
Improving Code Review Effectiveness through
Reviewer Recommendations

Patanamon Thongtanunam*, Raula Gaikovina Kula†, Ana Erika Camargo Cruz*,
Norihiro Yoshida*, Hajimu Iida*

* Nara Institute of Science and Technology,
Japan

{patanamon-t,camago,yoshida}@is.naist.jp,
iida@itc.naist.jp

†Osaka University, Japan
raula-k@ist.osaka-u.ac.jp

ABSTRACT
Effectively performing code review increases the quality of
software and reduces occurrence of defects. However, this
requires reviewers with experiences and deep understandings
of system code. Manual selection of such reviewers can be
a costly and time-consuming task. To reduce this cost, we
propose a reviewer recommendation algorithm determining
file path similarity called FPS algorithm. Using three OSS
projects as case studies, FPS algorithm was accurate up
to 77.97%, which significantly outperformed the previous
approach.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Algorithm

Keywords
Peer Code Review; Recommendation System; Open Source
Software; Software Quality;

1. INTRODUCTION
Distributed software development, especially with global

collaboration through online tools, is increasingly used in
software firms [8]. This has led to the birth of a modern peer
code review process [2]. Modern peer code review is a tool-
supported review that currently used in both industrial and
Open Source Software (OSS) projects. This is an effective
technique for defect detection, which requires reviewers with
experience and a deep understanding of the related system
code [1]. However, in a much larger community and relatively
impersonal landscape of distributed software development,
manual selection of an appropriate reviewer can be a labored
and time-consuming task [6]. Thus, there is a growing need of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHASE ’14, June 2 – June 3, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2860-9/14/06 ...$15.00.

a support tool [7] to accommodate a wide range of knowledge
of developers in large scale projects.

Recently, a reviewer recommendation tool (called Review
Bot) has been proposed by Balachandran [3]. This tool is
developed to reduce human effort for modern peer code review
in the industrial setting of VMware. The recommendation
algorithm of this tool uses a source code change history, which
considers line-by-line code modification history. Appropriate
reviewers are distinguished as having recently examined the
same line in the history. Also, time prioritization was used
to improve the performance.

The Review Bot’s algorithm seems best suited to those
projects with frequent changes of source code. However, we
believe that this granularity of code change history can be
limited. Since modern peer code review is relatively new,
most projects that adopted this technique would already
be in the maintenance phase. This makes most of code
change history unavailable. Additionally attributes such as
its large-scale codebase as well as the many diverse global
development teams may be influencing factors. Therefore, it
is challenging to find appropriate reviewers for those projects
with lacking of code changes history.

In this paper, we propose a novel recommendation algo-
rithm, called File Path Similarity (FPS) algorithm. The
algorithm determines similarity of reviews based on the loca-
tion of changed file (file path). Our key assumption is that
files that are located in similar file paths would be managed
and reviewed by similar experienced expert code reviewers.
The motivation behind this is that in most large systems,
like the Linux kernel, the directory structure loosely mirrors
the system architecture and files with similar functions are
usually located in the same or near directories [4].

The performance of FPS algorithm was evaluated using
three distributed Open Source Software (OSS) projects: An-
droid Open Source Project (AOSP), OpenStack, and Qt. In
particular, we addressed the following research questions as
a guideline: RQ1.) Does FPS outperform the Review Bot’s
algorithm?, and RQ2.) Does a recent modification history
also influence the accuracy of the algorithms?.

We measured the accuracy of the algorithms for the top-1,
top-3 and top-5 recommendations at different time priorities.
Our findings confirmed that our FPS algorithm (accurate up
to 77.97%) outperformed Review Bot (accurate up to 38.9%).
The results suggest that in an distributed environment, the
analysis at the directory structure level is more effective than
at source code level. We believe that this study opens new in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CHASE’14, June 2 – June 3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2860-9/14/06...$15.00
http://dx.doi.org/10.1145/2593702.2593705

119

Author Modified
files

Review Request

List of Review Requests

Verifier
Code Reviewer

Approver

Review Request
Approver accepted
Verifier accepted

Code
Repository

Modified
filesModified

filesModified
files

Modified
filesModified

filesModified
files

Modified
files

Figure 1: Code Review Process of Gerrit (Simplified Version)

sights into reviewer recommendation systems for distributed
software projects.

2. MODERN PEER CODE REVIEW
A modern peer code review refers to a software inspection

method that is 1) informal (contrast to traditional method),
2) tool-based, and 3) currently used in both industrial and
OSS development [2]. Since practitioners of this method can
coordinate asynchronously through a review tool, the adop-
tion to distributed software development would be effortless.

The tool that our case study projects use is Gerrit1 The
process of this tool is shown Fig. 1. It begins with an author
creating a patch and submitting a set of new or modified files
as a review request to the system. This request is then added
to a awaiting list to be reviewed. An author can manually
assign reviewers to reduce the waiting time. However, the
assigned reviewers also can ultimately decide whether to
review the request, based on their experience and interests [9].
In Gerrit, the reviewers (i.e. Code reviewers, Approvers
and Verifiers) can examine the patch of a review request
with different permissions. Code reviewers can give opinion
and comments. Approvers mainly determine the quality
and impact of the changes. Verifiers are responsible for
integration testing, which is normally automated by Gerrit.
Code reviewers can be anyone in the project while approvers
and verifiers are experienced reviewers designated by project
leads. In the final step of the review process, a patch can
be merged into the projects only when the review request is
accepted by at least one approver and one verifier.

A code review will be effective if an author requests ap-
propriate reviewers. However, without information about
available reviewers in Gerrit, it is difficult for the authors
to select those reviewers. Therefore, an automatic reviewer
recommendation system should allow code reviews to be
performed with less time and effort.

3. REVIEWER RECOMMENDATION
Based on the assumption, FPS algorithm selects candi-

dates from reviewers who had examined files with similar
directory paths. Furthermore, this algorithm also uses time
prioritization in the same way as the Review Bot’s algorithm.
A detail of FPS algorithm is described in Algorithm 1. This
algorithm takes two inputs: a new review request (Rn) and
the number of top candidates (k) to be recommended. The

1
AOSP: https://android-review.googlesource.com, and

OpenStack: https://review.openstack.org, and

Qt: https://codereview.qt-project.org/

algorithm returns a list of the top-k candidates ordered by
their file path similarity scores.

Algorithm 1 RecommendReviewers(Rn, k)

1: candidates← list()
2: pastReviewList← getPastReviews(Rn)
3: m← 0
4: for Review Rp : pastReviewList do
5: score← FPS(Rn, Rp,m)
6: for Reviewer r : getReviewers(Rp) do
7: candidates[r]← candidates[r] + score
8: end for
9: m← m+ 1

10: end for
11: candidates.sort()
12: return candidates[0 : k]

In line 2, a list of past reviews of Rn is retrieved. The
past reviews in this list are the reviews that closed by either
being accepted or rejected, before the creation date of Rn.
This list is sorted by the creation date of the past reviews
in reverse chronological order. In line 3, the value of m is
initialized to zero. This variable help us to score past reviews
when time prioritization is considered; so that as its value
increases, the past review being scored is older and a minor
score is given. In lines 4-10, the FPS function is iterated
for every past review. In lines 6-8, for each past review, its
reviewers are retrieved and assigned as candidates. Their
scores are increased by the FPS score of this past review. In
line 11, the list of candidates is sorted in descending order
based on their scores. Line 12 returns the top k candidates
with the highest score from the sorted list.

The calculation of FPS function is described in Equation
1. This calculates a score of a past review (Rp) from an
average of similarity of every file in Rp (fp) comparing with
every file in Rn (fn). The Files function returns a set of file
paths of the input review. The Similarity(fn, fp) function
measures the similarity between fp and fn, using Equation 2.
The averaged similarity score is prioritized by m and δ value.
Same as time prioritization of the Review Bot’s algorithm,
the δ parameter is a time prioritization factor ranging (0, 1].
When δ = 1, the time prioritization is not considered.

FPS(Rn, Rp,m) =

∑
fn∈Files(Rn),
fp∈Files(Rp)

Similarity(fn, fp)

|Files(Rn)| × |Files(Rp)| × δm (1)

Similarity(fn, fp) =
commonPath(fn, fp)

max(Length(fn),Length(fp))
(2)

In Equation 2, the commonPath(fn, fp) function counts
the number of common directory and/or file name that ap-
pear in both file path from the beginning. This count is
based on the assumption that files, which are under the
same directory, would have the similar function. Thus, the
first directory of file paths is compared firstly. Then, the
other components of file path are compared respectively. For
example, suppose fn is /src/camera/video/a.java and fp
is /src/camera/photo/a.java. The common path will be
/src/camera and the commonPath(fn, fp) returns 2. The
count of commonPath(fn, fp) can be formularized as Equa-

120

tion 3, where the values of i and j are initial from 0.

commonPath(fn, fp, i, j) =

commonPath(fn, fp, i+ 1,
j + 1) + 1, if fn[i] = fp[j]

0 otherwise

(3)
Continuing to the previous example, the Similarity(fn, fp)

returns the value of common path number normalized by the
maximum length of these two file path, i.e. 2

max(4,4)
= 0.5

4. EXPERIMENT
The effectiveness of FPS algorithm and Review Bot algo-

rithm were measured using the same method as as the Review
Bot research [3], i.e. Top-k accuracy. For N review requests,
the Top-k accuracy can be calculated using Equation 4. A
recommendation is correct when at least one of the top k
recommended reviewers actually examined a review request.

Top-k Accuracy =
#correct top-k recommendations

N
×100%

(4)
The review histories of the case study projects were ob-

tained from Hamasaki et. al [5]. For the experiment, we
selected the reviews that a) are already closed ; b) have at
least one approver; and c) have at least one other file besides
the commit message file. Table 1 summarizes the data sets
used in our study.

Table 1: Summary of Data Sets

AOSP OpenStack Qt

Study Period 10/08 - 01/12 07/11 - 05/12 05/11 - 05/12
#Reviews 5,126 6,586 23,810
#Approvers 51 64 128
#Files 26,840 12,275 78,400

We evaluated the recommendation algorithms by perform-
ing recommendations for every review in chronological order.
In this study, both algorithms recommended candidates for a
review request by selecting only approvers who had examined
a review request in the past. This is because this kind of
reviewers is the most important reviewers in Gerrit system.
We measured the Top-1, Top-3, and Top-5 accuracy of the
algorithms with different δ values of time prioritization factor.
Table 2 lists an accuracy of both algorithms using the time
prioritization factors, δ = {1, 0.8, 0.6, 0.4, 0.2}.

4.1 Experimental Results
For RQ1: Does FPS outperform the Review Bot’s

algorithm?, the results indicate that FPS algorithm works
more effectively than the Review Bot’s algorithm. For AOSP,
FPS algorithm had the highest recommendation accuracy of
77.12 % while the Review Bot’s algorithm had the highest
recommendation accuracy of 29.30 %. For OpenStack, FPS
algorithm had the highest recommendation accuracy of 77.97
% while the Review Bot’s algorithm had the highest recom-
mendation accuracy of 38.90 %. However, for the relatively
larger project of Qt, neither of the two algorithms accurately
recommended reviewers. They only had the recommendation
accuracies of about 27-36%.

We used statistical test to determine if the recommendation
accuracy of FPS algorithm is higher than the recommenda-
tion accuracy of the Review Bot’s algorithm for all recom-

mendations. For the test, we determined Top-5 accuracy of
both algorithms where δ = 1 for every number of reviews.
The recommendation accuracy of both algorithms were plot-
ted in Fig. 2. In these charts, the x-axis represents the
number of reviews N that the algorithms had recommended.
The y-axis represents the accuracy calculated corresponding
to that number of reviews. We took a one-side statistical
test with null hypothesis H0: No statistical difference in
the recommendation accuracy percentages of both algorithms
and the greater case for alternative hypothesis. We used a
paired-wise Mann-Whitney significance test since the data
did not follow a normal distribution. From the tests against
all three projects, H0 can be rejected as their all p-values
are less than significant value, i.e. α < 0.05.

For RQ2: Does a recent modification history also
influence the accuracy of the algorithms?, the results
in Table 2 interestingly show that FPS algorithm without
time prioritization factor (δ = 1) achieved the highest rec-
ommendation accuracy. This was similar for the Review
Bot’s algorithm. Neither of time prioritization factors can
significantly increase the accuracy. This is surprising as
previous work did suggest a time prioritization (δ = 0.8)
yielded the best results. This finding indicates that in the
histories of these projects, an approver who would examine
the next review request was not necessary to be the recent
one. The reasons behind this phenomena could be interesting
future avenues of research. Possible future avenues could be
studying a review selection of reviewers along with the code
evolution as well as tangled code changes investigation to
improve our results.

According to the preliminary results, we were able to
answer our research questions as follows: For RQ1, we statis-
tically showed that our FPS algorithm outperformed the Bot
Review algorithm. For RQ2, we found that, in distributed
projects environment, the time prioritization factor did not
improve results.

4.2 Discussion
Limitation of Review Bot’s algorithm: As we conjectured,

the Review Bot’s algorithm had a poor performance due to
the lack of change lines histories. In examining the data
sets, we found that the line change histories of these projects
were relatively limited. For example, 80.62% of the files in
AOSP were modified only once. This was similar for both
OpenStack and Qt.

Limitation of FPS algorithm: For the poor performance of
our FPS algorithm in Qt, the cause can be from the file path
comparison of function commonPath(fn, fp, i, j) in Equation
3. We addressed this point because this calculation was
based on our assumption which possibly did not correspond
to directory structure of Qt. We plan to explore this to
improve our algorithm in our future work. Furthermore,
other unknown factors also can be involved for larger scale
project. Closer case by case analysis as well as peer review
interviews will be needed to better understand and improve
our method. We also need to investigation other large scale
projects for confirmation.

Repeating Recommended Reviewers: From the observation,
we found that some reviewers had examined a lot of review
requests. Since both algorithms recommend reviewer using
historical data, it is possible that those reviewers would
be frequently recommended. Consequently, they would be
burdened with a huge number of assigned review requests.

121

Table 2: Top-k accuracy of FPS algorithm and Review Bot’s algorithm with different time prioritization factors (δ)

Project Top-k
FPS Algorithm Review Bot’s Algorithm

δ = 1 δ = 0.8 δ = 0.6 δ = 0.4 δ = 0.2 δ = 1 δ = 0.8 δ = 0.6 δ = 0.4 δ = 0.2

AOSP
Top-1 41.81 % 40.50 % 39.21 % 38.29 % 21.30 % 21.38 % 21.63 % 21.71 % 21.77 % 44.50 %
Top-3 69.84 % 67.66 % 66.56 % 64.83 % 63.38 % 29.15 % 29.17 % 29.17 % 29.20 % 29.20 %
Top-5 77.12 % 75.30 % 74.17 % 72.36 % 70.80 % 29.30 % 29.30 % 29.30 % 29.30 % 29.30 %

OpenStack
Top-1 38.32 % 36.47 % 35.18 % 34.73 % 34.04 % 22.94 % 23.23 % 23.19 % 23.20 % 23.19 %
Top-3 67.57 % 63.09 % 62.45 % 62.10 % 61.66 % 35.76 % 35.76 % 35.68 % 35.55 % 35.53 %
Top-5 77.97 % 73.28 % 72.85 % 72.62 % 71.71 % 38.78 % 38.90 % 38.82 % 38.89 % 38.89 %

Qt
Top-1 13.02 % 11.64 % 10.21 % 9.45 % 8.88 % 18.64 % 18.70 % 18.72 % 18.71 % 18.75 %
Top-3 28.82 % 21.39 % 20.15 % 19.27 % 18.46 % 26.18 % 26.19 % 26.16 % 26.16 % 26.16 %
Top-5 36.86 % 27.25 % 26.07 % 25.34 % 24.36 % 27.18 % 27.18 % 27.17 % 27.19 % 27.19 %

0 1000 2000 3000 4000 5000

0
20

40
60

80

Number of Reviews (N)

Ac
cu

ra
cy

 (%
)

FPS Algorithm
Review Bot's Algorithm

(a) AOSP

0 1000 2000 3000 4000 5000 6000

0
20

40
60

80

Number of Reviews (N)

Ac
cu

ra
cy

 (%
)

FPS Algorithm
Review Bot's Algorithm

(b) OpenStack

0 5000 10000 15000 20000

0
20

40
60

80

Number of Reviews (N)

Ac
cu

ra
cy

 (%
)

FPS Algorithm
Review Bot's Algorithm

(c) Qt

Figure 2: Top-5 accuracy of FPS algorithm and Review Bot’s algorithm with time prioritization factor (δ = 1)

Thus, considering workload balancing would reduce tasks of
these potential reviewers as well as the number of awaiting
reviews.

5. CONCLUSION & FUTURE WORKS
In this study, we have proposed a recommendation algo-

rithm using file path similarity for the modern peer code
review process. The results indicate that our proposed FPS
algorithm effectively recommend reviewers in two of the
three OSS projects. This algorithm also significantly outper-
form the existing algorithm (i.e. Review Bot’s algorithm) in
these projects. Additionally, we found that the used of time
prioritization was surprisingly not appropriate for the recom-
mendation algorithms in distributed projects environment.

Our future work will concentrate on explore more insight
into projects, especially large scale projects to improve the
algorithm. Other evaluations will also be considered to
measure the performance of the recommendation algorithms
in other aspect besides the accuracy. At the same time, we
will consider ways to balance the workload of reviewers to
help reviewers and reduce the number of awaiting reviews.

ACKNOWLEDGMENTS
We are thankful to Dr. Mike Barker from NAIST for his
valuable suggestions and discussions.

6. REFERENCES
[1] A. Aurum, H. Petersson, and C. Wohlin. State-of-the-art:

software inspections after 25 years. Software Testing,
Verification and Reliability, 12(3):133–154, Sept. 2002.

[2] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proc. ICSE ’13,
pages 712–721, 2013.

[3] V. Balachandran. Reducing Human Effort and
Improving Quality in Peer Code Reviews using
Automatic Static Analysis and Reviewer
Recommendation. In Proc. ICSE ’13, pages 931–940,
2013.

[4] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M.
German, and P. Devanbu. Cohesive and Isolated
Development with Branches. In Proc. FASE ’12, pages
316–331, 2012.

[5] K. Hamasaki, R. G. Kula, N. Yoshida, C. C. A. Erika,
K. Fujiwara, and H. Iida. Who does what during a Code
Review ? An extraction of an OSS Peer Review
Repository. In Proc. MSR’ 13, pages 49–52, 2013.

[6] E. Kocaguneli, T. Zimmermann, C. Bird, N. Nagappan,
and T. Menzies. Distributed development considered
harmful? In Proc. ICSE ’13, pages 882–890, 2013.

[7] A. Mockus and J. Herbsleb. Expertise Browser: a
quantitative approach to identifying expertise. In Proc.
ICSE ’02, pages 503–512, 2002.

[8] N. Ramasubbu and R. K. Balan. Globally Distributed
Software Development Project Performance : An
Empirical Analysis. In Proc. ESEC/FSE ’07, pages
125–134, 2007.

[9] P. C. Rigby and M.-A. Storey. Understanding broadcast
based peer review on open source software projects. In
Proc. ICSE ’11, pages 541–550, 2011.

122

