoka, Japan.
Copyright 2013 ACM 978-1-4503-1873-0/13/03 ...$15.00.

In our tool demonstration, our plugin visualizes semantic
differences between a pair of methods involved in an open
source software (see Figure 5 and 6).

2. PROPOSED TOOL
Figure 1 shows an overview of the proposed tool. The

proposed tool accepts a pair of given Java methods as input,
and then identifies sets of Semantic Differences (SDs). Given
two Java methods(ma,mb), code fragments CFs extracted
from them are called a set of SDs when CFs satisfy all of
the following three conditions:

1. Any SD in CFs does not overlap any other SD in the
code fragments.

2. Any SD in CFs involves at least one syntactic differ-
ence between ma and mb.

3. After all SDs in CFs are removed, ma and mb are
syntactically same.

After the SD identification, identified sets of SDs are ranked
based on slice-based cohesion metrics. Highly-ranked set of
SDs means that each SD realizes a single functionality. Once
a user selected one of sets of SDs, SDs in the selected set are
highlighted (see Figure 5 and 6).

2.1 Detecting Syntactic Differences
First of all, the proposed tool extracts abstract syntax

trees (ASTs) from a pair of given Java methods. The AST
extraction is performed by Eclipse JDT1.

Then, syntactic differences are detected by comparing two
ASTs. Figure 2 shows an example of a syntactic difference.
A node in an AST has a type (e.g., IFStatement, Number-
Literal). In the case of several types, a node has a value
(e.g., variable, constant, literal). The detection starts from
root nodes of the ASTs. The comparison of two nodes is
performed according to their types. Only if those nodes
have values, their values are compared after that. In the
case that those two nodes are matched, the detection moves
to the child nodes of them. Otherwise, they are detected
as the difference. Please note that the minimum level of a
difference is a statement in the detection.

2.2 Identifying Semantic Differences
To identify SDs from given two Java methods, code re-

gions detected as syntactic differences are expanded. This
expansion has two types. The first one is expansion towards

1http://www.eclipse.org/jdt/index.php

11

INPUT : A pair of similar methods

M
1

M
2

OUTPUT : Ranking of semantic differences (SD)

SD
I

SD
II

SD
m

…

Proposed Tool

Detecting syntactic differences

Detecting semantic differences

Computing Cohesion Metrics

Figure 1: Overview of the proposed tool

Subtree corresponding to syntactic differenceDifferent node

Assignment

a b=

Block

Assignment

b c=

Assignment

a b=

Block

Assignment

b d=

Figure 2: An example of a syntactic difference

sibling nodes (ETS). The other one is expansion towards
parent nodes (ETP). The expansion starts from a node rec-
ognized as a difference, and then apply ETS to the code
region of the node. After ETS is applied to all of siblings of
the node, ETP is applied to the siblings. After each expan-
sion, each code region is identified as a SD. The expansion
is ended when it moves to a root node of each AST.
Figure 3 represents examples of ETS and ETP. In this

figure, this expantion starts from a = b corresponding to
the syntactic difference, and then the perform ETS. Finally,
ETP is perfromed for moving to the if statement.
Given two Java methods often has one more than syntactic

differences. In this case, this expantion is applied to each
of the differences, and then all of resultant sets of SDs are
combined.

2.3 Sorting by Slice-based Cohesion Metrics
Identified sets of SDs are ranked according to the cohesive-

ness of each SD. Cohesiveness of each SD is calculated based
on slice-based cohesion metrics. To calculate those metrics,
program slice and dependence graph is derived using Antlr2

We selected Tightness, Coverage, and Overlap from slice-

2http://www.antlr.org

IFStatement

Assignment

a b=

Assignment

b c=

Expand to sibling node

If (…){

a = b;

b = c;

}

Expand to parent node

IFStatement

Assignment

a b=

Assignment

b c=

If (…){

a = b;

b = c;

}

IFStatement

Assignment

a b=

Assignment

b c=

If (...){

a = b;

b = c;

}

Figure 3: Example of expantions

based cohesion metrics [4] because the characteristics of the
selected metrics are empirically verified[2]. A user can select
one of the slice-based metrics in the proposed tool.

We redefine Tightness, Coverage, and Overlap as follows
for small code fragments. In the following definitions, M is
a method, len(M) is the number of statements in M , V is a
set of parameters and return values, Vi is a set of parameters
in M , Vo is a set of return values in M , FSLx is a forward
slice in the case that the entry point is variable x, BSLx is
a backward slice in the case that the entry point is variable
x, SLint is an intersection of forward slices obtained for all
variables in Vi and backward slices obtained for all variables
in Vo.

FTightness(M) =
|SLint|
len(M)

FCoverage(M) =
1

|V |
(

X

x∈Vi

|FSLx|
len(M)

+
X

x∈Vo

|BSLx|
len(M)

)

FOverlap(M) =
1

|V |
(

X

x∈Vi

|SLint|
|FSLx|

+
X

x∈Vo

|SLint|
|BSLx|

)

We suppose that each SD is extracted as a method M , each
slice-based metric is calculated according to the above def-
initions. The slice-based cohesion metric of a set of SDs is
an average of metrics of SDs.

3. DEMONSTRATION
As a demonstration, we applied the proposed tool to a

pair of two Java methods in Apache Ant 1.7.03. One of those
methods is executeDrawOperation method in Arc class. The

3http://ant.apache.org/

12

Figure 4: Visualization of syntactic differences

other one is executeDrawOperation method in Ellipse class.
Those methods are similar but syntactically different.
At first, the proposed tool simply highlights syntactic dif-

ferences between the given methods (Figure 4). The corre-
sponding differences are painted by the same color.
Once a user pushes the Detect button at the bottom of

the window, the expantion, the metric calculation, and the
sorting are performed. Figure 5 shows the screenshot after
the sorting. In this figure, a tab corresponds each set of SD,
and indicates selected slice-based cohesion metric. In this
case, 14 sets of SDs are derived, and the tab 2 is selected.
FTightness metric in the tab is 0.88.
In this figure, the red SDs correspond buffer allocation, the

green SDs correspond rendering of outline of a graphic, and
the yellow SDs correspond rendering of the body a graphic.
According to this result, the proposed tool successfully pre-
sented SDs using FTightness metric, each of which realizes
a single functionality.
Figure 6 is a screenshot that illustrates another set of SDs.

Although the FTightness metric 0.62 is lower than before,
the green SDs correspond whole rendering of a graphic. Ap-
propriate set of SDs depends on the context of development
(e.g., bug fixing, refactoring). We believe that suggesting
multiple sets of SD by the proposed tool is useful for prac-
tical software development.

4. RELATED WORK
In our earlier work, we have developed a method differ-

entiator using Cohesion of Blocks (COB)[1]. It is easier to
compute COB compared to slice-base cohesion metrics. We
believe that slice-based metrics used by this study are more
appropriate to capture the semantic of a program.
Xing, et al. presented CloneDifferentiator[5]. It is a dif-

ferentiator for duplicated code. We have developed a differ-
entiator plugin for a pair of Java methods. Our plugin can
be applied to a pair of partly similar but mostly different

Java methods. CloneDifferentiator characterizes identified
differences using program dependence graph. On the other
hand, we focus on the finding of cohesive code fragment in-
cluding at least one syntactic difference for giving clear idea
of semantic differences in a given pair of Java methods.

5. SUMMARY
We presented an Eclipse plugin for sematic differentiation

of a given pair of Java methods. As a demonstration, we
showed the visualization of the semantic differences between
a pair of methods involved in Apache Ant.

One of future works is conducting empirical studies to
show the usefulness of the proposed tool. We plan to confirm
that the proposed tool is able to reduce the effort for bug
fixing and refactoring. Also, the development of refactoring
tool based on the proposed tool is interesting challenge.

6. REFERENCES
[1] M. Ioka, N. Yoshida, T. Masai, Y. Higo, and K. Inoue.

A tool support to merge similar methods with a
cohesion metric COB. In Proc of IWESEP 2011, pages
23–24, 2011.

[2] T. M. Meyers and D. Binkley. An empirical study of
slice-based cohesion and coupling metrics. ACM Trans.
Softw. Eng. Methodol., 17(2):1–27, 2007.

[3] M.Fowler. Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

[4] M. Weiser. Program slicing. In Proc of ICSE 1981,
pages 439–449, 1981.

[5] Z. Xing, Y. Xue, and S. Jarzabek. Clonedifferentiator:
Analyzing clones by differentiation. In Proc of ASE
2011, pages 576–579, 2011.

13

Figure 5: Visualization of semantic differences (FTightness is 0.88)

Figure 6: Visualization of semantic differences (FTightness is 0.62)

14

