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ABSTRACT
A large number of software products may be derived from an
original single product. Although software product line engi-
neering is advocated as an effective approach to maintaining
such a family of products, re-engineering existing products
requires developers to understand the evolution history of
the products. This can be challenging because developers
typically only have access to product source code. In this
research, we propose to extract a Product Evolution Tree
that approximates the evolution history from source code
of products. Our key idea is that two successive products
are the most similar to one another in the evolution his-
tory. We construct a Product Evolution Tree as a minimum
spanning tree whose cost function is defined by the num-
ber of similar files between products. As an experiment, we
extracted Product Evolution Trees from 6 datasets of open-
source projects. The result showed that 53% to 92% of edges
in the extracted trees were consistent with the actual evolu-
tion history of the projects.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Experimentation

Keywords
software product line; software evolution; visualization

1. INTRODUCTION
Copying existing code fragments, source files, and an en-

tire project is a common practice when developing a new
software product [20]. For example, the Linux kernel is
forked into many projects extending beyond Linux distri-
butions including embedded software such as the Android
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Figure 1: A product family derived from a single
product [17].

OS. Nonaka et al. analyzed corrective maintenance data of
industrial embedded software products [17]. A part of the
evolution history of the software product family is shown
in Figure 1. The horizontal axis represents the number of
months from the first release of the original product series
(P01), and the vertical axis represents the product series ID
in a company. In Figure 1, a circle corresponds to a product.
Each dashed edge indicates that the new product series is
derived from the original product. A solid edge connecting
products indicates that the products are released as different
versions of the same product series. Figure shows only 8 ma-
jor product series and their variations, while the company
had 25 series of products. Each series of products has 2 to
42 versions. Although Software Product Line Engineering
(SPLE) is a well-known approach to efficient maintenance of
a software product family, the industry already maintains a
large number of derived software products without applying
SPLE. The construction of a software product line from ex-
isting products is a major problem and many re-engineering
methods have been proposed as solutions [2, 11, 26].

To construct a software product line, developers must ana-
lyze and compare software products to identify commonality
and variability between them. Since analyzing a large num-
ber of software products is a difficult task for developers,
Krueger suggested that developers should begin their anal-
ysis with a small number of software products, instead of all
products at once [12]. Koschke et al. proposed an exten-
sion of the reflexion method to construct a product line by
incrementally analyzing products [11]. To follow these rea-
sonable approaches, developers must choose representative
software products as a starting point. If an evolution history
of software products such as Figure 1 were available, devel-



opers could recognize the relationships among the products
and choose representatives for their analysis. For example,
developers could analyze the original product and the latest
release on each branch. The selection would enable devel-
opers to identify core features and product specific features
of the product family. However, such a history of products
is often not available for developers [13]. In the worst cases,
developers only have access to source code of each product.
In this research, we propose to extract an approximate

the evolution history of software products from their source
code. Our approach depends on only source code so that
we can analyze products without version numbers, names
or release dates. We define a Product Evolution Tree as
a labeled tree whose nodes each represent a product, each
edge connects similar products, and each label indicates the
similarity of products and the direction of evolution, respec-
tively. A Product Evolution Tree is computed as a minimum
spanning tree. Its cost function is defined by the number of
similar files between products. Similarity between files is
computed by Yoshimura’s function, which is based on the
longest common subsequence of the files [25].
We implemented our approach as a tool that takes source

code as input and visualizes a Product Evolution Tree. Us-
ing the tool, we conducted a case study with six datasets
based on open-source projects. Whereas our approach is a
simple algorithm, the results show that 53% to 92% of edges
(79% on average) were consistent with the actual evolution
history.
Our contributions are summarized as follows:

• We propose a visualization technique of relationships
among software products from their source code.

• Our tool and datasets are publicly available [27] so
that other researchers can replicate and improve the
approach.

In Section 2, we describe related work. Section 3 details
our proposed approach. Section 4 shows the result of a case
study. We discuss the results in Section 5. Finally, in Section
6, we present the conclusion and future work.

2. RELATED WORK

2.1 Product Analysis
To apply SPLE to existing similar software products, de-

velopers must analyze features in the products. Kastner et
al. proposed CIDE to simplify software product line devel-
opment [8]. CIDE requires a single software product and
decomposes it into features. Duszynski et al. proposed a
technique for analyzing multiple software system variants
[1]. They extracted system structure models and variability
models that represent commonality and variability of sys-
tem variants from source code. Their technique allows for
detailed goal-driven refinement of the analysis results.
To utilize these techniques for a large number of software

products, developers must choose one or more software prod-
ucts for their analysis. Our approach enables developers to
choose a starting point for their analysis by visualizing rela-
tionships among software products.

2.2 Software Categorization
Several tools have been proposed to automatically cat-

egorize large volumes of software based on domains such
as compiler, database, and editor. MUDABlue [9] classi-

fies software based on the similarity of identifiers in source
code. It employs latent semantic analysis which extracts
the contextual-usage meaning of words by statistical com-
putations. LACT [22] uses latent Dirichlet allocation in
which software can be viewed as a mixture of topics and
utilizes identifiers and code comments, but excludes literals
and programming language keywords to improve categoriza-
tion. CLAN [16] focuses on API calls with the basic idea
that similar software uses the same set of APIs. While all
of these tools are able to detect similar or related applica-
tions from a large software set, our approach focuses on very
similar products derived from the same product, which are
likely to be grouped into the same category by these tools.

2.3 Software Evolution
Yamamoto et al. proposed a tool SMAT that calculates

the similarity of software systems by counting similar lines
of source code [24]. The tool identifies corresponding source
files between two software systems using CCFinder [7], and
then computes differences between file pairs. They applied
the tool to a case study of software clustering, and extracted
a dendrogram of BSD-Unix operation systems. The dendro-
gram reported which operating systems were similar to each
other.

Tenev et al. introduced bioinformatics concepts into soft-
ware variants analysis [21]. One such concept is the phy-
logenetic tree, which visualizes similarity relations. They
constructed a dendrogram and a cladogram from six BSD-
Unix family systems as an example of phylogenetic trees.

Although their approaches and goals are similar to our
idea, our approach visualizes more concrete relationships
among products: which product was first released, which
products were forked from the release, and so on.

2.4 File-to-File Similarity
The comparison of two or more software systems with

one another has been the subject of much research. When
comparing software systems, the similarity between source
files is a very important metric. Many code clone detection
tools have been proposed to identify source code fragments
that are identical or similar [7, 14]. Using large-scale code
clone detection techniques, Hemel and Koschke compared
the Linux kernel with its vendor variants [5]. They found the
vendor variants included various patches, but the patches
were rarely submitted to the upstream. Another application
of code clone detection is detecting file moves that take place
between released versions of a software system [13].

Yoshimura et al. visualized cloned files in industrial prod-
ucts by using an edit distance function as a source file simi-
larity to identify cloned files with nearly the same contents
[25]. We employed their similarity function with an opti-
mization and aggregated file similarity to product similarity.

Inoue et al. [6] proposed a tool called Ichi Tracker to
investigate a history of a code fragment using source code
search engines. The tool takes a code fragment as an input
and extracts related code from source code search engines.
It visualizes how related files are similar to the original code
fragment and when they are released. Using the visualiza-
tion, developers can identify the origin of the source code
fragment or a more improved version of the code fragment.
Our approach enables similar analysis on software products
instead of source files.

We assume that two successive products are very similar



to each other. This observation is shown by Godfrey et al.
[3], who detected merging and splitting of functions between
two versions of a software system. Their analysis showed
that a small number of software entities such as functions,
classes, or files are changed between two successive versions.
Furthermore, Lucia et al. reported that most bug fixes were
implemented in a small number of lines of code [15]. Since
these analyses reported that two successive versions of soft-
ware were very similar, we infer that the most similar pairs of
products are likely to be two successive versions. Although
developers may modify a substantial number of lines of code
to release a new version, this new version is likely more simi-
lar to the original version than future products derived from
the new version.

3. PRODUCT EVOLUTION TREE
A Product Evolution Tree is a tree that approximates evo-

lution history. Each node of a tree represents a software
product and each edge indicates that a product is likely
derived from another product. An edge label explains the
cost of software changes between products and the direc-
tion of derivation, indicating which product is an ancestor
and which product is a successor. We construct a Product
Evolution Tree from product source code through following
three steps:

1. We calculate file-to-file similarity for all source file pairs
of all products.

2. We construct a minimum-spanning tree of products.
The cost between two products is based on the number
of similar files between the products.

3. We assign labels to edges based on the number of mod-
ified tokens between two products.

3.1 File Similarity Calculation
To calculate file similarity, we first normalize each source

file into a sequence of tokens. In a normalized file, each line
has only a single token. We remove blank space from source
files to avoid an impact from coding style. We also remove
comments since they do not affect the behavior of products.
All other tokens including keywords, macros, and identifiers
retained in their original state.
We calculate the similarity for all pairs of files across dif-

ferent products, since a file may be renamed in a differ-
ent product variant. To calculate similarity among source
files, we follow Yoshimura’s inter-file similarity analysis [25].
Given a pair of files (a, b), their file similarity sim(a, b) is
calculated using the normalized sequences at and bt of the
files as follows:

sim(a, b) =
LCS(at, bt)

LCS(at, bt) +ADD(at, bt) +DEL(at, bt)

where LCS(at, bt) is the number of tokens in the longest
common subsequence (LCS) between at and bt. A pair
of ADD(at, bt) and DEL(at, bt) represents an edit distance
from at to bt. DEL(at, bt) is the number of deleted tokens
unique to at, and ADD(at, bt) is the number of added to-
kens unique to bt. ADD and DEL can be represented as
follows.

ADD(at, bt) = LENGTH(bt)− LCS(at, bt)

DEL(at, bt) = LENGTH(at)− LCS(at, bt)

where LENGTH(s) is the number of tokens in s.
We used a file similarity based on LCS, since we could

optimize the calculation as described in Section 3.4. The
following computation steps do not depend on the definition
of the file similarity function; hence, other methods such
as code clone detection are also applicable to compute file
similarity.

3.2 Construction of the Minimum Spanning
Tree

In this step, we construct a minimum spanning tree of
products. To define a cost function for products, we count
the number of similar file pairs. When the file pair has a
higher similarity than a threshold value, it is considered as
a similar file pair. A similarity threshold th = 0.9 was exper-
imentally determined and is used in this paper. The number
of all possible similar file pairs Es and cost C between soft-
ware products P1 and P2 are defined as:

Es(P1, P2, th) = {(a, b) | a ∈ P1, b ∈ P2, sim(a, b) ≥ th}
C(P1, P2, th) = −|Es(P1, P2, th)|.

It should be noted that cost is a negative value, as the cost
decreases if products have more similar file pairs.

After calculating cost, the result is an undirected weighted
graph G = (V,E). V denotes the software products and E
connects them with the cost function C. We construct a
minimum spanning tree S = (V,E′) of the graph G. E′ ⊂ E
is a set of edges which have the smallest total cost:

X

(Pi,Pj)∈E′

C(Pi, Pj , th).

We use Prim’s algorithm [18]. In Prim’s algorithm, an initial
vertex is picked up at first. The vertex is a tree comprising
of a single vertex. Next, the algorithm lists out all edges
connecting a vertex in the tree to a vertex outside of the
tree, selects the edge with the lowest cost, and includes the
edge and its connected vertex in the tree. The process is
repeated until all vertices are included in the tree.

Prim’s algorithm allows any vertex as a starting point. In
addition, if two or more edges have the same lowest cost, one
of them can be arbitrarily selected. In our implementation,
we select a vertex or an edge depending on the input order.

3.3 Evolution Direction Calculation
After a minimum spanning tree is constructed, we assign

labels to the edges. We hypothesize that source code is
likely added rather than deleted when software evolves into
its next version. To compute the relationship, we first define
two functions for two products P1 and P2 as follows:

ADDALL(P1, P2) =
X

(a,b)∈Es(P1,P2,th)

ADD(a, b)

DELALL(P1, P2) =
X

(a,b)∈Es(P1,P2,th)

DEL(a, b)

Both functions approximate the total number of modified
tokens in similar files between the products. We determine
a direction label for an edge between products using the
following conditions:
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>

<

>

:

P1 → P2, ADDALL(P1, P2) > DELALL(P1, P2)

P1 = P2, ADDALL(P1, P2) = DELALL(P1, P2)

P1 ← P2, ADDALL(P1, P2) < DELALL(P1, P2)



It is easy to determine the amount of source code that has
been changed because we calculated how many tokens are
added or deleted from one source file to another through the
file similarity calculation.

3.4 File Similarity Optimization
A naive computation of sim for N files requires the com-

putation of LCS N(N − 1)/2 times. To reduce the compu-
tation time, we introduced an optimization that calculates
the sim value only if it is necessary.
The LCS of two files comprises only of tokens included in

both files. To estimate the length of LCS between files, we
introduce the term frequency tf (f, t) which represents how
many times a term t appears in a file f . For example, con-
sider two files S1(AAABB) and S2(ABBBB), where A and B
are terms in the files. The term frequencies are tf (A,S1) =
3, tf (B,S1) = 2, tf (A,S2) = 1 and tf (B,S2) = 4. Since
the LCS can include at most one A and two Bs shared by
the sequences, the maximum length of the LCS is 3. Indeed,
the actual LCS between S1 and S2 is ABB whose length is
3. Comparing S1(AAABB) with S3(BBBAB) for another
example, this pair also shares one A and two Bs, but there
is no LCS with a length of 3. AB, BA, and BB are possible
LCSs for them.
With term frequency, we can get maximum similarity

msim(a, b) =

P

t∈T min(tf (a, t), tf (b, t))
P

t∈T max(tf (a, t), tf (b, t))

of each file pair (a, b). T represents the set of terms ap-
pearing in all source files. The value of sim(a, b) is equal to
msim(a, b) if all the common tokens appear in the same
order in two sequences. If the order of tokens in a se-
quence is different from another sequence, then sim(a, b) is
smaller than msim(a, b). A formula msim(a, b) ≥ sim(a, b)
is always true, hence we need to compute sim(a, b) only if
msim(a, b) ≥ th. Although we have to scan a file to con-
struct a term frequency vector, the vector is used N − 1
times. In addition, the time complexity of msim is O(|T |),
which is much smaller than the LCS calculation.

4. CASE STUDY
We implemented our approach as a tool and conducted a

case study. The goal of the case study is to evaluate how ac-
curately a Product Evolution Tree recovers actual evolution
history.

4.1 Datasets
We prepared six datasets using open-source projects. Each

dataset comprises a set of products whose evolution history
is publicly available. Table 1 shows the lists of products in
the datasets. Column “#” indicates the ID of the dataset of
each row. The other columns show the name of the dataset,
products included in the dataset, the number of products,
the total number of files and the total number of lines of
code. Due to the limited space, we have omitted the inter-
mediate version numbers in the table. For example, “8.0.0 –
8.0.26” indicates that the dataset included 27 version from
8.0.0 to 8.0.26. All datasets and the results are publicly
available on our website [27].
In the datasets, we used the following software.

PostgreSQL. This is a database management system. In
the evolution history of PostgreSQL, each major ver-
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Figure 2: The family-tree of Dataset 6

sion was released from the master branch after devel-
oping beta and RC releases. After a major version was
released, a STABLE branch was created for minor re-
leases and the master branch was used for developing
the next beta version. While each release archive con-
tains a large amount of files, we used only source files
under the “src” directory in this case study.

FFmpeg and Libav. These are libraries and related pro-
grams for processing multimedia data. Libav is forked
from FFmpeg and is developed by a group of FFmpeg
developers. They are independently developed, but
similar changes have been applied to the source code
of both programs.

4.4BSD, FreeBSD, NetBSD, and OpenBSD. These
operating systems are derived from 4.3BSD, but are
now independent projects. The evolution history of
this project family is publicly available as a “family-
tree.” Figure 2 shows a section of the family-tree for
the versions included in our dataset. According to the
tree, NetBSD is originally derived from 4.3BSD, but
NetBSD-1.0 is derived from 4.4BSD Lite. FreeBSD-
2.0 is also based on 4.4BSD Lite. OpenBSD is forked
from NetBSD. OpenBSD-2.0 is its first official release.
4.4BSD Lite2 is the last release of 4.4BSD and it affects
other BSD operating systems. In each version of dis-
tributed files, we used source files under the “src/sys”
directory.

Each dataset represents a particular situation of product
analysis as follows.

Dataset 1: Pgsql-major.
This dataset has a straight evolution history, i.e., it has

no project fork. The dataset contains 13 versions that are
the initial versions of each major release. We found that
all of these releases were developed in the master branch.
Hence, the resultant Product Evolution Tree should form a
straight line.



Table 1: Datasets
# Name Included versions/tags #product #file #LOC
1 Pgsql-major PostgreSQL: 7.0, 7.1, 7.2, 7.3, 7.4, 8.0.0, 8.1.0, 8.2.0, 8.3.0, 8.4.0, 13 8,533 4,163,127

9.0.0, 9.1.0, 9.2.0
2 Pgsql8-all PostgreSQL: 8.0BETA1 – 8.0BETA5, 8.0RC1 – 8.0RC5, 144 96,448 48,478,395

8.0.0 – 8.0.26, 8.1BETA1 – 8.1BETA4, 8.1RC1, 8.1.0 – 8.1.23,
8.2BETA1 – 8.2BETA3, 8.2RC1, 8.2.0 – 8.0.23,
8.3BETA1 – 8.3BETA4, 8.3RC1 – 8.3RC2, 8.3.0 – 8.3.21,
8.4BETA1 – 8.4BETA2, 8.4RC1 – 8.4RC2, 8.4.0 – 8.4.14,
8.5ALPHA1 – 8.5ALPHA3

3 Pgsql8-latest PostgreSQL: 8.0.20 – 8.0.26, 8.1.17 – 8.1.23, 8.2.17 – 8.2.23, 38 26,232 13,401,899
8.3.15 – 8.3.21, 8.4.8 – 8.4.14, 8.5ALPHA1 – 8.5ALPHA3

4 Pgsql8-annually PostgreSQL: 8.0.4, 8.0.9, 8.0.14, 8.0.18, 8.0.22, 8.0.26, 25 16,816 8,488,128
8.1.5, 8.1.10, 8.1.14, 8.1.18, 8.1.22, 8.2.5, 8.2.10, 8.2.14, 8.2.18, 8.2.22,
8.3.4, 8.3.8, 8.3.12 ,8.3.16, 8.3.21, 8.4.1, 8.4.5, 8.4.9, 8.4.14

5 FFmpeg FFmpeg(before fork): v0.5 – v0.5.3 16 9,872 3,952,273
FFmpeg(after fork): n0.5.5 – n0.5.10 LibAV: v0.5.4 – v0.5.9

6 *-BSD BSD: 4.4BSD Lite, 4.4BSD Lite2 FreeBSD: 2.0, 2.0.5, 2.1, 2.2, 2.3 16 16,204 6,050,462
NetBSD: 0.8, 0.9, 1.0, 1.1, 1.2, 1.2.1, 1.3 OpenBSD: 2.0, 2.1

Dataset 2: Pgsql8-all.
The evolution history of this dataset is a tree of a sin-

gle project. We created it to emulate a practical case; a
large number of products are derived from a single original
product. This dataset contains six branches: five STABLE
branches for versions 8.0.X to 8.4.X, and the master branch
developing into three ALPHA releases for 8.5. It should be
noted that these branches were developed in parallel. For
example, some products were released from the 8.0.X branch
after 8.1.0. The dataset contains 144 versions in total.

Dataset 3: Pgsql8-latest.
This dataset includes only recent products. If a product

family has a long history, older products may be too ob-
solete to be included in a product line. In addition, such
older products may be no longer available to developers.
The dataset is a subset of Dataset 2. It contains 38 versions
including 7 latest versions in each of 5 STABLE branches
and 3 releases in the 8.5ALPHA series. This dataset con-
tains no older releases indicating how the STABLE branches
have been created. Therefore, it is difficult to extract the
relationship among branches.

Dataset 4: Pgsql8-annually.
This is another dataset where a full collection of products

is not available. Dataset 4 contains 25 versions that were
released around every September from 2005 to 2012. Ex-
tracting the relationship among branches is difficult for the
dataset, since it does not contain any major releases.

Dataset 5: FFmpeg.
This dataset consists of a project that has been forked

to two projects. It was created to evaluate whether our ap-
proach could recover the evolution history of forked projects.
The dataset contains the FFmpeg 0.5 series from 0.5 to 0.5.3
before the fork and from 0.5.5 to 0.5.10 after the fork. 0.5.4
is not included since the tag was not available in the repos-
itory. In addition, Libav 0.5.4 to 0.5.9 are included in the
dataset.

Dataset 6: BSD.

This dataset consists of a project that has been forked to
more than three projects. It was created to evaluate whether
our approach could recover the complex evolution history of
the projects or not. The evolution history of BSD operat-
ing systems is the most complex among our datasets. In
addition, there are releases created by merging source code
from more than one product that were derived from their
single origin. Since our approach only extracts a tree, our
approach must miss such edges.

4.2 Results
Our tool takes source code in a dataset as input and out-

puts a Product Evolution Tree. For each edge in a Product
Evolution Tree, we checked whether the edge connected ver-
sions in the parallel with the evolution history of the dataset,
and then checked the labeled direction for the matched edges.

The correctness of the edges and labels is shown in Ta-
ble 2. The “Matched Edges” column shows how many edges
were matched with the actual history of the dataset with-
out taking direction into consideration. In other words, we
only checked the shape of the tree. The “Matched Labels”
column shows how many correct edges also had correct di-
rection. The “Recall” column indicates the proportion of
correctly identified edges to edges in the actual evolution
history of each dataset. We did not calculate precision in
this experiment, since precision and recall are either the
same (Datasets 1–5) or a higher value (Dataset 6). This
is because the number of edges in the Product Evolution
Tree is the same as or fewer than the number of edges in the
actual evolution history.

The results show that 53% to 92% of edges were consistent
with the actual evolution history. This is a very promising
result. However, one important concern is what types of
errors were included in the Product Evolution Tree. Since
developers are unaware of a product’s actual evolution his-
tory, an incorrect edge may lead developers to develop a
false understanding of the product family. To analyze er-
rors, we categorized incorrect edges in Product Evolution
Trees into five patterns that are described below and shown
in Figure 3. In Figure 3, each left graph shows an actual
evolution history and each right graph shows an extracted



Table 2: Results
Dataset History Output Matched Edges Matched Labels Recall

1 † 12 12 12 (100%) 11 (91.7%) 91.7%
2 (Fig. 4) 143 143 136 (95.1%) 128 (94.1%) 89.5%

3 † 37 37 30 (81.1%) 30 (100%) 81.1%
4 (Fig. 5) 24 24 20 (83.3%) 20 (100%) 83.3%
5 (Fig. 6) 15 15 13 (86.7%) 11 (84.6%) 73.3%
6 (Fig. 7) 17 15 12 (70.6%) 9 (75.0%) 52.9%
†Figures are available on our website [27].
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Product Evolution Tree. Thin edges are the connections
that exist in the actual history, thick edges represent the er-
rors; thick solid edges connect exact products but indicate a
wrong direction, and thick dashed edges do not exist in the
actual history.

P1: Version Skip. This pattern is found in three succes-
sive versions; two edges v1 to v3 and v2 to v3 are de-
tected instead of a path from v1 to v3 via v2. Fig-
ure 3(a) shows an example. This pattern occurs when
v2 and v3 have the same change cost from v1 or the
change cost between v1 and v3 are very small. For ex-
ample, a small bug fix between v2 and v3 that modifies
a few lines of code added for v2 can cause this pattern
to appear.

P2: Misalignment of Branch. An edge connects two
branches but does not connect products that are actu-

ally branched. In Figure 3(b), there are two branches
A and B. While version 1 of branch B (B1) was ac-
tually forked from version 1 of branch A (A1) in the
evolution history, the origin of branch B was instead
recognized as version 2 of branch A (A2). In this pat-
tern, A2 is actually more similar to B1 than A1, since
both A2 and B1 include the same changes from A1,
such as bug fixes.

P3: Misdirection. An edge connects products accurately,
but its label shows the reverse direction as shown in
Figure 3(c). This occurs when the size of source code
or the number of source files decreases due to several
factors such as refactoring and the deletion of dead
code.

P4: Missing Merge. Our Product Evolution Tree cannot
detect a merge of two products derived from a single
product. In Figure 3(d), we can see that the Product
Evolution Tree detects branching from version A1 to
version A2 and B1, but cannot detect merging from
version B2 to A4. When a software product forks into
other software products, they are usually very similar.
Since the forked products are independently modified,
they would exhibit an increased level of differences.
Our approach connects similar products first, and a
tree cannot have a closed path. Therefore, edges indi-
cating project fork often appear in the tree but merges
are hardly detected. In this pattern, one edge is miss-
ing but no wrong edges are output. If an actual evolu-
tion history includes a merge (e.g., Dataset 6), 100%
recall is not achievable.

P5: Out of Place. This pattern falsely detects edge that
is not classified into previous patterns and there are
no relationships between this false edge and the actual
history.

In these patterns, P1, P2, and P3 connected related prod-
ucts. P1 could be corrected by analyzing three related prod-
ucts. P2 is not easily corrected, but it still connects two
relevant branches. Therefore, developers might misunder-
stand only information concerning at what point the ac-
tual branching occurred. P3 could be corrected by manually
comparing the edge direction with other edges around the
products, and investigating difference between source code
of the connected products. Therefore, these patterns are not
too problematic. P4 is a missing edge and is not correctable.
Our future work includes detecting merges. P5 is the most
problematic error among the patterns, as it connects irrele-
vant products.

Table 3 shows the number of pattern instances of incorrect
edges. It indicates a small number of problematic errors



Table 3: The number of instances of incorrect edge
patterns

Dataset P1 P2 P3 P4 P5 Total
1 1 1
2 1 4 8 2 15
3 5 2 7
4 4 4
5 1 1 2 4
6 2 3 2 1 8

found in the datasets, though the more minor errors of P2
and P3 occur rather frequently.

4.3 Product Evolution Trees
In this section, we show the details of each Product Evolu-

tion Tree extracted from the datasets. We compare a Prod-
uct Evolution Tree with its actual history and then colored
incorrect edges as indicated in Figure 3.

Dataset 1: Pgsql-major.
The form of the tree was perfectly matched with the actual

evolution history. However, one label indicated the reverse
direction on the edge 9.1.0–9.2.0. Among these releases,
more source code was added than deleted, since several iden-
tifiers were renamed and some refactoring was performed.
Despite the existence of the directional error, this Product
Evolution Tree is still useful, as it is still capable, of identify-
ing the latest version and the oldest version of the software
product.

Dataset 2: Pgsql8-all.
An overview of the extracted Product Evolution Tree for

Dataset2 is shown in Figure 4. Since the tree is too large
to show in the paper, a sequence of correctly connected ver-
sions is indicated by a single node. For example, the top-
left node in Figure 4 represents 14 versions: 8.0.0BETA1
to 8.0.0BETA5, 8.0.0RC1 to 8.0.0RC5, and 8.0.0 to 8.0.3.
In the figure, we annotated only incorrect edges and labels.
The full version of this figure is also available on our website.
The Product Evolution Tree for Dataset 2 recovered its

actual evolution history with a high recall percentage. How-
ever, almost no edges connecting branches were matched.
For example, 8.2BETA1 was developed on the master branch
as the next version of 8.1.0. In the extracted tree, 8.2BETA1
is indicated as the next version of 8.1.5. We examined git
repository and found that version 8.1.5 was released right
after 8.2BETA1. The master branch developing 8.2BETA1
and STABLE branch for 8.1 received the same 225 com-
mits that were submitted on the same date with the same
log message. During the same period (8.1.0 to 8.2BETA1),
the differences between two branches only consisted of 28
commits unique in comparison to the master branch. This
fact means that even the actual evolution history does not
always show functional differences of products.
Although the Product Evolution Tree is not perfect, we

can identify six branches in the product set, and we can pick
up the latest versions for each branch: 8.0.26, 8.1.23, 8.2.23,
8.3.21, 8.4.14 and 8.5ALPHA3. There are several labels in
the branches indicating the incorrect direction, but a major-
ity of edges indicated the correct evolution in the branches.
Validating the direction of 143 edges of the tree requires a
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Figure 4: Product Evolution Tree for Dataset 2

much smaller effort than comparing arbitrary pairs of 144
products (144× 143/2 = 10296 pairs).

Dataset 3: Pgsql8-latest.
The Product Evolution Tree of this dataset is almost the

same as that of Dataset 2, with the exception of the edges
connecting branches. Two STABLE branches often include
the same changes, while only minor changes are unique to
one of the branches. Therefore, intermediate versions of
two branches were connected to each other (P2 instances).
Nevertheless, the Product Evolution Tree shows the initial
and latest versions of each branch, since there were a few
error edges outside of the ones between branches.

Dataset 4: Pgsql8-annually.
Figure 5 shows the Product Evolution Tree extracted from

Dataset 4. Products are arranged horizontally if they are
released on the same day. All edges and labels in the same
branch are consistent with the actual evolution history. On
the other hand, edges connecting between branches are mis-
matched. Since such inter-branch edges have larger cost
values than edges inside a branch, we can identify the initial
and latest versions of each branch in the Product Evolution
Tree.

Dataset 5: FFmpeg.
Figure 6 shows the Product Evolution Tree extracted from

Dataset 5. The Product Evolution Tree does not correctly
indicate when the Libav project was branched from the
FFmpeg project. FFmpeg 0.5.3, which is the last release
of the old FFmpeg project, was branched into Libav 0.5.4
and FFmpeg 0.5.5 in the actual history, but the tree seems
to indicate that FFmpeg 0.5.5 was derived from Libav 0.5.5.
In those versions, projects shared the same changes despite
becoming independent projects.

Figure 6 also includes an incorrect edge between FFm-
peg 0.5 and 0.5.2. This edge was connected since the same



8.1.22

8.1.18

 -534

8.1.14

 -526

8.1.10

 -538

8.2.5
-199(*P2)

8.1.5

 -510

8.2.22 8.3.16
-219(*P2)

8.2.18

 -580

8.2.14

 -557

8.2.10

 -555

 -551

8.3.21

 -672

8.3.12

 -661

8.3.8

 -639

8.4.1
-300(*P2)

8.3.4

 -618

8.4.14

8.4.9

 -686

8.4.5

 -667

 -613

8.0.26

8.0.22

 -523

8.0.18

 -518

8.0.14
-177(*P2)

 -528

8.0.9

 -516

8.0.4

 -487

Figure 5: Product Evolution Tree for Dataset 4

files changed in 0.5.1 were changed again in 0.5.2. In other
words, both versions had the same number of files changed
from FFmpeg 0.5. This is the same phenomenon observed
in Dataset 2.
The Product Evolution Tree shows Libav 0.5.5 is likely

an origin of three branches. From this perspective, develop-
ers may choose the root version Libav 0.5.5 and leaf nodes
FFmpeg 0.5, FFmpeg 0.5, FFmpeg 0.5.1, and Libav 0.5.9.
The tree is still effective since the selected versions correctly
contain the original and the latest versions. The tree reduces
also the effort for comparing all 15 versions.

Dataset 6: BSD.
Figure 7 shows the Product Evolution Tree extracted from

Dataset 6. The recall percentage of this dataset was the
worst in the all datasets, since the dataset included 17 cor-
rect edges but a Product Evolution Tree could include at
most 15 edges.
The Product Evolution Tree included a merge relationship

for NetBSD-1.0, which was the next release of NetBSD-0.9
and included many source files from 4.4-BSD Lite. On the
other hand, an edge from 4.4BSD Lite2 to FreeBSD-3.0 was
not detected because the Product Evolution Tree does not
allow closed paths. In addition, the cost between the two
versions, C(4.4BSD Lite, FreeBSD-3.0, 0.9) = −11, indi-
cated that all except for 11 files were dissimilar between two
versions. The relationship from 4.4BSD Lite2 to FreeBSD-
3.0 in the family tree may not be captured by the source
code difference.
Looking at the tree overall, NetBSD-1.0 and NetBSD-

1.2 receives the most attention because they process three
edges. Leaf nodes FreeBSD-3.0, NetBSD-0.8, NetBSD-1.3,
and NetBSD-1.2.1 also appear vital in the evolution history.
The Product Evolution Tree suggests that 4.4-BSD Lite and
OpenBSD-2.1 are not characteristic releases and it is diffi-
cult to identify them as important releases in this dataset.
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Figure 6: Product Evolution Tree for Dataset 5

5. DISCUSSION

5.1 Effectiveness of Product Evolution Tree
The results show that 70% to 100% of edges without la-

bels and 53% to 92% of edges with labels were consistent
with their respective actual evolution history. Furthermore,
almost all of the latest products of each branch were repre-
sented as leaf nodes, except OpenBSD-2.1 in Dataset 6.

One of the major error patterns identified in the Prod-
uct Evolution Trees was P2. P2 is not considered a serious
problem since edges connecting products between branches
usually have a larger cost than edges in a branch. Therefore,
developers could easily recognize branches in a tree, even if
their connections are not correct.

Another major error pattern that was identified, P3, act
as a counterexample for our hypothesis that “source code is
likely added.” By analyzing source code, we found two major
reasons behind the occurrences of P3. The first reason was
that refactoring actions including class splitting and merging
had been applied. Techniques for detecting refactoring [23]
may be helpful to remove incorrect labels caused by this rea-
son. The second reason behind P3 was non-essential changes
[10]. Non-essential changes such as deleting dead code affect
many lines of code, despite trailing in importance to other
modification tasks such as feature enhancement. We can
conjecture for some cases where the volume of source code
is reduced, but P3 made up 20% (3 of 15 in Dataset 6) of ex-
tracted edges in our case study at most. Hence, our method
for determining the direction was still effective overall. It
should also be noted that we did not include release date in-
formation in our approach, as they are not always available.
If release dates were available, all evolution directions would
have been correctly extracted in cases where the edges were
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correct.
Our approach always extracts n − 1 edges for n prod-

uct variants as guaranteed by the algorithm. This is much
smaller than n(n − 1)/2 comparison required if the rela-
tionships among the products have been completely lost.
Even if the tree included incorrect edges, majority of these
incorrect edges still connect versions that were somewhat
related. Therefore, the tree would reduce the number of
product pairs developers would have to compare.
A tree cannot have closed paths; as a consequence, we

hardly detected software merges as exhibit in Dataset 6.
However, merging does not occur as frequently as forking,
as shown in Figure 1. Since we could correctly detect forking
on numerous occasions in the case study, another analysis
technique could be built to detect merging.
Although our approach can be applied to arbitrary source

code, intermediate versions are important clues to recovering
an evolution history. In Dataset 4, although several incor-
rect edges between branches (P2 instances) were included,
other edges were detected completely. This is because mi-
nor releases in a single branch possess small changes. In
Dataset 1, numerous lines of code were altered between two
major releases; as a consequence, our approach extracted
one wrong direction. A full collection of products may also
lead to the identification of incorrect edges as described in
the P1 pattern, since two successive products are too similar
to each other. However, we do not believe this is a problem
because developers would be able to recognize the similarity
between products through cost labels.
From the shape of the Product Evolution Tree, developers

can learn where the starting point of the software evolution
is and the points at which they branched. The value of
the cost function also provides insight into understanding
evolution history. If the cost of an edge is very small in
comparison with its surrounding edges, there is evidence of
only a slight difference and we can avoid comparing them.
If a vertex has three edges and one of them has a higher cost
than the others, the high cost edge may indicate branching,

while the others may indicate the mainline.
A Product Evolution Tree does not directly provide com-

monality and variability among products, but it will allow
developers to use several analysis techniques. For example,
Hashimoto et al. proposed tracking source code changes
in an evolution history [4]. They searched code clones in
branches and mapped nodes of an Abstract Syntax Tree
among versions. Using this technique, the origin of source
code can be estimated in the Product Evolution Tree. Rubin
et al. proposed searching product features using the source
code differences [19]. Comparing the latest versions selected
from a tree would be an effective for developers to search for
features in a particular version.

We reviewed our approach with regards to scalability. A
machine equipped with two Intel Xeon E5507 processors
(2.27 GHz, 4 cores) and 24GB RAM required approximately
one day to run a full analysis on Dataset 2, the largest
dataset in this study. We believe that this is reasonable cost
for developers since it is unlikely that product line analysis
would be an urgent task. In addition, file similarity and term
frequency vectors can be computed in parallel. Furthermore,
they are reusable for future analysis. For example, if new
products are added, we can incrementally re-construct a new
Product Evolution Tree by comparing only the new products
with the existing products.

5.2 Threats to Validity
In our approach, our assumption was that “two successive

products are very similar to each other.” However, this may
not always be the case, especially when developers modify
large amounts of code. Though the assumption is not always
true, it did occur in many versions in our datasets.

Our algorithm for constructing the Product Evolution Tree
is language-independent. However, all of the open-source
projects we used in the case study were written in C. Source
files in the datasets were well organized according to their
functions. As a result, the number of edited files reflects
the number of edited features. In other words, the number
of similar files correctly reflected the distance between ver-
sions. If files are not clearly separated, our approach could
be applied to such a program by dividing source code into
functional units like subroutines or procedures.

Datasets 1, 2, 3, and 4 contained only PostgreSQL. Since
there were some overlapping products, the average accuracy
of the results may be affected by source code of PostgreSQL
than other projects. This threat can easily be removed by
additional experiments, since our tool only requires source
code as input.

We used a single threshold 0.9 in the case study, which was
determined by a small preliminary experiment. While this
threshold value was suitable for the six datasets in this study,
a different threshold may be more suitable for a different
dataset.

6. CONCLUSION
Constructing SPLs from existing software products is be-

coming an important activity. In this paper, we proposed
an automatic extraction of a Product Evolution Tree to help
developers to understand evolution history of products. Our
approach is dependent only on product source code and con-
nects similar software products based on the number of sim-
ilar files. We have applied our tool to 6 datasets including
several open-source projects. In our results, 53% to 92%



of edges were correctly recovered. There are promising re-
sults, since we can identify branches and the latest versions
of products using a Product Evolution Tree, even if the tree
included incorrect edges.
In future work, we must investigate whether or not the

correctness of this approach is accurate enough for devel-
opers to analyze software products or not. In addition, we
would like to try automated detection of software merges,
so that we can extract a complete evolution history for ar-
bitrary projects.
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