
The EKEKO/X Program Transformation Tool
Coen De Roover†∗ and Katsuro Inoue†

†Software Engineering Laboratory, Osaka University, Osaka, Japan
∗Software Languages Lab, Vrije Universiteit Brussel, Brussels, Belgium

Email: cderoove@vub.ac.be, inoue@ist.osaka-u.ac.jp

Abstract—Developers often need to perform repetitive changes
to source code. For instance, to repair several instances of a bug
or to update all clients of a library to a newer version. Manually
performing such changes is laborious and error-prone. Program
transformation tools enable automating changes, but specifying
changes as a program transformation requires significant ex-
pertise. Code templates are often touted as a remedy, yet have
never been endorsed wholeheartedly. Their use is mostly limited
to expressing the syntactic characteristics of the intended change
subjects. Less familiar means have to be resorted to for expressing
their structural, control flow, and data flow characteristics. In this
tool paper, we introduce a decidedly template-driven program
transformation tool called EKEKO/X. Its specifications feature
templates for specifying all of the aforementioned characteristics
of its subjects. To this end, developers can associate different di-
rectives with individual components of a template. Each matching
directive imposes particular constraints on the matches for the
component it is associated with. Rewriting directives, on the other
hand, determine how each match should be changed. We develop
EKEKO/X from the ground up, starting from its applicative logic
meta-programming foundation. We highlight the key choices in
this implementation and demonstrate its use through two example
program transformations.

I. INTRODUCTION

Manually performing similar changes to dispersed locations
in the source code can be laborious and error-prone. Some of
the required changes may be overlooked, and some unwar-
ranted changes may be performed. Program transformation
tools enable automating changes, but specifying changes as
a program transformation requires significant expertise.

In this paper, we introduce EKEKO/X as a new Eclipse plu-
gin for transforming Java programs.1 As in most approaches
to program transformation, its specifications consist of a left-
hand side (LHS) and a right-hand side (RHS) component.
The left-hand side component identifies the subjects of the
transformation, while the right-hand side component defines
how each identified subject should be changed. EKEKO/X
specifications are decidedly template-driven. On the right-
hand side, code templates are used as intuitive short-hands for
complex code generation expressions. On the left-hand side,
code templates are used to specify the characteristics of the
intended transformation subjects. These subjects correspond to
the matches in the source code for each code template.

II. AN APPLICATIVE LOGIC FOUNDATION

EKEKO/X owes its peculiar name to the Clojure library on
top of which it is implemented. EKEKO [1] enables querying

1The implementation of EKEKO/X and a video demonstration is available
at https://github.com/cderoove/damp.ekeko.snippets.

and manipulating an Eclipse workspace using logic queries
that are embedded in functional expressions. To this end,
it provides a comprehensive collection of both declarative
predicates and functions that abstract over the low-level APIs
of the Eclipse platform. Recent applications of EKEKO include
detecting suspicious aspect-oriented code [2] and detecting
fine-grained evolutions of versioned code [3]. In this section,
we demonstrate how EKEKO also lends itself to providing the
foundation for a program transformation tool.

The following listing depicts the typical implementation
of a straightforward program transformation in EKEKO. The
transformation is to wrap int-valued arguments to invoca-
tions of a method setAge in an explicit Integer object.
For instance, this.setAge(age++) should be changed into
this.setAge(new Integer(age++)) provided that age++ is
an int-valued expression. We will build EKEKO/X from the
ground up illustrating the shortcomings and advantages of its
intermediate stages using this running example.

(doseq [[subject &rest] 1

(ekeko [?subject ?name ?inv] 2

(ast :MethodInvocation ?inv) 3

(has :name ?inv ?name) 4

(name|simple-string ?name "setAge") 5

(child :arguments ?inv ?subject) 6

(ast|expression-type|primitive ?subject "int"))] 7

(replace-node 8

subject 9

(newast :ClassInstanceCreation 10

:arguments (list subject) 11

:type (newast :SimpleType 12

:name 13

(newast :SimpleName 14

:identifier "Integer"))))) 15

A. Identifying Transformation Subjects

The ekeko special form on line 2 launches a logic query
that identifies the subjects of this transformation. It takes a
vector of meta-variables, each denoted by a starting ques-
tion mark, followed by a sequence of logic goals. Solu-
tions to the query consist of the different bindings for its
meta-variables such that all logic goals succeed. Internally,
the EKEKO engine performs an exploration of all possible
results, using backtracking to yield the different bindings
for the meta-variables in the query. Evaluated against the
above example, the query’s solutions would include a 3-tuple
[age++ setAge this.setAge(age++)].

The goals of the query bind ?inv to a MethodInvocation

from the program under transformation (line 3) such that ?name
is the value of its name property (line 4) and ?subject is

an element of its list-valued arguments property (line 6). To
this end, each goal uses a logic predicate from the EKEKO
library that reifies a syntactic relation about the program under
transformation. Binary predicate ast/2 reifies the relation of
all AST nodes of a particular type, denoted by the capitalized
name of the node’s class. Ternary predicate has/3 reifies the
relation between an AST node and the value of one of its
properties, denoted by the uncapitalized name of the property.

EKEKO provides similar logic predicates that reify struc-
tural, control flow and data flow relations. For instance, binary
predicate ast|expression-type|primitive/2 is used on line
7 to further restrict ?subject to an int-valued expression.2

The EKEKO library is accompanied by an Eclipse plugin that
maintains each of these relations by continuously listening
for developer changes. As a result, the information about the
program under transformation is always up-to-date.

B. Changing Transformation Subjects

A Clojure expression of the form (doseq [<el>

<exp_coll>] <body_exp>) surrounds the logic query. It
evaluates <body_exp> for every element <el> in the collection
<exp_coll>. In our case, <exp_coll> corresponds to the
solutions for the logic query (lines 2–7); a collection of
3-tuples of which the first attribute is to be changed by the
transformation. Within <body_exp> (lines 8–15), the Clojure
destructuring form [subject &rest] (line 1) binds Clojure
variable subject to this attribute of each solution tuple. This
enables changing the subject using functions replace-node

and newast provided by the EKEKO library.
Like the aforementioned predicates, these functions take the

names of classes that are to be instantiated and the names of
properties that are to be assigned. Together, they provide a
functional interface to the Eclipse rewriting API. Note that
these functions stage their changes in a so-called ASTRewrite

until the user calls apply-and-reset-rewrites. It is only at
that point that the source code of the program is actually
changed. In turn, these changes will trigger the EKEKO plugin
to update its relations for subsequent logic queries.

C. The Need for Expressive Code Templates

Expertise is required to implement a program transformation
using the predicates and functions provided by the EKEKO
library. While logic and functional programming can be ef-
fective for specifying the characteristics of and changes to the
subjects of a transformation, it is far from intuitive.

Some predicates and functions even expose implementation
details to the user. In our running example, this was the case
for the predicates ast/2, has/3, and child/3. They require
an intricate familiarity with the abstract grammar used by the
Eclipse JDT for AST nodes. The :MethodInvocation node
bound to ?inv on line 12, for instance, does not have a property
named :identifier. The same goes for the functions that
provide an interface to the rewrite API. For instance, only a

2The names of predicates that reify an n-ary relation consist of n compo-
nents separated by a -, each describing an element of the relation. Vertical
bars | separate words within the description of a single component.

:SimpleName node can be used as the value for the :name

property of the newly created :SimpleType node on line 12.
To remedy this shortcoming, a great deal of query and

transformation tools incorporate concrete syntax of the pro-
gram under investigation [4], [5], [6], [7], [8], [9], [10],
[11]. However, code templates are seldomly used to specify
non-syntactic characteristics of source code. For instance, to
specify that an invocation should call a particular method or
that a variable should refer to a particular field. The query
tool SOUL [12], the predecessor to EKEKO, is a notable
exception. It features a very lenient matching strategy such
that code templates also match implementation variants of
their structural, control flow and data flow characteristics. To
prevent unwarranted changes, however, a transformation tool
requires a means for developers to exert more control over the
way templates are matched.

III. TOWARDS TEMPLATE-DRIVEN TRANSFORMATION

EKEKO/X extends EKEKO with a logic goal
(match <ast> <template>) that is satisfied for every <ast>

from the program under transformation that matches the given
code <template>. Here, <template>3 is concrete syntax (e.g.,
a snippet of Java code) in which meta-variables substitute for
unknowns. Using a code template, our running example can
be re-specified as follows. Here, change-int-to-integer is
a function of which the body corresponds to lines 8–15 of
the original Clojure expression:
(doseq [[subject &rest] 1

(ekeko [?subject ?inv ?exp] 2

(match ?inv "?exp.setAge(?subject)"))] 3

(change-int-to-integer subject)) 4

In solutions to the query on lines 2–3, ?inv will be bound to an
invocation of a method setAge of which ?exp is the receiver
and ?subject is the single argument. They would, for instance,
include the 3-tuple [age++ this this.setAge(age++)].

A. Matching Directives for LHS Templates

Whether an AST node matches a code template depends on
particular matching strategy. EKEKO/X enables specifying a
matching strategy as a combination of separate directives.

The default matching strategy, for instance, establishes a
tree homomorphism between a node Np of the program (with
parent node Pp) and a node Nt of the template (with parent
node Pt). It consists out of directives child/0 and match/0.
Directive child/0 is satisfied when Pp matches Pt, and Np is
the value of the corresponding node-valued property of Pp.4

Directive match/0 is satisfied when both nodes are of the
same type, and their non-node valued properties have the same
value. For every template node, match/0 filters out unwanted
matches from the candidates retrieved from the program’s
source code by child/0.

Additional matching directives <directive-name> or
(<directive-name> <arg1> ...<argn) can be associated

3In this section, we render code templates as code between string delimiters.
Section IV discusses how the actual rendering is malleable.

4Any node of the same type is a candidate match for the template’s root.

with individual components of a template using a
[<component>]@[<directive1> ...<directiven>] syntax:
(doseq [[subject &rest] 1

(ekeko [?subject ?inv ?exp] 2

(match ?inv 3

"[?exp]@[orimplicit].setAge(?subject)"))] 4

(change-int-to-integer subject)) 5

Here, we have added an orimplicit/0 directive that
overrides the default match/0 strategy for invocation
receivers. Indeed, the dot in the concrete syntax
"?receiver.setAge(?subject)" inherently disallows
matches without a receiver. The newly-added constraint
ensures that a method invocation setAge(5) with an implicit
this receiver will match our code template.

Table I lists some representative matching directives cover-
ing the different kinds of source code characteristics. We will
discuss examples of their use in Section V.

B. Rewriting Directives for RHS Templates

Similar ideas can be transposed to the right-hand
side of a transformation specification. Here, templates
serve as intuitive short-hands for expressions that generate
code. To this end, EKEKO/X provides a Clojure function
(instantiate <SUBST> <RHS-1> ... <RHS-n>) that takes a
substitution (i.e., a map from meta-variables to their binding)
and a variable amount of right-hand side templates. It instanti-
ates these templates by invoking EKEKO’s functional interface
to the Eclipse ASTRewrite API in a recursive descent through
each template. This results in calls similar to those on lines
10–15 of the plain EKEKO specification in Section II.

Instantiation of meta-variables within a template is delayed
until the other elements of all templates have been instantiated.
This is because the binding for meta-variables within an RHS
template either stem from the match for a LHS template (i.e.,
the initial substitution argument to the function), or from the
code that is to be instantiated for another RHS template. As
such, a meta-variable in the first RHS template might receive
its binding from the instantiation of the last RHS template.

To specify where the generated code should be inserted,
rewriting directives can be associated with the root of a RHS
template. The syntax is the same as for the matching directives
on the LHS. In general, rewriting directives take a single meta-
variable as their argument. Examples include (replace ?var)

or (add-element ?lstvar) which respectively result in their
argument being replaced by or being extended with the in-
stantiation of the template they are associated with. A single
matching directive, (equals ?var), is supported within RHS
templates to bind ?var to a node within the instantiated code.
Section V discusses examples of its use.

C. Template-Driven Transformation Specifications

A Clojure macro (ekeko/x <LHS-1> ... <LHS-n> =>

<RHS-1> ... <RHS-n>) renders the final specification for our
running example more succinct:
(ekeko/x 1

[...]@[orimplicit].setAge([?s]@[(type|sname "int")]) 2

=> 3

[new Integer(?s)]@[(replace ?s)]) 4

Fig. 1: Our editor on a LHS template and its matches.

This macro performs the changes specified by its second
argument <RHS> to all matches for its first argument <LHS>.
To this end, it merely has to expand into the familiar doseq-
expression with the appropriate meta-variable declarations.

Note that apart from meta-variables, some non-Java syntax
is allowed within LHS templates. Above, a wildcard ...

substitutes for the actual receiver of the method invocation.
Such a wildcard matches any node from the base program,
eliminating an otherwise unused meta-variable.

IV. IMPLEMENTATION HIGHLIGHTS OF THE TOOL

Before illustrating the use of EKEKO/X, we briefly highlight
and motivate some key choices in its implementation.

A. Implemented as an Extension to EKEKO

First, as evidenced by the intermediate stages of our running
example, we opted to implement EKEKO/X by extending
EKEKO rather than merely building on top of it. As a result,
functional and logic programming can be resorted to wherever
the default EKEKO/X semantics fall short. This also facilitates
implementing alternative template matching and transforma-
tion application strategies.

Both the match goal (cf. Section III-A) and the instantiate

function (cf. Section III-B) of EKEKO/X are expanded at
compile-time into invocations of the logic predicates and
functions provided by EKEKO. The matching and rewriting di-
rectives within the respective templates control the expansion.
To this end, we perform a recursive descent through a tem-
plate and ask the directives associated with each encountered
template element to expand themselves in the context of the
element and the template. Clojure’s support for manipulating
symbolic expressions (i.e., its syntax-quote, unquote and splic-
ing constructs) greatly facilitates such code generation tasks.
In fact, new directives can be added easily.

B. Implemented without a Template Parser

Second, to speed up prototyping, we wanted to avoid
committing to a particular syntax for templates early on. We

Directive Template element Constraints on match for template element.
child, child+, child* Any Match is the corresponding child of the parent match, nested within that child (+), or either (*).
(equals ?var) Any Match unifies with the given meta-variable. Used to expose the match for the template element.
match Any Type of match and its non-node valued properties are the same.
orimplicit Invocation receiver As above, except that implicit this-receivers also match.
orsimple Qualified name As above, but unqualified package or type names that resolve to the name in the template match.
match|set List List of which the elements match a set corresponding to the template element.
match|regexp List List of which the elements match a regular expression corresponding to the template element.
match|regexp-path Statement list List of which the elements match a path through the control flow graph for the template element.
(multiplicity +/*/n) Regexp list element Multiplicity of matches within a regexp-matched list: at least one (+), 0 or more (*), exactly n.
(type ?type)
(type|sname <string>),
(type|qname <string>)

Type or variable decla-
ration or reference, ex-
pression

Match resolves to or declares the type, declares or references a variable of the type, or is an
expression of the given type ?type or its simple or qualified name <string>.

(subtype+ ?type), . . . As above Same as above, except that the match is required to resolve to a transitive subtype of the argument.
(subtype* ?type), . . . As above Same as above, except that the match is required to resolve to a reflexive transitive subtype.
(refers-to ?var) Expression Match lexically refers to a local variable, parameter or field denoted by the argument.
(referred-by ?exp) Variable Match declares a local variable, parameter or field lexically reffered to by the expression denoted

by its argument.
(invokes ?method),
(invokes|qname <string>)

Invocation Match is a (super/constructor) invocation that invokes the given argument according to the
declared static type of its receiver.

(invoked-by ?inv) Method, constructor Inverse of the above.
(may-alias ?exporvar) Expression, variable Match may alias the given expression or variable, according to an intra-procedural analysis.

TABLE I: Representative matching directives, the template elements they can be applied to, and the constraints they impose.

forwent developing a template parser altogether. Instead, we
implemented code templates as a data structure that wraps a
regular abstract syntax tree provided by the Eclipse JDT parser.
This data structure maps each template element to a hidden
match meta-variable and to a list of matching or rewriting
directives. Expanding the latter, at compile-time, results in an
expression that will, at run-time, bind the former to the match
or the instantiation for the template element.

Of course, transformation specifications still need to be
created, edited and persisted. We therefore developed an
Eclipse plugin that enables users to create a LHS or RHS
template from a selected code snippet. Matching and rewrit-
ing directives can be associated with the elements of the
resulting specification which, in turn, is pretty-printed to the
particular concrete syntax used throughout this paper. The
default matching directives are not printed. Figure 1 depicts the
transformation editor on a LHS template "regexp.ekt" that
uses regular expression matching (cf. Table I) to bind ?s to
any statement within the body of an acceptVisitor method.

The editor at the top of the screenshot highlights the
currently selected template element in yellow. To change this
element or its matching directives, users can select and apply
an operator from the bottom-left view. To test the result-
ing template, users can match it against the program under
transformation at any time. The bottom-right view depicts the
current matches. Once the users are satisfied that these matches
are correct, they can have the transformation applied according
to their RHS templates. We do not yet support a preview of
the actual changes, but our use of the ASTRewrite API enables
doing so in the future using the conventional Eclipse dialogs.

Persisting transformation specifications requires persisting
the AST nodes that underlie their LHS and RHS templates,
something the Eclipse JDT does not support. However, Clojure
supports extending its persistency protocol to existing Java
hierarchies. Doing so, we are able to read and write specifi-
cations from the Clojure run-time, enabling the functionality

demonstrated in the previous section:
(let [template (slurp "regexp.ekt")] 1

(ekeko [?method] (match ?method template))) 2

Note that our plugin supports editing and applying all trans-
formations supported by the ekeko/x macro of the previous
section, without exposing developers to Clojure. To this end,
its graphical user interface calls back into Clojure.

V. EXAMPLE TRANSFORMATIONS USING EKEKO/X

We illustrate EKEKO/X using examples of repetitive
changes that the first author had to perform while contributing
to a change-centric software meta-model [13].

A. Example: Adding Type Parameters

Figure 2 illustrates the particular changes that need to be
performed for the first example. The raw Identifier type of
those fields that carry an @EntityProperty annotation, is to
receive a type parameter that corresponds to the annotation’s
value key. We will develop the EKEKO/X transformation that
automates these changes in an incremental manner.

Figure 3 depicts the initial specification for this example.
Lines 1–2 correspond to its LHS, while line 4 corresponds
to its RHS. The single template on the LHS matches the
field declarations of which the type is to change. Such
declarations have the appropriate annotation among their list
of annotations. Line 1 therefore uses directive match|set to
allow matches with additional annotations in any order. Meta-
variable ?annoType corresponds to the type parameter that is
to be used for the new type of the field declaration. Meta-
variable ?fieldType corresponds to the old type that is to be
replaced. It is bound through matching directive equals. The
RHS of the specification instantiates its single template to a
new parameterized type and replaces the ?fieldType with it
through rewriting directive replace.

Figure 4 depicts a more refined version of this specification
that also changes the getter and setter methods for the field
accordingly. To this end, it groups these declarations together

//Before changes: 1

@EntityProperty(value = SimpleName.class) 2

private Identifier label; 3

//After changes: 4

@EntityProperty(value = SimpleName.class) 5

private Identifier<SimpleName> label; 6

Fig. 2: Example of changes for the type parameter case.

[@EntityProperty(value=?annoType.class)]@[match|set] 1

[Identifier]@[(equals ?fieldType)] ...; 2

=> 3

[Identifier<?annoType>]@[(replace ?fieldType)] 4

Fig. 3: Initial specification for the type parameter case.

in the body declarations of class. The match|set directive is
used once more to ensure that matches can feature additional
declarations in any order. A single class can therefore feature
as the match for the LHS template multiple times, once for
each 3-tuple of a field and its accessor methods. Lines 5 and
9 rely on the refers-to directive to ensure that the getter and
setter actually operate upon the ?field that matches line 3.
Lines 4 and 7 respectively extract their return and parameter
type, which receive a type parameter on lines 14 and 15. The
deep matching directives child* on lines 3, 4, 7 ensure that
the types of the form List<Identifier> in the program also
match the Identifier types in the template.

B. Example: Generating a Visitor for a Class Hierarchy

Figure 5 illustrates the repetitive changes that need to
be performed when implementing a Visitor for the same
class hierarchy. Every class in the ASTNode hierarchy is to
receive a acceptVisitor method that double dispatches to a
corresponding visit<Class> method that is to be declared in
an existing, but empty IASTVisitor interface. Note that this
requires changing the import declarations of the compilation
units in which these classes reside.

Figure 6 depicts the EKEKO/X specification that automates
these changes. Both its LHS and RHS consist of multiple
templates. The template on lines 1–3 identifies the classes in
our hierarchy and binds them and their list of body declarations
to ?visited and ?bodyVisited respectively. To this end, the

... class ... { 1

[@...(value=?annoType.class) 2

private [Identifier]@[child* (equals ?fieldType)] ?field; 3

public [Identifier]@[child* (equals ?returnType)] ...(){ 4

return [...]@[(refers-to ?field)]; 5

} 6

public void ...([Identifier]@[child* (equals ?paramType)] 7

?param){ 8

[...]@[(refers-to ?field)]=[...]@[(refers-to ?param)]; 9

} 10

]@[match|set]} 11

=> 12

[Identifier<?annoType>]@[(replace ?fieldType)] 13

[Identifier<?annoType>]@[(replace ?returnType)] 14

[Identifier<?annoType>]@[(replace ?paramType)] 15

Fig. 4: Final specification for the type parameter case.

//Visitor compilation unit after changes: 1

import be.ac.chaq.model.ast.java.visitor.IASTVisitor; 2

public class BreakStatement extends Statement { 3

public void acceptVisitor(IASTVisitor visitor){ 4

visitor.visitBreakStatement(this); 5

} //... 6

} 7

//Visited compilation units after changes: 8

import be.ac.chaq.model.ast.java.BreakStatement; 9

public interface IASTVisitor { 10

public void visitBreakStatement(BreakStatement o); //... 11

} 12

Fig. 5: Example of changes for the visitor case.

[public class ?visitedName 1

extends [...]@[(subtype*|sname ASTNode)] 2

?bodyVisited]@[(equals ?visited)] 3

package be.ac.chaq.model.ast.java; 4

?visitedImports 5

[?visited]@[match|set] 6

package be.ac.chaq.model.ast.java.visitor; 7

?visitorImports 8

public interface IASTVisitor { 9

} 10

=> 11

[public void acceptVisitor(IASTVisitor visitor){ 12

visitor.(str "visit" ?visitedName)(this); 13

} 14

]@[(add-element ?bodyVisited)] 15

[import be.ac.chaq.model.ast.java.visitor.IASTVisitor;] 16

@[(add-element ?visitedImports)] 17

[import be.ac.chaq.model.ast.java.?visitedName;] 18

@[(add-element ?visitorImports)] 19

[public void (str "visit" ?visitedName)(?visitedName o);] 20

@[(add-element ?bodyVisitor)] 21

Fig. 6: Specification for the visitor case.

wildcard on line 2 substitutes for the type extended by the
class, which matching directive subtype*|sname requires to be
a subtype of ASTNode or ASTNode itself. The template on lines
4–6 matches the compilation unit that declares this ?visited

class, together with its import declarations. Note that we could
have also put lines 1–3 inside this template, similarly to the
previous example. We chose not to in order to demonstrate
how meta-variables can be used to compose templates.

The RHS of the specification uses the add-element rewrit-
ing directive to add the required method and import declara-
tions. Some of these templates feature a Clojure expression
that substitutes for a regular node. For instance, expression
(str "visit" ?visitedName) evaluates to a string for the
name of the method that is to be added to the visitor for
each visited class. Users are responsible for ensuring that such
expressions evaluate to a syntactically valid replacement value.

VI. RELATED WORK

Language-wise, the JUNGL [14] transformation language
is closely related. It also advocates the use of functional pro-
gramming (ML) for changing subjects identified through logic
programming (Datalog), but does not feature code templates.
It incorporates regular expressions over the paths through a
control flow graph to express control flow characteristics. Our
code templates support matching directive match|regexp-path

on statement lists to this end, using an EKEKO-based imple-
mentation [3] of path logic programming [15].

Purely functional or procedural transformation languages
have been proposed as well. Famous examples include
ASF [4], Stratego [5], and TXL [6]. Support for code tem-
plates in these systems is limited to syntactic characteristics.
Purely logic-based transformation languages include JTL [9]
and JTRANSFORMER [8]. JTL features a Java-like surface
syntax for specifying syntactic and structural characteristics.
However, none but the simplest specifications resemble actual
Java code. JTRANSFORMER embeds actual code templates
within logic formulas, but lacks the matching directives to
support anything but syntactic characteristics. It also operates
upon a logic fact base representing the program under trans-
formation rather than the program itself. EKEKO’s symbiosis
with Eclipse [1] allows us to forego such an indirection.

Tool-wise, IXJ [10] for Java is the most closely related.
Transformations are specified through an editor that visual-
izes the abstract grammar of code templates created from
an initial code snippet. The editor features operations for
introducing wildcards and meta-variables in a template, upon
which a limited set of mostly type-related constraints can be
imposed. As such, these templates lend themselves only to
specifying syntactic characteristics of individual expressions or
statements. Change actions are specified inline as after states
for individual template elements, rather than through a rule
with a LHS and RHS template. This limits its applicability to
one-to-one rewrites of smaller code elements.

CHANGEFACTORY [11] for Smalltalk is also closely related
tool-wise, while featuring transformation rules. These are
specified through an editor starting from a recorded developer
change. The subject of such a change is used as the seed for
a code template, which can be refined by introducing meta-
variables, wildcards and a limited set of syntactic matching
directives. Support for changing the recorded changes them-
selves is limited.

The COCCINELLE [16] tool adopts the syntax of Unix
patches with meta-variables for transformation specifications.
A flow-based matching ensures that a single patch can be ap-
plied correctly to similar source code files. However, coarser-
grained changes dispersed over several code elements such
as required for a refactoring are not supported. More recently,
several tools have been investigated for automatically inferring
patch-like transformations from manually performed changes.
We refer the reader to Kim et al. [17] for a recent survey.

VII. CONCLUSION

In this tool paper, we built EKEKO/X from the ground up
starting from its applicative logic meta-programming foun-
dation. Unique to EKEKO/X are its matching directives that
provide fine-grained control over the way individual template
elements are matched. We conjecture that these facilitate spec-
ifying transformations, starting from the code for an example
subject and iteratively refining the resulting specification. We
are currently exploring their benefits in the context of auto-
matically generalizing recorded changes into a transformation.

ACKNOWLEDGMENTS

We thank Siltvani for her contributions to an early prototype
in the context of her master’s thesis [18]. This work has been
supported, in part, by the Japan Society for the Promotion of Science,
Kakenhi Kiban (S), No.25220003, by the Osaka University Program
for Promoting International Joint Research, and by the Cha-Q project
of the Flemish agency for Innovation by Science and Technology.

REFERENCES

[1] C. De Roover and R. Stevens, “Building development tools interactively
using the Ekeko meta-programming library,” in Proceedings of the IEEE
CSMR-WCRE 2014 Software Evolution Week, Tool Demo Track (CSMR-
WCRE14), 2014.

[2] J. Fabry, C. De Roover, and V. Jonckers, “Aspectual source code
analysis with GASR,” in Proceedings of the 13th International Working
Conference on Source Code Analysis and Manipulation (SCAM13),
2013.

[3] R. Stevens, C. De Roover, C. Noguera, and V. Jonckers, “A history
querying tool and its application to detect multi-version refactorings,” in
Proceedings of the 17th European Conference on Software Maintenance
and Reengineering (CSMR13), 2013.

[4] M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier, “Com-
piling language definitions: the ASF+SDF compiler,” ACM Transactions
on Programming Languages and Systems, vol. 24, no. 4, 2002.

[5] E. Visser, “Program transformation with Stratego/XT,” in Domain-
Specific Program Generation, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2004, vol. 3016.

[6] J. R. Cordy, “The TXL source transformation language,” Science of
Computer Programming, vol. 61, no. 3, 2006.

[7] Y. Padioleau, J. L. Lawall, and G. Muller, “SmPL: A domain-specific
language for specifying collateral evolutions in linux device drivers,”
Electronic Notes in Theoretical Computer Science, vol. 166, 2006.

[8] G. Kniesel, J. Hannemann, and T. Rho, “A comparison of logic-based
infrastructures for concern detection and extraction,” in Proceedings of
the 3rd Workshop on Linking aspect technology and evolution (LATE07),
2007.

[9] T. Cohen, J. Y. Gil, and I. Maman, “Guarded program transformations
using JTL,” in Proceedings of the 46th International Conference on
Objects, Models, Components and Patterns (TOOLS08), 2008.

[10] M. Boshernitsan, S. L. Graham, and M. A. Hearst, “Aligning develop-
ment tools with the way programmers think about code changes,” in
Proceedings of the SIGCHI conference on Human factors in computing
systems, 2007.

[11] R. Robbes and M. Lanza, “Example-based program transformation,”
in Proceedings of the 11th international conference on Model Driven
Engineering Languages and Systems (MODELS08), 2008.

[12] C. De Roover, C. Noguera, A. Kellens, and V. Jonckers, “The SOUL tool
suite for querying programs in symbiosis with eclipse,” in Proceedings
of the 9th International Conference on the Principles and Practice of
Programming in Java (PPPJ11), 2011.

[13] C. De Roover, C. Scholliers, V. Jonckers, J. Pérez, A. Murgia, and
S. Demeyer, “The implementation of the Cha-Q meta-model: A com-
prehensive, change-centric software representation,” in Proceedings of
the 8th International Workshop on Software Quality (SQM14), 2014.

[14] M. Verbaere, R. Ettinger, and O. de Moor, “JunGL: a scripting language
for refactoring,” in Proceedings of the 28th International Conference on
Software Engineering (ICSE06), 2006.

[15] S. Drape, O. de Moor, and G. Sittampalam, “Transforming the .NET
intermediate language using path logic programming,” in Proceedings
of the 4th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’02), 2002.

[16] J. Brunel, D. Doligez, R. R. Hansen, J. L. Lawall, and G. Muller, “A
foundation for flow-based program matching: using temporal logic and
model checking,” in Proceedings of the 36th Symposium on Principles
of programming languages (POPL09), 2009.

[17] M. Kim and N. Meng, “Recommending program transformations,” in
Recommendation Systems in Software Engineering, M. P. Robillard,
W. Maalej, R. J. Walker, and T. Zimmermann, Eds. Springer Berlin
Heidelberg, 2014.

[18] Siltvani, “A workbench for template-driven program transformation,”
Master’s thesis, Vrije Universiteit Brussel, July 2013.

