
Run-time Validation of Behavioral Adaptations

Nicolás Cardozo1, Laurent Christophe2, Coen De Roover3,2, Wolfgang De Meuter2
1Future Cities, DSG, Trinity College Dublin - College Green 2, Dublin 2, Ireland

2Software Languages lab, Vrije Universiteit Brussel - Pleinlaan 2, 1050 Brussels, Belgium
3Osaka University - 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

cardozon@scss.tcd.ie, lachrist@ulb.ac.be, coen@ist.osaka-u.ac.jp, wdmeuter@vub.ac.be

ABSTRACT
Context-oriented programming enables the composition of
behavioral adaptations into a running software system. Be-
havioral adaptations provide the most appropriate behavior
of a system when their contexts are activated or deactivated,
according to the situations at hand in the system’s execu-
tion environment. Behavioral adaptations can be defined by
third-party vendors or even be acquired at run time. As the
systems grows in complexity it becomes increasingly di�cult
to reason about every possible runtime adaptation. There-
fore, behavioral adaptations that lead to erroneous states or
compromise the system’s security might be di�cult to detect
statically. To prevent such undesired behavioral adaptations
from happening, we introduce a run-time correctness verifi-
cation approach. Our approach uses a symbolic execution
engine to reason about the reachable states of the system,
whenever contexts are activated or deactivated. Context ac-
tivation and deactivation requests are allowed depending on
the presence of erroneous states within reachable states. Our
approach is a step forward to ensure the run-time correctness
of software systems that adapt their behavior dynamically.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.2.4 [Programming Languages]: Software/Pro-
gram Verification

General Terms
Languages, Verification

Keywords
Context-oriented programming, Correctness, Symbolic exe-
cution, Validation

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

COP ’14, July 28 - August 01 2014, Uppsala, Sweden

Copyright 2014 ACM 978-1-4503-2861-6/14/07 ...$15.00.

http://dx.doi.org/10.1145/2637066.2637071.

Current day software systems are able to adapt their be-
havior at run time according to the situations in their sur-
rounding execution environment. Adaptive software systems
can compose/withdraw application behavior based on infor-
mation gathered from a sensor network or previous uses of
the system. Context-Oriented Programming (COP) [4] is a
programming paradigm that enables run-time adaptations
of a software system. COP provides language level abstrac-
tions to define and compose fine-grained adaptations in a
running system, respectively, as contexts and their associ-
ated behavioral adaptations.

Run-time adaptations, as proposed in COP, are modu-
lar and localized, enabling the extension and modification
of existing third-party programs and frameworks [2]. As a
consequence of the o↵ered flexibility in modifying the be-
havior, multiple vendors can propose variations to a given
service by adapting its basic behavior. Note that if compo-
sition and withdrawal of run-time adaptations is not dealt
with carefully, it may lead to incorrect states of the system
or even security breaches. On the one hand, adaptations of
a service may not respect the API o↵ered by the service, or
depend on other transient services (i.e., provided by other
adaptations). These lead to incorrect states of the system
either exhibiting incorrect computations or causing the ap-
plication to be interrupted abruptly. On the other hand,
security of the system may be compromised with the intro-
duction of adaptations that, for example, bypass security
checks of the system (e.g., login–password verification).

Before an adaption is composed with or withdrawn from
the run-time system, it should be explored to validate it
does not yield run-time errors. A promising candidate for
validating the correctness of adaptations is the use of sym-
bolic execution. Symbolic execution [7] is a program analy-
sis that traverses the source code of a program to generate
constraints that should be satisfied in order for a concrete
run to end up at given points in the code. In our approach,
we invoke a new symbolic execution engine, Kusasa, at run-
time to investigate whether it is safe to active or deactivate
a context at a particular point in time. Before each behav-
ioral adaptation, Kusasa symbolically explores the future
execution steps. Depending on whether erroneous states are
discovered in this exploration, the adaptation is performed.
To give the programmer a more fine-grained control over our
approach, we extend the semantics of context activation and
deactivation. We introduce alternative contexts for Kusasa
to try out in case the initial context (de)activation cannot
take place. Additional parameters for precisely defining the
safety policy of the symbolic exploration are also provided.

http://dx.doi.org/10.1145/2637066.2637071
Coen De Roover

This paper represents the first use of a run-time symbolic
execution engine for verifying the correctness of behavioral
adaptations.

2. MOTIVATION: MULTI-VENDOR POSI-
TIONING SERVICE

This section motivates the need for validating behavioral
adaptations at run-time. To this end, we present a proof-
of-concept application for mobile devices. The application
consists of a geo-positioning service that can be extended or
modified by di↵erent vendors. We develop the application
using the Ambience [5] COP language.

The multi-vendor positioning service is an application that
uses the GPS coordinate system for devices that can receive
Global Navigation Satellite (GNS) signals. The service is
provided through a simple API that consists of a function for
displaying and a function for acquiring the current position.
Both interacting functions are depicted in Snippet 1. The
positioning service should only be available if there is an en-
abled GNS receiver, thus the service is provided as an adap-
tation rather than as a standalone application. An adapta-
tion is defined by means of the (defcontext ctx) construct,
which defines a context object, and the (with�context (ctx

)...) construct, which defines the behavioral adaptations
associated with that context object. The definition of the
GPS adaptation including its context object and associated
behavioral adaptations is shown in Snippet 2.

1(defmethod display-position (pos)

2 (format t "Current position is (~,3f, ~,3f)~%"

(car res) (cdr res)))

3

4(defmethod get-position ((user @person))

5 (throw ’no-pos "No antenna"))

Snippet 1: Basic system behavior with no GNS

antenna enabled.

1 (defcontext @gps-antenna)

2

3 (with�context (@gps-antenna)

4 ;;gps object definition

5 (defproto @gps-device (clone @object))

6 (defmethod longitude ((gps @gps-device)) ...)

7 (defmethod latitude ((gps @gps-device)) ...)

8 (defparameter *gps* (clone @gps-device))

9

10 (defmethod get-position ((user @person))

11 (let (posx (x user))

12 (posy (y user))

13 (log-message :info "User ~a position (~,3f,

~,3f)~%" (name user) posx posy) ’

14 (cons posx posy)))

Snippet 2: GPS positioning adaptation.

Three di↵erent vendors decide to extend the existing ser-
vice with their own specialized functionality. Vendor1 o↵ers
a service, similar to the GPS adaptation, optimized for the
European market by taking advantage of the Galileo posi-
tioning system. Whenever users are found to be in a Euro-
pean country, they will query this specialized service instead.
Besides the way of acquired positions from the GNS satel-
lite, Vendor1 uses its own format for the retrieval of the po-
sition (i.e., using a @location object), but reuses the display

functionality o↵ered by the original service. This service,
as shown in Snippet 3, is o↵ered in form of the adaptation
characterized by the @galileo context object.

1(with�context (@galileo)

2 (defmethod get-position ((user @person))

3 (let (loc (clone @location)))

4 (setf (x-pos loc) (latitude *galileo* user))

5 (setf (y-pos loc) (longitude *galileo* user))

6 loc))

Snippet 3: Behavioral adaptation of Vendor1.

Note that the get-position behavioral adaptation associ-
ated with the @galileo context does not respect the inter-
action with the original display-position behavior, defined
in Snippet 1. The interaction between these two methods
yields an error when trying to use the car and cdr primitives
on the object returned by get-position.

Vendor2 enhances the original service by providing an ap-
proximation to the positioning service whenever the GPS an-
tenna is not available (e.g., inside a building). This function-
ality is enabled in the @compass context, whenever a digital
compass is available in the device. The introduced behav-
ioral adaptation reuses previous calculations of the position
(using the GPS adaptation) to give an approximated posi-
tion of the user based on its direction and speed. Snippet 4
shows the definition of the get-position behavioral adapta-
tion associated with the @compass context.

1(with�context (@compass)

2 (defproto @compass (clone @object))

3 (defmethod direction ((comp @compass)) ...)

4 (defparameter *compass* (clone @compass))

5

6 (defmethod get-position ((user @person))

7 (if (or (equal (xcoord user) nil) (equal (

ycoord user) nil))

8 (throw ’no-initial-pos "No initial position"

)

9 (cons (latitude (direction *compass *) user)

(longitude (direction *compass *) user)))

))

Snippet 4: Behavioral adaptation for Vendor2.

Unlike for Vendor1, this behavioral adaptation respects
the interaction between the display-position and get-position

methods. However, for the successful execution of the in-
troduced behavioral adaptation, the @gps-antenna context
behavioral adaptations are required to have been used previ-
ously. This creates a fragile dependency on the @gps-antenna

context. Execution of the system when the @compass context
is active may or may not lead to errors.

Finally, Vendor3 has some high-profile clients, whose po-
sition should never be disclosed. With this in mind, Vendor3
is required to o↵er a privacy mode adaptation to a subset of
its users. In this mode, characterized by the @privacy con-
text, information must not be leaked out of the system. The
behavioral adaptations associated with the @privacy con-
text are defined in Snippet 5. This last adaptation rede-
fines the log-message method by throwing an error instead
of e↵ectively logging potentially sensitive information. As
the @gps-antenna context logs the position, an error will be
thrown if it is active at the same time as the @private adap-
tation. The @galileo context is safe to use in combination

with the @private context.

1(with�context (@privacy)

2 (defmethod display-position (pos)

3 (resend)

4 (throw ’no-pos "Position is not available"))

5

6 (defmethod log-message (args)

7 (throw ’private-logging "Private information

leaking")))

Snippet 5: Behavioral adaptation for Vendor3.

The above examples demonstrate that an adaptation’s as-
sumptions about available services and how they interact
may not always be satisfied at run-time (e.g., interaction
between the @compass and @gps-antenna contexts). There-
fore, behavioral adaptations must be validated at run time
before they are composed with the system; this with the
objective of avoiding errors.

3. CORRECTNESS OF BEHAVIORAL ADAP-
TATIONS

This section presents our approach for the validation of
correctness of fine-grained behavioral adaptations as pro-
posed by the COP paradigm. We define a behavioral adap-
tation A to be valid if and only if, for system S at state
e, after A is composed with the system, then the composed
adapted system S �A does not reach a state e0 where e0 is an
error. Our approach is based on Kusasa, a run-time sym-
bolic execution engine, which over-approximates reachable
states at context activation time for ensuring correctness.

3.1 Symbolic Execution
Before diving into our proposed approach, we introduce

the basic notions of symbolic execution. Symbolic execution
is a program analysis technique that traverses the source
code of a program to generate constraints that should be
satisfied, in order to reach specific points in the program
during its concrete execution. Using constraint solvers such
as Z31 or CVC4,2 one can generate the inputs that would
lead the execution to the targeted point. Symbolic execu-
tion can be used for many purposes, such as bug detection,
program verification, debugging, maintenance, and fault lo-
calization [3].

Static symbolic execution involves executing the program
with some values as symbols that range over a set of con-
crete values. The objective of static symbolic execution is
to explore the tree of all possible computation branches a
program can have [7]. This exploration approach has as
drawback that it does not scale to large systems since the
number of feasible paths is subject to combinatorial explo-
sion [1].

Dynamic symbolic execution involves instrumenting a pro-
gram to record symbolic constraints while it is concretely
executed. A prominent application of dynamic symbolic ex-
ecution is automatic test generation where test inputs are
generated to maximize coverage. In automatic test genera-
tion, symbolic constraints are used to generate new inputs
that would lead the execution to unexplored areas.

1
http://z3.codeplex.com/

2
http://cvc4.cs.nyu.edu/web/

Kusasa is a novel interpreter that executes a program by
interleaving concrete execution with static symbolic explo-
ration. During the static symbolic exploration phases of
the system, Kusasa generates a tree of future computations
starting from the current concrete execution point. When
concrete execution is resumed, Kusasa moves from the root
of the computation tree to one of its leaf nodes by resolving
symbolic constraints and performing bu↵ered input/output
actions.

Unlike traditional static symbolic execution, Kusasa does
not attempt to explore all possible computation paths in
their entirety. In fact the symbolic exploration can be param-
eterized to restrict the exploration space.

3.2 Run-time Validation of Behavioral Adap-
tations

We now present our approach for validating behavioral
adaptations at run-time. We consider validation of an active
process of the run-time system to be performed whenever an
adaptation is requested —rather than after adaptations have
been composed.

We integrate Kusasa as the execution engine of the Ambi-
ence COP language. Specifically, to verify the correctness of
adaptations we choose to trigger the Kusasa symbolic explo-
ration phase at context activation time —that is, every time
a context is requested for activation or deactivation. We
propose the following extension of the constructs for con-
text activation and deactivation to interact with Kusasa:

(activate ctx ctx-list safety depth span)

(deactivate ctx ctx-list safety depth span)

The purpose of this extension is to couple validation through
symbolic execution with the run-time activation of contexts,
and hence, the dynamic composition of their associated be-
havioral adaptations. Table 1 details the di↵erent parame-
ters to the (de)activation constructs.

Parameter Default Description
ctx Context to be (de)activated.

ctx-list nil List of alternative contexts providing
similar behavioral adaptations, in case
(de)activating ctx fails.

safety ’none A symbol specifying the safety policy.
depth 0 An integer indicating the targeted

depth of the computation tree. 0means
the exploration stop only at final states.

span 0 A time span (in milliseconds) specify-
ing the lease Kusasa has for the sym-
bolic exploration. 0 means there is no
time threshold.

Table 1: Activation/deactivation parameters API.

Every time a (de)activation is requested, the symbolic ex-
ploration phase of Kusasa is triggered to explore the future
of the execution from the current execution state. First,
Kusasa symbolically explores the execution paths correspond-
ing to the (de)activation of ctx. Then it explores the (de)ac-
tivation of each context in ctx-list in their given order. The
exploration stops whenever the safety policy (safety) is sat-
isfied; if no context were deemed safe, the adaptation does
not occur. Such exploration process generates a computa-
tion tree whose root is located at the current execution point
for each attempted adaptation.

http://z3.codeplex.com/
http://cvc4.cs.nyu.edu/web/

The depth parameter represents the targeted depth of each
computation tree —that is, how many steps into the future
should be explored. The span parameter defines the maxi-
mum time span Kusasa should take for exploring the gener-
ated paths. The span parameter is important since the size of
computation trees may grow exponentially with their depth.
Note that Kusasa equitably distributes the time to investi-
gate each context (de)activation; taking span/(|ctx-list|+1)
for expanding each computation tree.

We define three main policies to assess when the adapta-
tion of the system leads to a correct state: (1) none: always
allow the context switching, this is introduced to support the
original (de)activate semantics. (2) strict: all computation
paths must be safe —that is, the computation tree must be
error-state free. (3) lenient: at least one computation path
must be safe —that is, at least one branch of the computa-
tion tree must be error-state free. Independently from these
policies, we also allow the programmer to specify that the
targeted depth must be reached (i.e., the time span is not
used). Table 2 depicts the available safety policies.

For each safety policy, we interpret the response of Kusasa.
For instance, a positive answer to a context activation using
the strict-complete policy means that the computation tree
generated by Kusasa is error free. Additionally, we know
that each branch of the generated exploration tree either
contains depth steps, or leads to a final success state. This
means the next depth computation steps are safe.

There are three possible outcomes at the end of the Kusasa’s
symbolic exploration:

• The context ctx requested for (de)activation respects the
specified safety policies and it is e↵ectively (de)activated.

• The context ctx requested for (de)activation breaks the
safety policy but one of the alternative contexts passes it.
In case of activation, the best fallback adaptation that is safe
will be activated. In the case of deactivation, the context is
deactivated, and the best fallback adaptation that is safe is
activated in its place.

• None of the given contexts satisfies the safety policy, thus
no context is e↵ectively (de)activated.

Note that the decision in the latter two cases to whether
an alternative context is (de)activated still complies with the
intention of adaptive systems. Since the desired adaptations
(and its possible alternatives) are unsafe, the most appropri-
ate behavior of the system would be not to compose unsafe
adaptations. The role of the safety policies in the process is
to dictate how conservative is the approach. For example,
the use of the strict policy requires all computation path of
the context to be (de)activated to be safe. If the condition
is not satisfied, the execution of the system proceeds as if
no context (de)activation was requested. In the following
section we demonstrate how this process is used to validate
di↵erent context activation situations in the multi-vendor
positioning service.

4. EVALUATION
We evaluate the usefulness of our approach by demon-

strating that the verification of behavioral adaptations at
context activation time can help to prevent run-time errors
of the system. To this end, we focus on three situations
of the multi-vendor positioning service example and observe

the behavior of our analysis for each of them. (1) The ac-
tivation of the @galileo context using the ’strict policy. r
(2) The activation of the @compass context using the ’lenient
policy. (3) The activation of the @private context using a
time span with the ’strict policy.

(1) Galileo context.
In the first situation, described in Snippet 6, the user is

asked whether he wants the position to be displayed. If
the response is a�rmative, the position is retrieved and
displayed. Given that the user’s profile signals the posi-
tion to be in Europe, Vendor1’s service should be available
to use the behavioral adaptations associated with context
@galileo. Unfortunately, since the behavioral adaptation is
inconsistent with the system’s API, activating @galileo will
lead to an error and it should be denied. Nonetheless, the
context activation defines a fallback mechanism (Line 3 in
Snippet 6). In case @galileo cannot be activated, then the
activation of @gps-antenna is evaluated.

1(defmethod main ()

2 ... ;; get user information

3 (activate @galileo (l i s t @gps-antenna) ’

strict)

4 (format "Display position? [y/n]")

5 (when (equal (read) "yes")

6 (defvar pos (get-position *user*))

7 (display-position pos)))

Snippet 6: Situation to active the @galileo context.

Upon activation request (Line 3), the execution of the
system is paused, triggering the symbolic exploration phase.
Kusasa first investigates the activation of the @galileo con-
text, generating the left computation tree of Figure 1. This
tree leads to an error state from calling the car primitive
on a location object returned by the get-position behav-
ioral adaptation. Since the activation of the context was
requested using the ’strict safety policy, this context ac-
tivation is rejected. Subsequently, Kusasa investigates the
activation of @gps-antenna. The generated computation tree
(right tree of Figure 1), being free of error states, results in
the activation of the @gps-antenna context.

(format "Display position? [y/n]")

(equal (read) "y")

(defvar pos
 (get-position *user*))

(display-position pos)

!!! car called on object

(format "Display position? [y/n]")

(equal (read) "y")

(defvar pos
 (get-position *user*))

(display-position pos)

Figure 1: Kusasa generated computations trees:

left(right) tree generated from the activation of

@galileo(@gps-antenna).

(2) Compass context.
The second situation, described in Snippet 7, shows the

use of the @compass context once a user location has been

Safety policy Definition Result Guarantee (depth := n)

none Always satisfied
Yes None
No Not applicable

strict All computation paths are safe
Yes None
No An error might happen in maximum n steps

lenient One computation path is safe
Yes None
No An error will happen in maximum n steps

strict-complete

All computation paths are safe and the tar-
geted depth is reached

Yes The next n steps will be safe
No An error might happen in maximum n steps

lenient-complete

One computation path is safe and the tar-
geted depth is reached

Yes The next n steps might be safe
No An error will happen in maximum n steps

Table 2: Available safety policies and interpretation of their results.

calculated using the @gps-antenna context. Note that to dis-
play the position some arithmetic manipulation is done ac-
cording to the sensor input and the device’s screen (Line
9 in Snippet 7). Vendor2 notices that the @compass behav-
ioral adaptation fails from time to time, but the reason for
this failure is unknown. As a consequence, activation of the
@compass context should only happen when it is safe. In
this situation, using the ’strict safety policy is too restric-
tive because the symbolic exploration signals the division at
Line 9 as a failure if the read method returns zero. Instead
using the ’lenient safety policy for activation would result
in the correct activation of the context (Line 7 in Snippet 7)
since it is only needed for one of the generated paths to reach
a correct state.

1(defmethod main ()

2 ... ;; get user and antenna information

3 (when *antenna*

4 (activate @gps-antenna)

5 (get-position *user*)

6 (deactivate @gps-antenna))

7 (activate @compas ’lenient)

8 (defvar pos (get-position))

9 (setvar pos (/ pos (read)))

10 (display-position pos))

Snippet 7: Situation to activate the @compass context.

As in the previous case, execution is paused upon con-
text activation. In this situation Kusasa generates one of
the computation trees depicted in Figure 3. If there is a
GPS antenna nearby, Kusasa produces the left tree and the
@compass context is activated since the program might suc-
ceed. If there is no GPS antenna, Kusasa produces the right
tree and the @compass context is not activated.

throw 'no-initial-pos

(defvar pos (get-position))

(setvar pos (/ pos (read)))

(defvar pos (get-position))

(display-position pos)!!! division by zero

Figure 2: Kusasa generated computations trees: the

left tree is generated when a GPS antenna is avail-

able, the right tree is generated otherwise.

(3) Privacy context.
Our final situation concerns the behavioral adaptations

associated with the @privacy context. At first, the @privacy

context is activated without a safety property. Kusasa then
investigates which of the context (@gps-antenna or @galileo)
is safe to activate. However, many statements may remain
to be processed in the program. Hence, the symbolic explo-
ration is explicitly restricted to last 1 second.

1(defmethod main ()

2 ... ;; get user information

3 (activate @privacy)

4 (activate @gps-antenna @galileo ’strict 0

1000)

5 (defvar pos (get-position *user*))

6 ...) ;; many safe statements

Snippet 8: Situation to activate the @privacy context.

The first explored path corresponds to the @gps-antenna

context. This exploration quickly finds an error state due to
the call to log-message (Snippet 2), which is prohibited in the
@private context. The second exploration, for the @compass

context, satisfies the ’strict policy although Kusasa might
not have had time to complete the exploration of all paths.

throw 'private-logging

(defvar pos (get-position))(get-position *user*)

...

??? ??? ???

Figure 3: Kusasa generated computations tree:

left(right) tree generated from the activation of

@gps-antenna(@galileo) activation.

5. RELATED WORK
This paper presents a first approach for the run-time val-

idation of fine-grained adaptations at the programming lan-
guage level. Here we discuss other approaches that have
been applied for the correctness verification of adaptations
at coarser granularity levels, or other points in time during
the adaptation process. We compare such approaches with
our own, and discuss how they could compliment each other.

Kulkarni et al. [8] propose the correctness verification of
adaptations in component-based systems. Their approach is

based on the notion of a transitional-invariant lattice. The
approach consist in providing a specification of the system in
terms of a lattice (with states as nodes and computations as
edges) and invariant state predicates. Invariants can define
states of the system during and after adaptation, so it is pos-
sible to verify the correctness of partial adaptation states;
permitting identification of errors early in the adaptation
process. At run time, components of the system are mod-
ified, if a transitional-invariant lattice is found at the end
of the adaptation process, then the adaptation is said to be
correct. Similar to our approach, Kulkarni et al. [8] use an
abstract representation of the system (i.e., a lattice) for the
verification of correctness, and in their case this is verified
against system invariants. Our use of a symbolic execution
engine di↵ers in two ways. On the one hand, our approach
does not require a correctness specification for the system.
We are, however, limited to detecting run-time errors ahead
of time. On the other hand, using Kusasa, it is possible to
evaluate di↵erent paths to achieve adaptation, which is not
yet possible using transitional-invariant lattices.

Hayden et al. [6] introduce the concept of Client-Oriented
specification (CO-spec) for the correctness verification of dy-
namic software upgrades. CO-specs are used to express in-
teraction between the program and its updates (e.g., backward-
compatibility, post-updates, and interface changes). In or-
der to verify CO-specs the program version is merged with
its update via defined program transformations. Once the
program has been merged o↵-the-shelf verification tools can
be used to check its correctness. Similar to our proposal,
Hayden et al. [6] use a symbolic engine (Otter) to simulate
the update of the system. The system di↵ers from our ap-
proach in two ways. First, to account for incompleteness
of symbolic execution, the verification is complemented by
a verification tool (Thor). A similar approach could be in-
tegrated in our proposal in the future. Second, unlike our
approach, the verification of the system takes place once the
program has been merged with its update. In that sense the
verification using Otter can only signal that there are errors
in the merged program. With Kusasa verification takes place
before the programs are merged, so that, in case of errors
the merging does not take place. Additionally, Kusasa o↵ers
the possibility of recovering from errors by using alternative
adaptations.

6. CONCLUSION
Run-time adaptation of a system’s behavior can lead to

erroneous execution states because behavioral adaptations
introduced into or removed from the system may violate the
contract of its API, or overlook possible interactions with
other active adaptations. This paper proposes to verify cor-
rectness of behavioral adaptations as their associated con-
texts are (de)activated. The cornerstone of our approach is
the Kusasa symbolic execution engine. Kusasa is triggered
upon context activation, generating an execution tree con-
sisting of di↵erent branches for each context to be activated.
If there are errors identified during the symbolic exploration
of the tree, then the context (de)activation is not performed.

The use of Kusasa as a means to verify the correctness of
behavioral adaptations is a first approach that tackles fine-
grained adaptations and validates for correctness before the
adaptation is actually composed with the system.

Nonetheless, we have identified various avenues for future
work. First, the technique should be assessed using more

comprehensive case studies to validate its real benefit and
to measure its performance. Second, more refined means
to bound the symbolic execution phase than pre-determined
time and depth limits could be explored. Candidates include
advanced leasing mechanisms and context-aware bounds.
Finally, we could explore the use of assertions to enhance
the correctness verification with respect to the behavior in-
troduced/removed by adaptations.

Acknowledgements
This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855 to Lero - the Irish Software En-
gineering Research Center (www.lero.ie). We thank the
anonymous reviewers for their comments on earlier versions
of this paper.

References
[1] Anand, S., Godefroid, P., and Tillmann, N.

Demand-driven compositional symbolic execution. In
Tools and Algorithms for the Construction and Analy-
sis of Systems. Springer, 2008, pp. 367–381.

[2] Appeltauer, M., and Hirschfeld, R. Declarative
layer composition in framework-based environments. In
Proceedings of the International Workshop on Context-
Oriented Programming (New York, NY, USA, 2012),
COP ’12, ACM, pp. 1:1–1:6.

[3] Clarke, L. A., and Richardson, D. J. Applications
of symbolic evaluation. Journal of Systems and Software
5, 1 (1985), 15–35.

[4] Costanza, P., and Hirschfeld, R. Language con-
structs for context-oriented programming: an overview
of ContextL. In Proceedings of the Dynamic Languages
Symposium (Oct. 2005), ACM Press, pp. 1–10. Co-
located with OOPSLA’05.

[5] González, S., Mens, K., and Cádiz, A. Context-
Oriented Programming with the Ambient Object Sys-
tem. Journal of Universal Computer Science 14, 20
(2008), 3307–3332.

[6] Hayden, C., Magill, S., Hicks, M., Foster, N.,
and Foster, J. Specifying and verifying the correct-
ness of dynamic software updates. In Verified Software:
Theories, Tools, Experiments, R. Joshi, P. Müller, and
A. Podelski, Eds., vol. 7152 of LNCS. Springer Berlin
Heidelberg, 2012, pp. 278–293.

[7] King, J. C. Symbolic execution and program testing.
Commun. ACM 19, 7 (July 1976), 385–394.

[8] Kulkarni, S. S., and Biyani, K. N. Correctness of
component-based adaptation. In Component-Based Soft-
ware Engineering, I. Crnkovic, J. A. Sta↵ord, H. W.
Schmidt, and K. Wallnau, Eds., vol. 3054 of LNCS.
Springer Berlin Heidelberg, 2004, pp. 48–58.

www.lero.ie

	Introduction
	Motivation: Multi-Vendor Positioning Service
	Correctness of Behavioral Adaptations
	Symbolic Execution
	Run-time Validation of Behavioral Adaptations

	Evaluation
	Related Work
	Conclusion

