
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

LETTER
Semi-automatically Extracting Features from Source Code of
Android Applications

Tetsuya KANDA†a), Yuki MANABE†b), Nonmembers, Takashi ISHIO†c), Member,
Makoto MATSUSHITA†d), Nonmember, and Katsuro INOUE†e), Fellow

SUMMARY It is not always easy for an Android user to choose the
most suitable application for a particular task from the great number of
applications available. In this paper, we propose a semi-automatic approach
to extract feature names from Android applications. The case study verifies
that we can associate common sequences of Android API calls with feature
names.
key words: Android, feature extraction, software categorization, API

1. Introduction

Android is one of the most popular platforms for mobile
phones and tablets. A user can search and choose from more
than 600,000 Android applications in Google Play [1]. Be-
cause there are so many choices, however, selecting an ap-
propriate application is not a trivial task. For example, in
November 2012, at least 1,000 applications could be found
when searching with the keyword “calculator” on Google
Play.

A simple but important criterion for selection of an ap-
plication is the set of features it provides. Investigating the
features by trying each application, however, is time con-
suming. Although documentation is an important source of
information, many applications are less than adequate in this
area.

MUDABlue [2] and LACT [3] are the solutions that en-
able users to focus on a set of similar applications. These ap-
proaches automatically categorize applications with similar
features based on characteristics of the source code. While
they can extract a set of similar applications, they cannot
show a list of the features provided by the applications in a
specific category.

In this study, we propose a semi-automatic approach to
extracting features from Android applications. The promise
of our proposed solution is that a feature can be associated
with a particular sequence of API calls. API calls are used
to control GUI components, network connections, and hard-
ware devices such as a camera, GPS, or touch screen. Al-

Manuscript received January 1, 2011.
Manuscript revised January 1, 2011.
†Graduate School of Information Science and Technology, Os-

aka University,
1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

a) E-mail: t-kanda@ist.osaka-u.ac.jp
b) E-mail: y-manabe@ist.osaka-u.ac.jp
c) E-mail: ishio@ist.osaka-u.ac.jp
d) E-mail: matusita@ist.osaka-u.ac.jp
e) E-mail: inoue@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.E0.D.1

though software developers can use arbitrary sequences of
API calls, we hypothesize that a popular feature of an ap-
plication is likely to be implemented by the same sequence
of API calls, since similar applications use the same set of
APIs [4]. In our proposed solution, therefore, we automati-
cally extract common sequences of API calls in two or more
applications, and manually associate each of these with a
feature name. We use the associations as a knowledge-base.
We then automatically extract API calls from other target
applications and, using our knowledge-base, output feature
names associated with the API calls.

It should be noted that this paper is a revised version
of our technical report [5]. The technical report describes
the detailed implementation of our method. We compare
extracted features from applications in this paper while we
compared sequence of API calls of applications directly in
the technical report, yet it does not affect the result of the
case study.

The next section describes the technical details of our
approach. Section 3 shows the results of a case study. In
Section 4, we conclude this article with a discussion of fu-
ture work.

2. Associating API Calls with Feature Names

The objective of our study is to extract a list of features
from multiple applications and build a knowledge-base. A
user can then more easily compare the features of two or
more applications. Our approach has two phases: build a
knowledge-base from a set of applications, and, using the
knowledge-base, extract and list the features from another
set of applications.

Our knowledge-base is defined as a set of associations
〈S , f 〉, where S is a sequence of API calls and f is a feature
name. We build a knowledge-base using the following three
steps.

Step 1 We translate each application into a set of se-
quences of API calls. As Android applications are written
in Java, we extract a sequence of Android API calls from
each method of the application. A method call is identi-
fied by its name and the receiver type declared in the source
code. We recognize an Android API as any method call
whose fully qualified class names start with “android.” or
“com.google.android.”. Figure 1 shows an example of a se-
quence of API calls extracted from a method in an applica-
tion. API calls in a sequence are sorted by line number. If

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

public void onClick(View v) {

String s = str.substring(2);

Intent intent=new Intent(this,com.example.edit.class);

startActivity(intent);

｝

android.content.Intent.<init>

android.app.Activity.startActivity

Source Code

API Calling 

Sequence

1

1

2

2

Fig. 1 Extracting sequences of API calls

two or more API calls are involved in a single line, they are
sorted in alphabetical order. As a result, N applications are
translated into sets Apps = {A1, · · · , AN}, where Ai is a set of
sequences of API calls extracted from the i-th application.

Step 2 We extract common sequences of API calls in-
volved in at least two applications as candidates for features.
We compute a set of common sequences as follows:

C =
∪

Ai,A j∈Apps,i, j

{LCS (s, t)|s ∈ Ai, t ∈ A j}

where LCS (s, t) is the longest common subsequence of two
sequences s and t. We exclude sequences that consist of
only a single API call from C. We denote the resultant set
by CommonAPI.

Step 3 We manually associate each sequence S in
CommonAPI with a feature name, f , and store the asso-
ciation 〈S , f 〉 in a knowledge-base. A feature name can
be associated with a sequence if the sequence controls a
particular device or system component, because application
features are often characterized by devices and components
used by the application.

We use the knowledge-base to translate API calls in a
target application into feature names. If an application in-
volves a sequence S ′, including a subsequence S , matching
an association 〈S , f 〉 in the knowledge base, we output f as
a feature of the application.

3. Case Study

We conducted a case study to evaluate whether our approach
could extract the features of applications. We collected 11
applications labeled “Map” in Google Code as shown in
Table 1. We built a knowledge-base from six applications
(KB1-KB6) and then used it to extract features from the re-
maining applications (T1-T5).

We extracted 156 common API calling sequences from
the six applications. The first author of this paper could as-
sociate names with 23 out of the 156 sequences. Table 2
shows an example of the sequences and their feature names.
The feature names simply describe what components are
controlled by the API sequences. In this example, “Alert di-
alog,” “Submenu,” and “Show Toast (pop-up message)” are
related to the user interface, while “Get Location” and “Set
Location” are related to map features. Using the knowledge-
base, we then extracted a list of features for each application
(T1-T5). Table 3 shows the features found in the target ap-
plications. From these results, without using the applica-
tions, we could observe that T1 and T5 can specify a loca-

tion on a map and that T2 is probably not a map viewer.
It should be noted, as we hypothesized, that 18 of the

23 identified API calling sequences are involved in at least
one target application. This result is promising because it in-
dicates that a small knowledge-base could cover the popular
features of many applications in the same category.

4. Conclusion

We proposed an approach to extracting features from an An-
droid application using a knowledge-base built from source
code of applications. The results of a case study showed
that our approach could extract features from an application
and list them in terms of devices and components used by
the applications. Although our approach is promising, we
were unable to represent the usage or purpose of the compo-
nents. We also could not recognize features implemented by
general-purpose GUI components. To resolve this problem,
we intend to enhance our approach using information about
data names and types used in applications. In addition, we
would like to use our approach to understand the variability
of software product lines in our future work.

Table 1 Applications used in the case study

ID Application name LOC #API calls
KB1 OpenGPSTracker 8122 1099
KB2 mapsforge 37326 1407
KB3 OSMandroid 3150 175
KB4 TripComputer 14487 825
KB5 shareyourdrive 2761 346
KB6 savage-router 1041 66
T1 MapDroid 6387 1160
T2 cycroid 1278 761
T3 yozi 5348 159
T4 maps-minus 1785 218
T5 BigPlanetTw 4139 432

Table 2 Example of sequence of API calls

Feature name Sequence of API calls

Alert dialog
android.app.AlertDialog.Builder.<init>
android.app.AlertDialog.Builder.setTitle

Get Location
android.location.Location.getLatitude
android.location.Location.getLongitude

Show toast
(pop-up message)

android.widget.Toast.makeText
android.widget.Toast.show

Set Location
android.location.Location.setLatitude
android.location.Location.setLongitude

Submenu
android.view.Menu.addSubMenu
android.view.SubMenu.setIcon

Table 3 Features identified in five applications

ID T1 T2 T3 T4 T5
Alert Dialog 3 3 3 3 3

Get Location 3 3 3 3
Show Toast
(pop-up message) 3 3 3 3

Set Location 3 3

Submenu 3



LETTER
3

Acknowledgement

This work was supported by JSPS KAKENHI Grant Num-
ber 23680001.

References

[1] “Android Apps in Google Play - The year of opportunity.” http://
commondatastorage.googleapis.com/io2012/presentations/

live%20to%20website/123.pdf.
[2] S. Kawaguchi, P.K. Garg, M. Matsushita, and K. Inoue, “MUD-

ABlue: An automatic categorization system for open source reposi-
tories,” Proc. Asia-Pacific Software Engineering Conference, pp.184–
193, Nov. 2004.

[3] K. Tian, M. Revelle, and D. Poshyvanyk, “Using latent Dirichlet al-
location for automatic categorization of software,” Proc. International
Working Conference on Mining Software Repositories, pp.163–166,
May 2009.

[4] C. McMillan, M. Linares-Vasquez, D. Poshyvanyk, and M. Grechanik,
“Categorizing software applications for maintenance,” Proc. Interna-
tional Conference on Software Maintenance, pp.343–352, Sept. 2011.

[5] T. Kanda, Y. Manabe, T. Ishio, M. Matsushita, and K. Inoue, “A pro-
totype of comparison tool for Android applications based on differ-
ence of API calling sequences,” IEICE Technical Report, SS2010-10,
vol.111, no.107, pp.35–40, Jun 2011.


