
修士学位論文

題目

An Empirical Study of
Out-dated Third-party Code in Open Source Software

指導教員

井上 克郎 教授

報告者

Pei Xia

平成 25年 2月 5日

大阪大学 大学院情報科学研究科

コンピュータサイエンス専攻 ソフトウェア工学講座

平成 24年度 修士学位論文

An Empirical Study of Out-dated Third-party Code in Open Source Software

Pei Xia

内容梗概

Using existing source code to build new software systems becomes common. High-

quality open source software(OSS) such as zlib, libpng, libcurl etc. are wildly reused as

third-party code. However, these existing code are keeping on updating during their life

circle. Different versions of third-party code including those with security vulnerabilities

are reused by other software and spreading in the OSS all over the world.

This paper presents an empirical study on the code reuse of third-party code. Given

a target source code, with the help of code search tool OpenCCFinder, we found and

selected a number of open source projects that reused the target source code. Using

file clone detection techniques and repository mining techniques we identified the version

number of these reused code. Then we analyzed and discovered the defect information of

the out-dated third-party code as well as the management information of the open source

projects.

The result shows that a large number of open source projects are reusing out-dated

third-party code. Moreover, the study observed that a large number of the reused third-

party code are not well managed.

主な用語

third-party code reuse

defect detection

open source code search

file clone detection

1

Contents

1 Introduction 4

2 Study Approach 6

2.1 Choosing Subject Third-party Code . 6

2.2 Manual Collection of Defects in Out-dated Third-party Code 8

2.2.1 Software Vulnerability Database . 8

2.2.2 Announcement from Project’s Homepage 8

2.3 Searching for Projects Reusing Subject Third-party Code 10

2.3.1 The Architecture of OpenCCFinder 10

2.3.2 The Search process of OpenCCFinder 12

2.3.3 The Use of OpenCCFinder in This Study 15

2.4 Identifying Version Number of Reused Third-party Code 16

2.4.1 Introduction of Code Clone . 16

2.4.2 Hash Based File Clone Detection Algorithm 18

2.4.3 Hash Values Comparison . 19

2.5 Manual Collection of Third-party Code Management Information 22

3 Case Study 25

3.1 Subject Third-party Code : zlib, libcurl, libpng 25

3.2 Case Study Statistics . 27

3.2.1 Defects in Third-party Code . 27

3.2.2 Version Information of Third-party Code in Open Source Software . 29

3.3 Detailed Analysis . 29

3.3.1 Proportion of Out-dated Third-party Code In Open Source Software 29

3.3.2 Potential Defects of Open Source Software 34

3.3.3 Third-party Code Management Information in Open Source Software 35

3.4 Case Study Results . 35

4 Discussion 38

4.1 The Reason That Out-dated Third-party Code Are Not Updated 38

4.2 Reproducible of Reported Vulnerabilities . 38

4.3 Subject Open Source Projects Returned by OpenCCFinder 38

4.4 Future Work . 39

5 Related Works 40

5.1 Code Clone Detection and Analysis . 40

5.2 Code Search Engines . 40

5.3 Third Party Evolution Impact Analysis . 40

2

謝辞 41

参考文献 42

付録 44

3

1 Introduction

Nowadays, using existing software to build new software systems becomes common.

More and more source code from open source software(OSS) can be found on the Internet.

Even software in the industry increasingly reuse open source systems due to their reliability

and cost benefits.[9]

Integrating third-party code is an important approach in code reuse. A third party code

is a reusable software component developed to be either freely distributed or sold by an

entity other than the original vendor of the development platform[11]. Many open source

projects are considered to be stable and efficient, such as encryption software (OpenSSL),

compression software (zlib), databases(MySQL), or graphical tookits(GTK), etc. These

code are wildly reused as third-party code by thousands of developers all over the world.

However, while enjoying the benefits, developers also have to concern about the risks

brought by reusing third-party code. If the reused code contain critical defects, it will bring

damage to the software. For example, In Sept.2010, a Twitter user has demonstrated a

cross-site scripting (XSS) vulnerability on the microblogging platform that could allow an

attacker to take over users’ accounts or spread malware. The third-party javascript code

they reused enable a function that could trigger activity such as pop-up box appearing or

manipulated with the flaw to redirect a user to a malicious Web Site, which lead to about

half a million malicious posts on Twitter.[17]

Third-part code risk management is necessary in software development. Well known

open source libraries such as zlib, libpng, libcurl etc. are usually actively maintained

libraries. Some of these libraries contain security vulnerabilities in one version that are

fixed in later versions. Considering such a scenario that a developer reused a certain

version of libpng library and just copy the code to his project. After he implemented the

features that he wants, he left the libpng code alone and did not touch it any more. But

several days later a security vulnerability announced on libpng official home page and a

new version of libpng is released. If he did not notice and follow this update, his software

may be affected by the vulnerability. Thus, keeping the code library up-to-date is an

important way to avoid some of the risks, while reusing out-dated third-party code would

make the software have more chance to be breached by a hacker.

”Out-dated third-party code” in this study represents those code of older versions

containing known defects such as software vulnerabilities that should be fixed by upgrading

them to a newer version.

As far as we know, currently there is few research focus on the out-dated third-part

code reuse and management behavior. Our work is to do an empirical study in this area

and collect quantitative data to answer these research questions:

• What is the proportion of out-dated third-party code reused in the open source

4

software?

• What are the potential defects caused by such reuse?

• How do developers manage those out-dated third-party code?

Answering these questions would be helpful in understanding the open source software,

evaluating the quality of the softwares who reused third-party code, predicting some of

the potential defects in open source software, also would make developers be aware of the

importance of third-part code management.

Based on the code clone detection, repository mining techniques and open source code

search engines, we proposed a study approach on detecting out-dated third-party code

reuse for certain libraries in open source software.

In section 2, we described the detailed study design. Section 3 shows our case studies

of 3 wildly reused open source libraries. Section 4 conclude our discussions with some

future works. Section 5 shows the related works.

5

2 Study Approach

In designing the study approach to answer the research questions raised in Section

1, as shown in Figure 1, we firstly selected several open source third-party code from

Internet to study with. In the second step, we investigated the potential defects contained

in old versions of the subject third-party code. Next, we use OpenCCFinder[22] to find

tens of open source projects that have reused the subject third-party code, which we call

vendee projects below. OpenCCFinder is a tool developed by us in 2011 which we will

introduce in subsection 2.3.1. In the fourth step, we get the source files of all version from

the repository of subject third-party code, also get the source code of the latest version

of vendee projects. Using content hash based file clone detection techniques in Section

2.4.2, we precisely identified the version number of subject third-party code reused in each

vendee projects. At last, we manually invastigated the project management information

of each vendee projects to get valuable information.

In detail, the study approach can be divided into five steps as follows:

2.1 Choosing Subject Third-party Code

At the beginning, the subject third-party code to study should be decided. A great

number of open source projects that reused as third-party libraries can be found on the

Internet. For our study, the subject third-party code should be chosen as follows:

• Well-known and widely reused. For example, the zlib library has been reused by

famous software such as linux kernel, Mac OS X, XEmacs etc. Reseach results from

such kind of third-party code could be more convincing.

• Small-sized. Because in our study we used content hash based file clone detection

techniques to identify version number of reused third-party code, we have to down-

load each version of these code to local machine to do the analysis. For the time

and space consideration, the size of the subject third-party code should not be too

large. Projects with less than 500 files and smaller than 5 megabytes are preferable.

• Actively maintained. Because such projects would have various distributions spread-

ing in the open source software all over the world and reused by different vendee

projects. And current situation of third-party code reuse in open source software

can be better reflected by these projects rather than stable or old projects.

• Stored and managed by repositories such as git or svn. It is easy for me to get source

files of each distribution of the projects and analyze various data of them by using

libraries such as EGit or SVNKit.

6

V1.2.7

rep

v1.1.2 v1.2.1 v1.2.3 V1.2.6

V2.1

Timeline
Third-party project (e.g. zlib)

Tokenized file hash

-1985291897

1333470270

1595152794

-354365049

-1985291897

1333470270

-1251773165

-354365049

197770261

1786259145

527652421

706253673

-1985291897

1333470270

-1251773165

-354365049

-1985291897

1333470270

1595152794

-354365049

rep

rep

Vendee project 1

Vendee project 2 Latest ver.

Latest ver.

-1985291897

1333470270

1595152794

-354365049

-1985291897

1333470270

-1251773165

-354365049

match

v1.1

v2.0

3

match

NVD,

project homepage,

etc.

Reported defects

OpenCCFinderr

V2.1

Defects

information

4. Version Identifying

2. Defects Information collection

3.Project

Searching

Repository history,

project homepage,

log/readme, etc.

Management

information

5. Management Information Collection

1. Subject Project

Selection

!

Figure 1: Study Approach Overview

7

• Reused in the form of source code instead of binary libraries. Because in our study

we have to access to the source code for clone detection, if the third-party code is

reused in the form of binary libraries, it is difficult for me to study them. Thus,

source code in language C is a preferred choice.

Currently we studied three open source libraries, zlib, libpng , and libcurl . The detailed

data of them would be represented in Section 4.

2.2 Manual Collection of Defects in Out-dated Third-party Code

In this section, we would like to introduce how we search for the defects information

of third-party code of this version. This is to answer the second research question: Are

there potential defects caused by reusing out-dated third-party code?

Since we have little background in defect prediction research area, what we have done

here is only collecting the existing bug information found by other people. Currently it

is done by manually inspection from those three sources: software vulnerability database

and project homepage announcement.

2.2.1 Software Vulnerability Database

A software vulnerability database is a platform aimed at collecting, maintaining, and

disseminating information about discovered vulnerabilities targeting real computer sys-

tems. In this study, we are looking into the NationalVulnerabilityDatabase[5] (NVD),

which is the U.S. government repository of standards based vulnerability management

data. It contains famous resources such as CommonVulnerabilitiesandExposures(CVE)

and CERTVulnerabilityNotesDatabase. In our view, the data searched from NVD are

reliable.

Searching with keywords such as project name or filename, NVD returns a list of

vulnerabilities information including vulnerability id, summary, published date, CVSS

Severity score. Table 1 shows several example results by using the keyword of ”libpng”.

In the summary column, the version name and vulnerability detail are described. As

we can see, the vulnerabilities are almost critical bugs which could lead to application

crash or execution of arbitrary code. If other projects are reusing old version of libpng

library containing such bugs, it would be quite dangerous.

2.2.2 Announcement from Project’s Homepage

Another resource of defects information is project homepage announcement. Usually,

when some critical defects are found in some versions of an open source project, there

would be an announcement on the project’s homepage.

For example, on zlib’s project homepage,

8

Table 1: Search results Example of NVD
Vulnerability ID Summary Published Date CVSS Severity

CVE-2011-3464 Off-by-one error in the png formatted warning function 07/22/2012 7.5 (HIGH)

in pngerror.c in libpng 1.5.4 through 1.5.7 might allow

remote attackers to cause a denial of service (application

crash) and possibly execute arbitrary code via unspecified

vectors, which trigger a stack-based buffer overflow.

CVE-2011-3048 The png set text 2 function in pngset.c in libpng 05/29/2012 6.8 (MEDIUM)

1.0.x before 1.0.59, 1.2.x before 1.2.49, 1.4.x before

1.4.11, and 1.5.x before 1.5.10 allows remote attackers

to cause a denial of service (crash) or execute arbitrary

code via a crafted text chunk in a PNG image file, which

triggers a memory allocation failure that is not properly

handled, leading to a heap-based buffer overflow.

CVE-2011-3045 Integer signedness error in the png inflate function in 03/22/2012 6.8 (MEDIUM)

pngrutil.c in libpng before 1.4.10beta01, as used in

Google Chrome before 17.0.963.83 and other products,

allows remote attackers to cause a denial of service

(application crash) or possibly execute arbitrary code via

a crafted PNG file, a different vulnerability than

CVE-2011-3026.

CVE-2011-2690 Buffer overflow in libpng 1.0.x before 1.0.55, 1.2.x 07/17/2011 6.8 (MEDIUM)

before 1.2.45, 1.4.x before 1.4.8, and 1.5.x before 1.5.4

makes a function call using a NULL pointer argument

instead of an empty-string argument, which allows remote

attackers to cause a denial of service (application crash)

via a crafted PNG image.

Version 1.2.5 fixes bugs in gzseek() and gzeof() that were present in version 1.2.4 (March

2010). All users are encouraged to upgrade immediately.

Version 1.2.3 (July 2005) eliminates potential security vulnerabilities in zlib 1.2.1 and

1.2.2, so all users of those versions should upgrade immediately.

on libpng’s homepage,

Vulnerability Warnings: libpng 1.5.4 through 1.5.7 contain a one-byte (stack) buffer-

overrun bug in png formatted warning(), which could lead to crashes (denial of ser-

vice) or, conceivably, execution of hostile code. This vulnerability has been assigned

ID CVE-2011-3464 and is fixed in version 1.5.8, released 1 February 2012.

Vulnerability Warnings: libpng 1.5.4 (only) introduced a divide-by-zero bug in png handle cHRM(),

which could lead to crashes (denial of service) in applications that support color cor-

rection. This vulnerability has been assigned ID CVE-2011-3328 (CERT VU#477046)

and is fixed in version 1.5.5, released 22 September 2011.

9

In our view, these announcements are quite important. It is reasonable that suggestions

from project owners should be taken seriously by whom reusing these code.

2.3 Searching for Projects Reusing Subject Third-party Code

In this section, we will introduce how we search for the vendee projects from open

source software in the world.

Nowadays, open source software hosting facilities are becoming popular. Millions open

source projects are hosted on the Internet. Google Code, GitHub are some of the most

popular open source hosting sites. Project hosting on Google Code provides a free col-

laborative development enviroment for open source projects. According to Google Code

Official Blog, it hosts more than 250,000 open source projects. GitHub is a web-based

hosting service for software development projects that use the Git revision control system.

It hosts millions of projects. There are also similar sites such as Sourceforge, CodePlex,

Eclipse Labs, BitBucket, RubyForge, Jave.net, etc. providing open source software host-

ing service. These sites are playing very important roles in open source communities and

covering a large number of open source projects in the world.

From such open source software hosting facilities, we found a list of projects that

reused the subject third-party code. In this step, we used a similar code searching system

OpenCCFinder (Open Code Clone Finder) helping me to do this. OpenCCFinder is a

system to explore similar code fragments from open source repositories. It developed by

me in 2011. This system takes a query code fragment as input, shown in Figure 2, and

returns the code fragments containing the code clones with the query, shown in Figure 3.

We will introduce this system in detail in following subsections.

2.3.1 The Architecture of OpenCCFinder

Figure 4 shows the architecture of OpenCCFinder . It takes an input query Q and

returns an output results set R. Input query Q is composed of code fragment qc and code

attribute qa. qc may be a complete source file or a part of a source code file, which is in

question. qa is a set of associated information characterizing qc, such as the file name. qa is

optional and could be added to improve the quality of the output results. Given an input

Query Q, OpenCCFinder extracts useful information from it and generates queries for

external code search engine (e.g. Google code search, SPARS/R etc.), and then analyzes

the returned candidate files from external search engines, at last form a final result as

output R.

Output result R is composed of results r1,r2 ... rn. Each result ri is composed of a

code file ric and its code attribute ria. ric is a code file which is returned by external

code search engines, and ria a set of associated information about ric, including repository

10

Figure 2: Input of OpenCCFinder .

URL, file path, LOC, license, copyright, last modified time, clone cover ratio and clone

detail, as shown in Table 3.

Table 2: Subjects Third-party Code Information
Repository url where the repository of ri can be accessed on the Internet

File Path the file path of ri in its project

LOC line of code of ri

License the software license of the source file

Copyright the copyright of the software

Last modified time the latest committed time of ri in its repository

Cover ratio the code percentage of the queried code qc that reused by ri

For the external code search engines, we use Google code search[?] and search[code][?]

and code search feature of github[?, githubcs]n our tool implementation. The Google code

search is a famous code search engine. But currently it only provides code search service of

googlecode repositories to the user; The search[code] is a code specific search engine. API

documentation, code snippets and open source repositories are indexed and searchable.

Currently more than 6 billion code of googlecode. sourceforge, fedora, CodePlex, github,

and Bitbucket are collected by search[code]; The code search feature of github can be used

to search for source code in github. OpenCCFinder merges their results together in order

11

Figure 3: Output of OpenCCFinder .

to cover more open source repositories.

2.3.2 The Search process of OpenCCFinder

Search process of OpenCCFinder can be devided into 6 steps, as shown in Figure 5.

(a) Word Extraction. At the beginning, code fragment qc in input query Q is tok-

enized, the words from source code and comments are separated. Camel Case (e.g.

helloWorld) or Snake Case (e.g. hello world) words will not be decomposed into mul-

tiple words. User can choose to extract words from source code or from comments,

or from both.

(b) Keyword Ranking. Next, the keywords used for query generation are selected from

the extracted words. In this step, first OpenCCFinder filters out the words that

considered being featureless. For example, the reserved words of each source code

language, the words in very short length, and the words included in customized filter

are filtered out. After the filtering, a simple words importance ranking strategy is

applied on the remaining words. Currently there are two strategy implemented in

the tool for ranking the words: frequency strategy and random strategy. Frequency

12

Figure 4: Architecture of OpenCCFinder .

strategy is to rank the keywords by the times they appear in the source codes or

comment, while random strategy is just to rank the words randomly.

(c) Searching for Candidates Files. Using the ranked keywords, a search query SQ

for the code search engines is created. As the search engines, here we choose Google

Code Search, search[code] and code search feature in github. Each of the search

engines accept keywords sequence as their query input, so we use the combination

of most frequently used words as SQ. If user wants, the additional input attribute

file name also can be given to the search engines.

Then we generate several queries for each search engine to get appropriate candidate

files. For each query, the returned results set from search engines should not be very

large, for fear of including too many irrelevant results. When the returned results

set are too large, we will add one more keyword from the ranked keywords list to

the query to narrow the results set. At last we merge the returned results of several

queries as the analysis candidate files. The detail process is shown in Algorithm 1 .

13

Token1

Token2

Token3

Token4

Token5

Token6
…….

Filename

Keyword 6

Keyword 4

Keyword 1

Keyword 3

Keyword 2

Keyword 5
…….

File1

File2

File3

….

Related

Information

Code Clone

Detector

Code Clone

Information

Input Q

Output R

(a) (b)

(c)

(e)

(f)

(a) Word Extraction (b) Keyword Ranking (c) Searching for Candidate Files

(d) Downloading Candidate Files (e) Code Clone Analysis (f) Result Forming

External Code

Search

Engines

…

Open Source Repositories

(d)

External System

Figure 5: Searching Process of OpenCCFinder .

Algorithm 1: The pseudo code of searching for candidate files with ranked

keywords

Data: Ranked Keyword List

Result: Appropiate Cadidate Files List

begin

CandidateFiles = ϕ;

CurrentKeywords = ϕ;

while CadidateFiles is not approriate (Judged by user) do

PartialCandidateFiles = ϕ;

while PartialCandidateFiles is empty or too large size do
CurrentKeywords = CurrentKeywords

∪
keywordsList.nextTopKwyword ;

PartialCandidateFiles = results searched with CurrentKeywords;

end

CurrentKeywords = ϕ;

CandidateFiles = CandidateFiles
∪

PartialCandidateFiles;

end

return CandidateFiles
end

(d) Downloading Candidate Files. All the candidate files in step (c) are downloaded

from Internet. While downloading the file, the tool is also crawling the web to extract

useful information for the code attributes such as file path, repository URL, LOC,

14

License, Copyrights, and last modified time if available.

(e) Code Clone Analysis. The code clones between the input query code fragment

qc and each source code ri obtained at Step 4 are computed. We have used a

code clone detection tool CCFinder[13], with its parameter setting for the minimum

token length 15. 15 tokens is the common configuration for identify code clone in

related research area. Then we calculate the cloned code cover ratio of qc for each

Candidates. Cover ratio represents the code percentage of the queried code qc that

reused by ri.

(f) Result Forming. All the candidate files and their code attributes are combined and

packed as the output result R of this system, sorted by their cover ratio of qc.

2.3.3 The Use of OpenCCFinder in This Study

In this study, we use OpenCCFinder to help me to discover repository url of projects

that have reused certain third party code.

For the configuration, the preferred number of vendee projects returned byOpenCCFinder

should be less than 100. Because there are several manual tasks in the following steps,

it would be difficult for me if OpenCCFinder return too many results. Our purpose is

to estimate the proportion of out-dated third-party code reuse, in our consideration, the

scale of experimental samples around 50 could be acceptable.

At first, we selected several source files from zlib, libpng and libcurl. These selected

files should be relatively unique, in other words, the identical or similar files of the selected

files would better only appears in the same project. For example, in zlib, the files of gzlib.c,

zutil.c is considered unique, while in libcurl, the file of base64.c is considered not unique.

Secondly, we input the selected files into OpenCCFinder and collect the repository

url in the results page. OpenCCFinder would return a list of similar files of the input

files along with the clone cover ratio. We filtered out those results in different file names

with a cover ratio smaller than 1 percent, which are probably irrelevant files contain a

few common code occasionally. If the results set are too small, we will input next file into

OpenCCFinder, and merge the results together.

Thirdly, we filtered out projects that considered to be not appropriate. There are

a number of experimental personal projects also hosted on open source project hosting

facilities, which are not well managed or abandoned. In our consideration, such projects

are not good for our study. So we need to filtered these projects out. The projects

remained for our study should be in such conditions:

• The projects should be published formally and managed by a stable organization.

They should have their own homepage which contains basic information of projects

15

and mailing list of developers. The project owners should be enterprises or scientific

facilities or laboratories, but not students or a single person with unclear background.

• The projects should be actively maintained. At least within the latest 6 months,

repository of the projects should have been updated with new source code commits.

Finally, we check out the latest version of these projects and find out the file directories

of the return files, which would probably the directories where the third-party code stored.

We will explain how we confirm if these projects are reusing the subject third-party code

later.

2.4 Identifying Version Number of Reused Third-party Code

In this section, we will introduce how to confirm the third-party code are reused and

how to identify the reused version number. And how we can answer the first research

question: What is the proportion of out-dated third-party code reused in the open source

software?

Through the process described in previous section, we checked out a list of projects

from repositories of open source hosting facilities and consider that they are reusing the

subject third-party code. The idea of identify version number is comparing the content

of each file of the project returned by OpenCCFinder with those of third-party libraries.

If each file of a certain version (e.g. v1.0) of a third-party code are exactly matched with

those in a project returned by OpenCCFinder, it is probably that this project is reusing

v1.0 of the third-party code.

File Clone Detection technique can be used to check if two source files are identical.

2.4.1 Introduction of Code Clone

According to Roy&Cordy’s Paper[7], A code fragment that has identical or similar

code fragment(s) to it in the source code is defined as code clone. Moreover, files of a

project are simply copied into another project without any (or just slight) modification

are defined as file clones.

A copied fragment can be used with or without minor modifications in a system by

the developer. Based on the textual and functional similarity, types of code clones are

distinguished as follows:

Type I Identical code fragments except for variations in whitespace (may be also varia-

tions in layout) and comments. a copied code fragment is the same as the original.

However, there might be some variations in whitespace, comments or layouts. Type

I is widely know as Exact clones.

16

Type II Structurally/syntactically identical fragments except for variations in identifiers,

literals, types, layout and comments.

Type III Copied fragments with further modifications. Statements can be changed,

added or removed in addition to variations in identifiers, literals, types, layout and

comments.

Type IV Two or more code fragments that perform the same computation but imple-

mented through different syntactic variants. They have similar pre and post condi-

tions. Such clones are called semantic clones.

In this study, our purpose is detect file clones between source files from third-party

projects and vendee projects collected by OpenCCFinder, and then apply defect prediction

to vendee projects. So we only try to find out the type I and type II clones. Although

further modifications (type III and type IV) are possible to be done to reused third-party

code, we do not identify the version number of reused third-party projects of these code

because it is difficult to apply defect prediction by known defects of the third-party to

them.

Those are possible and acceptable modifications to reused third-party code in our

study:

• Comments are added or removed. It is not strange for developers to add or re-

move comments when they reuse some source code. Also certain configuration of

repositories would lead to automatically adding comments of version and authority

information when the file is committed.

• Layouts such as blank lines, line breakers or space characters in source files are

changed. Because automatically code formatting tool such as pretty printer are

wildly used by developers. The same contents with different formats also leading to

different hash values.

• Rename refactoring is applied. For example, the name of a variable, a structure

field, a function or a user-defined type is changed. Rename is the most known and

used refactoring which can be applied automatically with many support tools.

These file clones can be detected using tools such as CCFinder. But even with a fast

and distributed environment, code clone detection is still a very resource intensive process

requiring precise string matching.

Hash based clone detection techniques are considered to be an more efficient way to

detect file clones. FCFinder[21] is a tool developed by previous student in our laboratory,

but this tool can only detect type I code clones. We improved the existing algorithm of

FCFinder and developed a new tool for this study. We will describe the algorithm in detail

in next subsection.

17

2.4.2 Hash Based File Clone Detection Algorithm

The File Clone Detection Algorithm we used in this study is hash based detection.

Given two source files, we firstly calculate tokenized hash values for each files, and then

compare the two hash values. If the hash value is same, we mark the two files as identical.

void ZLIB_INTERNAL zmemcpy(dest, source, len)

Bytef* dest;

const Bytef* source;

uInt len;

{

if (len == 0) return;

do {

*dest++ = *source++; /* ??? to be unrolled */

} while (--len != 0);

}

void ZLIB_INTERNAL zmemcpy (dest , source , len)

Bytef * dest ;

const Bytef * source ;

uInt len ;

{

if (len == 0) return;

do {

* dest++ = * source ++ ; /* ??? to be unrolled */

} while (-- len != 0) ;

}

void$$($,$,$)$*$;const$*$;$$;{if($==$)return;

do{*$++=*$++;}while(--$!=$);}

Lexical analysis

Normalization

-680493586

Hashing

Figure 6: Tokenization process.

Figure 6 shows the process that we calculated the tokenized hash.

Lexical Analysis Given a code file, we read the content of the file and get a token

sequence of the content by doing the lexical analysis. In the implementation, we

used a lexer library named jgments[2] from google.

18

Normalization After getting the token sequence, our tool do a normalization for the file

content by mapping each token type to a certain string, as shown in Table ??. Then

a normalized file content as string is generated.

Hashing At last, we calculate the hash value of the generated string. Here we use the

hashcode() method of the java.lang.object class.

Table 3: Token Type Mapping Rules
Token Type Token Type Example Type String

KEYWORD TYPE int ”$”

KEYWORD CONSTANT TRUE ”$”

KEYWORD PSEUDO class name.class ”$”

KEYWORD * if ”if”

NAME ATTRIBUTE #ifdef ””

NAME * variable ”$”

LITERAL * 1234 ”$”

OPERATOR + ”+”

PUNCTUATION ; ”;”

COMMENT /*some comments*/ ””

OTHER ””

2.4.3 Hash Values Comparison

In this subsection, we would like to explain that how we compare the hash values of

source files between third-party projects and vendee projects in Figure 1.

First, get the contents of all the source files of each versions of third-party code from

its repository. In this study, the third-party projects we selected are all stored in the Git

version control system. By using JGit, a lightweight pure Java library implementing the

Git version control system, we can deal with the source files in Git repository easier.

We would like to take zlib library as example. Table 4 shows a part of the source

file hash values calculated from different versions of zlib. For the space limitation, this

table only contain the tokenized source file hash values of zlib libarary of latest 7 versions.

Actually in our study we calculated that of all the tagged versions.

Secondly, we calculate the tokenized source file hash values for the proper vendee

projects returned by OpenCCFinder. As mentioned previously, OpenCCFinder return a

list of projects from open source projects hosting facilities.

These projects are almost hosted on google code, github, sourceforge using version

control system Git or SVN. For checking out the latest version of code, we used JGit

library to deal with the projects of git repository, while using SVNKit library, an open

source pure Java software library for working with the Subversion version control system,

to deal with those of SVN repository. With the help of these libraries, we get all the source

19

Table 4: Tokenized Source File Hash Value of zlib of different versions(Partial data)
v1.2.7 v1.2.6.1 v1.2.6 v1.2.5.3 v1.2.5.2 v1.2.5.1 v1.2.5

adler32.c -1985291897 -1985291897 -1985291897 -1985291897 -1985291897 -1985291897 2113594270

compress.c 1333470270 1333470270 1333470270 1333470270 1333470270 1333470270 1333470270

crc32.c 1595152794 -1251773165 2064200337 2064200337 2064200337 2064200337 1847911446

crc32.h -354365049 -354365049 -354365049 -354365049 -354365049 -354365049 -1588687172

deflate.c -1409057172 -1409057172 -1409057172 -1409057172 -1521814138 1758172098 988004036

deflate.h 1298881308 1298881308 1298881308 1298881308 403614202 403614202 403614202

gzclose.c -1300258337 -1300258337 -1300258337 -1300258337 -1300258337 -1300258337 -1300258337

gzguts.h 1070149405 1070149405 1070149405 1070149405 1070149405 -446156865 -446156865

gzlib.c 824177050 837421093 837421093 837421093 837421093 -421814301 -303569336

gzread.c 1707380412 321038918 1266816223 1266816223 321038918 -528277905 -528277905

gzwrite.c -1087779827 -389800456 217060161 -1425047939 -1425047939 77161258 677393314

infback.c -1788147778 -1788147778 -1788147778 -1788147778 -1788147778 68844950 68844950

inffast.c 2079323817 2079323817 2079323817 2079323817 2079323817 2079323817 2079323817

inffast.h 300619272 300619272 300619272 300619272 300619272 300619272 300619272

inffixed.h -309274144 -309274144 -309274144 -309274144 -309274144 -309274144 -309274144

inflate.c -688443384 -688443384 2006871948 2006871948 2006871948 847399627 847399627

inflate.h -1103916893 -1103916893 -1103916893 -1103916893 -1103916893 -1103916893 -1103916893

inftrees.c -1612428739 -1612428739 -1612428739 -1612428739 -1612428739 -398644649 -398644649

inftrees.h 664915208 664915208 664915208 664915208 664915208 664915208 664915208

trees.c 1073237366 1073237366 1073237366 1073237366 -1816373927 -1816373927 -1816373927

trees.h -606868215 -606868215 -606868215 -606868215 -606868215 -606868215 -606868215

uncompr.c 192326669 192326669 192326669 192326669 192326669 192326669 192326669

zconf.h -1544713340 -1757611041 -1757611041 -1757611041 -1757611041 -1757611041 -1757611041

zlib.h -2138958056 948743589 -1459603184 -1459603184 -818767538 1084346717 -1657991023

zutil.c 23947232 23947232 -1539554678 -1539554678 -1539554678 23947232 23947232

zutil.h -75067914 -75067914 -1845611784 -1845611784 -1845611784 -550564458 -550564458

20

Table 5: Tokenized Source File Hash Value of Reused zlib code of Vendee Projects (Partial

data)
maxmods pcsx2 page-speed vba-rerecording trinitycore node ogredeps

adler32.c -1985291897 2113594270 1176039264 -615916212 2113594270 1176039264 -1985291897

compress.c 1333470270 1333470270 220231236 -1116885086 1333470270 220231236 1333470270

crc32.c 2064200337 -1571418597 1793365266 120147119 1847911446 1793365266 1595152794

crc32.h -354365049 -1588687172 -1588687172 null -1588687172 -1588687172 -354365049

deflate.c -1409057172 988004036 -716458222 446895563 988004036 -716458222 -1409057172

deflate.h 1298881308 1722568846 1268879099 -1311545567 403614202 1268879099 1298881308

example.c null null 760615207 -808318136 760615207 null null

gzclose.c -1300258337 -1300258337 null null -1300258337 null -1300258337

gzguts.h 1070149405 -819659832 null null -446156865 null 1070149405

gzio.c null null -882659134 -1196300585 null -882659134 null

gzlib.c 837421093 -1637121492 null null -303569336 null 824177050

gzread.c 1266816223 842686823 null null -528277905 null 1707380412

gzwrite.c 217060161 677393314 null null 677393314 null -1087779827

infback.c -1788147778 68844950 -639321524 null 68844950 -639321524 -1788147778

infblock.c null null null -1587483067 null null null

infblock.h null null null -704134430 null null null

infcodes.c null null null -104284293 null null null

infcodes.h null null null -71289146 null null null

inffast.c 2079323817 -471629011 369583385 629599253 2079323817 369583385 2079323817

inffast.h 300619272 1059270404 1059270404 -1700553698 300619272 1059270404 300619272

inffixed.h -309274144 -309274144 -309274144 1612281900 -309274144 -309274144 -309274144

inflate.c 2006871948 847399627 1768556465 1864655114 847399627 1768556465 -688443384

inflate.h -1103916893 -1103916893 825686439 null -1103916893 825686439 -1103916893

inftrees.c -1612428739 2054684611 -1011582854 1150279979 -398644649 -1011582854 -1612428739

inftrees.h 664915208 1096283002 1096283002 157976537 664915208 1096283002 664915208

infutil.c null null null -343013529 null null null

infutil.h null null null 1215582631 null null null

minigzip.c null null null null -585091911 null null

mozzconf.h null null null null null 0 null

trees.c 1073237366 1699075037 -1963908846 -675630310 -1816373927 -1963908846 1073237366

trees.h -606868215 1623793015 1623793015 1623793015 -606868215 1623793015 -606868215

uncompr.c 192326669 192326669 192326669 -1748596346 192326669 192326669 192326669

zconf.h -1757611041 -1757611041 -1757611041 -1497271377 -1757611041 -1757611041 -1544713340

zconf.in.h null null -1757611041 null null null null

zlib.h -1459603184 -1657991023 1995390438 -1542599989 -1657991023 1995390438 -2138958056

zutil.c -1539554678 463327104 -933339134 -1788435536 23947232 -933339134 23947232

zutil.h -1845611784 -631530840 -631530840 -751411416 -550564458 -631530840 -75067914

21

file we want from each projects efficiently. Then tokenized file hash values are calculated

for each source file in directories that supposed to be containing third-party code.

Table 5 is an example that shows partial data of the tokenized hash values of these

projects.

After getting the complete data of the projects, we compare the hash values between

Table 4 and Table 5 as Table 6 shows. The most matched version is identified as the

reused version. From this table, we can notice that the hash values of all the 22 files

reused in ”pcsx2” are exactly matched with the zlib files of version 1.2.1 and 1.2.1.1. Thus

the newer one, v1.2.1.1 of zlib is identified as reused third-party code in this project.

And then, we applied this approach to all the appropriate results returned byOpenCCFinder

to identify the version number of third-party code reused in open source projects. After

getting all this data, we calculate the proportion of out-dated third-party code in these

projects to answer the first research question.

Reliability and validity issues of this approach would be discussed in Section ?.

2.5 Manual Collection of Third-party Code Management Information

At last, we manually investigate that how developers managed the third-party code

in their own projects to answer the third research question: How do developers manage

those out-dated third-party code? In detail, we try to answer these questions:

• Whether developers modify third-party code?

• Whether developers update third-party code when original code is updated?

• Whether developers manage version information of third-party code?

• Whether developers make any extra changes that might cause difficulty of manage-

ment?

By checking the directory structure and source files, repository commit message history,

files such as ”readme.txt”, ”changelog.txt” under the directory of third-party code, we can

found valuable information for these questions. we would like to explain how we did it.

For the first subquestion ”Whether developers modify third-party code?”, we compare

the tokenized hash values to identify the version number. If there are several files do not

match with any hash values of the version, we would manually looking into those files

and confirm if they modified the reused code. we also try to find their motivation of

modification.

For the second subquestion ”Whether developers update third-party code when origin

code is updated?”, we mainly investigating the repository commit log history. For example,

a project named ”repositorium” has repository commits log message as Table 7.

22

Table 6: Hash values comparison between project pcsx2 and each version of zlib. ”O”

represents matched; ”X” represents not matched
i i i c

d a n i n n i i o i u d i

e d f n f f n n m n n e n

f c t l c t t z f f t z f z f p f c f f

l r r e z r r r u f i g r u f c l r b o l l

a c e r l c e e t a x z e t a o a e a m a a

t 3 e 3 i 3 e e i s e i e i s n t s c p t t

e 2 s 2 b 2 s s l t d o s l t f e s k r e e

. .

h c c c h h c h c c h c h h h h c c c c c h

v1.2.7 X X X X X X X X X X O X O X X X X X X O X X 3/22

v1.2.6.1 X X X X X X X X X X O X O X X O X X X O X X 4/22

v1.2.6 X X X X X X X X X X O X O X X O X X X O X X 4/22

v1.2.5.3 X X X X X X X X X X O X O X X O X X X O X X 4/22

v1.2.5.2 X X X X X X X X X X O X O X X O X X X O X X 4/22

v1.2.5.1 X X X X X X X X X X O X O X X O X X X O X X 4/22

v1.2.5 X X X X X O X X X X O X O X X O X X X O X X 5/22

v1.2.4.5 X X X X X O X X X X O X O X X O X X X O X X 5/22

v1.2.4.4 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.4.3 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.4.2 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.4.1 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.4 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.4-pre2 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.4-pre1 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.3.9 X X X X X O X O X X O X O X O X X X X O X X 6/22

v1.2.3.8 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.3.7 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.3.6 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.3.5 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.3.4 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.3.3 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.3.2 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.3.1 X X X X X O X O X X O X O X O O X X X O X X 7/22

v1.2.3 X X X X X O X O X X O X O X O O X O X O X X 8/22

v1.2.2.4 X X X X X O O O X X O X O X O O X O X O X X 9/22

v1.2.2.3 X X X X X O O O X X O X O X O O X O X O X X 9/22

v1.2.2.2 X X X X X O O O X X O X O X O O X O X O X X 9/22

v1.2.2.1 X X X X X O O O X O O X O O O O X O X O X X 11/22

v1.2.2 X X X O X O O O O O O X O O O O X O X O O O 15/22

v1.2.1.2 X X X O X O O O O O O X O O O O X O X O O O 15/22

v1.2.1.1 O 22/22

v1.2.1 O 22/22

v1.2.0.8 O O O X O O O O O O O O O X O O O O O O O O 20/22

v1.2.0.7 O O O X X O O O O O O X O X O O O O O O X O 17/22

v1.2.0.6 O O X X X O O O O O O X O X O O O O O O X O 16/22

v1.2.0.5 O O X X X O O O O O O X O X O O O O O O X O 16/22

v1.2.0.4 O X X X X O O O X X O X O X O O X O X O X X 10/22

v1.2.0.3 O X X X X O X O X X O X X X O O X O X O X X 8/22

v1.2.0.2 O X X X X O X O X X O X X X O O X O X O X X 8/22

v1.2.0.1 O X X X X O X O X X O X X X O O X O X O X X 8/22

v1.2.0 O X X X X O X O X X O X X X O O X O X O X X 8/22

v1.1.4 O X X X X X X O X X X X X X X X X X X X X X 2/22

v1.1.3 O X X X X X X O X X X X X X X X X X X X X X 2/22

v1.1.2 X X X X X X X O X X X X X X X X X X X X X X 1/22

v1.1.1 X X X X X X X O X X X X X X X X X X X X X X 1/22

v1.1.0 X X X X X X X O X X X X X X X X X X X X X X 1/22

v1.0.9 X 0/22

v1.0.8 X 0/22

v1.0.7 X 0/22

v1.0.5 X 0/22

v1.0.4 X 0/22

v1.0.2 X 0/22

v1.0.1 X 0/22

v1.0-pre X 0/22

v0.99 X 0/22

v0.95 X 0/22

v0.94 X 0/22

v0.93 X 0/22

v0.92 X 0/22

v0.91 X 0/22

v0.9 X 0/22

v0.8 X 0/22

v0.79 X 0/22

v0.71 X 0/22

23

Table 7: Commit Log Messages about third-party code in project ”repositorium”
Revision Commit log message Date Author

r1013 Merged ”zlib” library with original version 1.2.7 May 5, 2012 Elijah Zarezky

(dated May 2,2012)

r989 Merged ”zlib” library with original version 1.2.6 Apr 14, 2012 Elijah Zarezky

(dated Jan 29,2012)

r346 Updated ”zlib” library to version 1.2.5(Apr 19,2010) Jun 1, 2010 Elijah Zarezky

r96 Updated ”zlib” library to version 1.2.3(July 18, 2005) Aug 14, 2005 Elijah Zarezky

r96 Updated ”zlib” compression library to version 1.2.2 Apr 22, 2005 Elijah Zarezky

r4 initial import Mar24,2004 Elijah Zarezky

This is a good example that shows developer of repositorium project frequently update

their third-party code to latest version. On the other hand, there are also many badly

managed projects that only have one commit log of third-party code, which indicates that

the developers only import the third-party libraries but not update them.

For the third subquestion ”Whether developers manage version information of third-

party code?”, we just try to find if the developers keep any file that can tell version

information. Usually, in the ”readme.txt” or ”changelog” file there are version information.

For the last subquestion, we check if there are any extra changes that might cause

difficulty of management. For example, some developers changed package or directory

name of the third-party libraries, or they change some of the filenames, or mix the third-

party code with their own code. Such behaviors are considered harmful for management.

24

3 Case Study

3.1 Subject Third-party Code : zlib, libcurl, libpng

Currently we have chosen three subject third-party code in different domain to study.

They are zlib, libcurl, and libpng.

zlib[6] is a free and open source library used for data compression. It is an important

component of many software platforms including Linux, Mac OS X, and IOS. It has also

been used in gaming consoles such as PlayStation3, Wii, and Xbox 360. Thousands of

applications relying on it for compression, either directly or indirectly.

libcurl[3] is a free client-side file transfer library. It is also free and open source software.

It supports HTTPS certificates, HTTP POST, HTTP PUT, FTP uploading, Kerberos,

HTTP form based upload, proxies, cookies, user-plus-password authentication, file transfer

resume, and HTTP proxy tunneling. libcurl is a portable, powerful and frequently reused

C-based multi-platform file transfer library. In this study, we investigate the core code of

libcurl in the ”curl/lib” directory under cURL project.

libpng[4] is the official Portable Network Graphics reference library. It is a platform-

independent library that contain C function for handing PNG images. The same as zlib,

libpng is also free and open source software. It is frequenly used in both free and pro-

prietary software, either directly or through the use of a higher level image library. The

official libpng library repository also stored contributions code which are not used for

building the library. In this study we only investigate the core code of libpng code and

ignore the contributions under ”contrib” directory.

Table 8 are information of these three subject third-party code collected form the

project homepages or their repositories.

25

Table 8: Subjects Third-party Code Information
Project name zlib libcurl (curl/lib) libpng

Domain data compression file transfer graphics

Project homepage http://www.zlib.net/ http://curl.haxx.se/libcurl/ http://www.libpng.org/

Language c c c

Repository url https://github.com/ https://github.com git://libpng.git.sourceforge.

madler/zlib.git /bagder/curl net/gitroot/libpng/libpng

Earliest version found v0.71 v6.5 v0.71

in git repository

Release date of the April 1995 December 1999 July 1995

earliest version found

in git repository

Latest Version v1.2.7 v7.28.1 v1.5.13

Release date of May 2012 November 2012 September 2012

the latest version

of version tags 65 134 150

in git repository

of source files (.c or .h) 26 222 24

in latest version

Totle size of source files 482KB 2.77MB 1.06MB

(.c .h) in latest version

Examples of projects linux kernel, Mac OS X, XboxMediaCenter, libTorrent, Internet Explorer, Mozilla

that reused these code IOS, 3DMax, Internet Explorer MiKTeX, git, OpenOffice.org, Firefox, Opera, Safari,

Jbuilder, Opera, java Doom 3 3DMAX, Maya

26

3.2 Case Study Statistics

3.2.1 Defects in Third-party Code

The software vulnerabilities of zlib, libcurl, libpng collected from NVD and their

project homepage are listed in Table 9, Table 10, Table 11. These out-dated versions

are considered to be harmful for reusing.

Table 9: Vulnerabilities Information of zlib
v1.1.3 CVE-2002-0059 VU#368819 CA-2002-07

v1.1.4 CVE-2003-0107 VU#142121

v1.2.1 v1.2.2 CVE-2004-0797 VU#238687

v1.2.1 v1.2.2 CVE-2005-2096 VU#680620

v1.2.2 CVE-2005-1849

v1.2.4 Bug Fixed. Update suggestion from project homepage

Table 10: Vulnerabilities Information of libcurl
v7.12.1 CVE-2005-0490

v7.13.2 CVE-2005-3185

from v7.11.2 to v7.15.0 TA06-132A

from v7.15.0 to v7.15.2 CVE-2006-1061

from v7.14.0 to 7.16.3 CVE-2007-3564

from v5.11 to 7.19.3 CVE-2009-2417

from 7.10.5 to 7.19.7 CVE-2010-0734

from 7.10.6 to 7.21.6 CVE-2011-2192

before v7.24 CVE-2012-0036

27

Table 11: Vulnerabilities Information of libpng
before 1.2.6 or 1.0.16 CVE-2004-0597 VU#388984 VU#817368

CVE-2004-0599 VU#160448 VU#286464 VU#477512

CVE-2004-0598 VU#236656

v1.2.6 v1.0.16 Warning from Project Homepage

v1.2.6 v1.2.7 v1.0.17 v1.0.16 Warning from Project Homepage

v1.2.11 v1.0.19 CVE-2006-3334

v1.0.6 v1.2.12 v1.0.20 CVE-2006-5793

v1.2.16 v1.0.24 VU#684664 CVE-2007-2445

v1.2.20 CVE-2007-5266 CVE-2007-5268 CVE-2007-5269

v1.2.21 CVE-2007-5267

before v1.2.24 Warning from Project Homepage

from v1.0.6 to v1.2.26 CVE-2008-1382

v1.2.30 v1.2.31 CVE-2008-3946

from v0.89c to v1.2.34 CVE-2009-0040

v1.2.35 Warning from Project Homepage

v1.4.2 1.2.43 CVE-2010-1205

v1.5.0 CVE-2011-0408

before v1.5.4 1.4.8 1.2.45 1.0.55 CVE-2011-2690 CVE-2011-2692

v1.2.20 CVE-2011-2691

v1.5.4 CVE-2011-3328 VU#477046

from v1.5.4 to v1.5.7 CVE-2011-3464

from v1.0.6 to v1.5.8, v1.4.8, 1.2.46, 1.0.56 CVE-2011-3026

v1.5.9 v1.4.10 v1.2.48 v1.0.58 CVE-2011-3048

v1.5.11 v1.4.11 v1.2.49 v1.0.59 CVE-2012-3386

28

3.2.2 Version Information of Third-party Code in Open Source Software

After manually checking with such rules, we get a list of ”appropriate” candidate

vendee software to study. Table 12 shows the number of projects returned fromOpenCCFinder

with the number filtered out by the rule described above in the previous section.

Table 12: # Subject Vendee Projects
Subject # projects returned by OpenCCFinder # projects filtered out # projects remaining

zlib 70 25 45

libcurl 66 38 28

libpng 62 12 50

The detail information of remained projects are list in Appendix section. By file clone

detection, we identified the version number of thrid-party code in each project, the results

are listed in Appendix.

Using file clone detection technique, the version number of third-party library in can-

didate vendee projects are identified in Table 13, Table 14, Table 15. Project name, most

matched third-party code version, whether modified, supposed vulnerabilities and man-

agement information are listed in these tables. ”YES” in modified column represents that

the third-party code in these projects is not totally matched with original code. Some of

the files are modified by developers. ”No version information” is management Informa-

tion column represents that there is no ”README” or ”changelog” files which can tell

the version number of third-party code to developers.

3.3 Detailed Analysis

If we take closer look at these statistics, we can find useful information for answering

the raised research questions in section 1.

3.3.1 Proportion of Out-dated Third-party Code In Open Source Software

As we can see, a number of versions of third-party libraries even those including out-

dated unsafe code are spreading in open source softwares. Only a few projects are using

the latest versions library. Figure 7 shows the number of projects that reused third-party

code of different versions. Those libraries without any known software vulnerabilities

are in green columns; the ones with warnings from third-party project homepage are in

orange columns; and the ones containing software vulnerabilities are in red columns. We

can observe that:

• For zlib, the 45 projects in this study reused 9 different versions of its code. 14

(31.1%) projects are using out-dated zlib code containing potential defects. While 6

29

Table 13: zlib in Open Source Software
Project Name Most matched version Modified Supposed Vulnerabilities Management Information

natpad v1.1.3 YES VU#368819 CA-2002-07 Only imported but no update

terkos v1.1.3 VU#368819 CA-2002-07 Only imported but no update

albumart v1.1.4 YES CVE-2003-0107 VU#142121 No version information,

Only imported but no update

winxgui v1.1.4 CVE-2003-0107 VU#142121 Only imported but no update

ldd6410 v1.1.4 CVE-2003-0107 VU#142121 Only imported but no update

uos-embedded v1.2.1.1 CVE-2004-0797 VU#238687 Only imported but no update

CVE-2005-2096 VU#680620

node v1.2.3 Only imported but no update

splayer v1.2.3 Only imported but no update

nocnnic v1.2.3 Only imported but no update

filepirate v1.2.3 No version information, Only imported but no update

multitheftauto v1.2.3 No version information, Only imported but no update

cleancodequake2 v1.2.3.2 YES Only imported but no update

juced v1.2.3.2 YES Only imported but no update

v8monkey v1.2.5 Only imported but no update

indielib-crossplatform v1.2.6 FreeImage module

zlib-win64 v1.2.7 YES Modified code based on zlib v1.2.7

harbour-project v1.2.7 Well managed, v1.1.4, v1.2.5, v1.2.6, v1.2.7

tothemax v1.1.3 VU#368819 CA-2002-07 Only imported but no update

vba-rerecording v1.1.4 CVE-2003-0107 VU#142121 Only imported but no update

slim-runtime v1.1.4 YES CVE-2003-0107 VU#142121 Only imported but no update, using zdelta 2.1

pcsx2 CDVDisoEFP Plugin v1.2.1.1 CVE-2004-0797 VU#238687 Only imported but no update

CVE-2005-2096 VU#680620

wiredplane-wintools v1.2.1.1 YES CVE-2004-0797 VU#238687 No version information, Only imported

CVE-2005-2096 VU#680620 but no update, name changed to ’Zip’

q3ce v1.2.1.1 CVE-2004-0797 VU#238687 No version information, Only imported but no update

CVE-2005-2096 VU#680620

snake-os v1.2.3 Only imported but no update

vx32 v1.2.3 YES No version information,

Only imported but no update

tmlinux v1.2.3 Only imported but no update

xbmc v1.2.3 Only imported but no update

rt-thread v1.2.3 No version infomation, Only imported

but no update, directory name change to ’libz’

tastools v1.2.6 updated once, v1.2.3, v1.2.6

upp-mirror v1.2.3 Only imported but no update, name changed to z/lib

dynamica v1.2.3 using wxWidgets-2.9.0

page-speed v1.2.3 No version information, Only imported but no update

WazeWP7 v1.2.3 Only imported but no update

gamekit v1.2.3 FreeImage module, never updated

realxtend-naali-deps v1.2.3.2 YES Mixed with other code

rtemssparc64 v1.2.4 Encourage to update according to homepage Updated once, 1.2.3, 1.2.4

pcsx2 v1.2.4 Encourage to update according to homepage Updated once 1.2.3, 1.2.4

vsfiltermod v1.2.5 Updated once 1.2.4, 1.2.5

Haiku-services-branch v1.2.5 Well managed, 1.1.4,1.2.1, 1.2.3, 1.2.5

maxmods v1.2.6 FreeImage module

jslibs v1.2.6 Well managed, update to 1.2.6

repositorium v1.2.7 Well managed. 1.2.5, 1.2.6, 1.2.7 keep updating

ogredeps v1.2.7 Well managed, 1.2.5, 1.2.7

trinitycore v1.2.7 Well managed, 1.2.5, 1.2.7

sumatrapdf v1.2.7 Well managed, 1.2.3, 1.2.5, 1.2.6 ,1.2.7 keep updating

30

Table 14: libcurl in Open Source Software
Project Name Most matched version Modified Supposed Vulnerabilities Management Information

doom3-gpl v7.11.1 CVE-2009-2417 CVE-2010-0734 Only imported but no update

CVE-2011-2192 CVE-2012-0036

bclcontrib-scriptsharp v7.11.1 CVE-2009-2417 CVE-2010-0734 Only imported but no update

CVE-2011-2192 CVE-2012-0036

Enemy-Territory-gpl v7.12.2 YES TA06-132A CVE-2007-3564 CVE-2009-2417 Only imported but no update

CVE-2010-0734 CVE-2011-2192 CVE-2012-0036

w3monitor v7.14.0 TA06-132A CVE-2009-2417 CVE-2010-0734 No version information,

CVE-2011-2192 CVE-2012-0036 Only imported but no update

PortaPhone-3rdpartylibs v7.16.1 YES CVE-2007-3564 CVE-2009-2417 CVE-2010-0734 Only imported but no update

CVE-2011-2192 CVE-2012-0036

custom-qutecom v7.16.1 CVE-2007-3564 CVE-2009-2417 CVE-2010-0734 Only imported but no update

CVE-2011-2192 CVE-2012-0036

greentimer v7.16.2 CVE-2007-3564 CVE-2009-2417 CVE-2010-0734 Only imported but no update

CVE-2011-2192 CVE-2012-0036

astromap v7.16.4 CVE-2009-2417 CVE-2010-0734 Only imported but no update

CVE-2011-2192 CVE-2012-0036

storwords v7.17.1 CVE-2009-2417 CVE-2010-0734 Only imported but no update

CVE-2011-2192 CVE-2012-0036

dlfm v7.18.1 CVE-2009-2417 CVE-2010-0734 Only imported but no update

CVE-2011-2192 CVE-2012-0036

ketonal v7.18.1 CVE-2009-2417 CVE-2010-0734 No version information,

CVE-2011-2192 CVE-2012-0036 Only imported but no update

telebision v7.19.0 CVE-2009-2417 CVE-2010-0734 Only imported but no update

CVE-2011-2192 CVE-2012-0036

sina-weibo-common v7.19.2 YES CVE-2009-2417 CVE-2010-0734 Modified based on v7.19.2, no version

CVE-2011-2192 CVE-2012-0036 information, directory changed, no update

juced v7.19.4 YES CVE-2010-0734 Modified based on v7.19.4, no version

CVE-2011-2192 CVE-2012-0036 information, no update

warmux-11.04 v7.19.4 YES CVE-2010-0734 CVE-2011-2192 CVE-2012-0036 Modified based on v7.19.4, no update

mtasa-blue v7.19.4 CVE-2010-0734 CVE-2011-2192 CVE-2012-0036 reverted from 7.27.0 to 7.19.4

snake-os v7.19.6 CVE-2010-0734 CVE-2011-2192 CVE-2012-0036 Only imported but no update

u2reader v7.19.7 YES CVE-2011-2192 CVE-2012-0036 Modified based on v7.19.7,

No version information, no update

rhodes-rhomobile v7.19.7 YES CVE-2011-2192 CVE-2012-0036 Modified based on v7.19.7,

No version information, no update

imgur-uploader v7.19.7 YES CVE-2011-2192 CVE-2012-0036 Only imported but no update

waitzar v7.21.3 YES CVE-2011-2192 CVE-2012-0036 Only imported but no update

crazy-mad-face v7.21.6 CVE-2011-2192 CVE-2012-0036 Only imported but no update

peerblock v7.22.0 CVE-2012-0036 Well managed, keep on updating v7.21.0, v7.21.2,

v7.21.3, v7.21.4, v7.21.5, v7.21.6, v7.21.7, v7.22.0

cmsupload v7.23.1 CVE-2012-0036 Only imported but no update,

directory name chenged

qwreptile v7.24.0 Only imported but no update

curl-ssh-android v7.25.0 Only imported but no update

mp-onlinevideos2 v7.26.0 Updated from v7.24.0 to v7.26.0

maxmods v7.28.1 Well managed, keep on updating

v7.18.0, v7.21.7, v7.28.1

31

Table 15: libpng in Open Source Software
Project Name Most matched version Modified Supposed Vulnerabilities Management Information

VTK v1.0.11 YES CVE-2004-0597 CVE-2008-1382 CVE-2009-0040 modified based on v1.0.11

CVE-2011-2690 CVE-2011-2692 CVE-2011-3026

vba-rerecording v1.2.1 CVE-2004-0597 CVE-2008-1382 CVE-2009-0040 Only imported but no update

CVE-2011-2690 CVE-2011-2692 CVE-2011-3026

fds-smv v1.2.5 CVE-2004-0597 CVE-2008-1382 CVE-2009-0040 No version Information,

CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 Only imported but no update

crashrpt v1.2.7 CVE-2008-1382 CVE-2009-0040 CVE-2011-2690 Only imported but no update. Wrong info

CVE-2011-2692 CVE-2011-3026 in long information(said to be v1.2.24)

uos-embedded v1.2.7 YES CVE-2008-1382 CVE-2009-0040 CVE-2011-2690 modified from v1.2.7

CVE-2011-2692 CVE-2011-3026

fictionbookeditor v1.2.8 CVE-2008-1382 CVE-2009-0040 CVE-2011-2690 No version Information,

CVE-2011-2692 CVE-2011-3026 Only imported but no update

WazeWP7 v1.2.12 YES CVE-2006-5793 CVE-2008-1382 CVE-2009-0040 No version Information,

CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 Only imported but no update

fop-miniscribus v1.2.16 YES CVE-2007-2445 CVE-2008-1382 CVE-2009-0040 modified based on v1.2.12

CVE-2011-2690 CVE-2011-2692 CVE-2011-3026

MultiTheftAuto v1.2.16 CVE-2007-2445 CVE-2008-1382 CVE-2009-0040 Only imported but no update

CVE-2011-2690 CVE-2011-2692 CVE-2011-3026

mtasa-blue v1.2.16 CVE-2007-2445 CVE-2008-1382 CVE-2009-0040 Only imported but no update

CVE-2011-2690 CVE-2011-2692 CVE-2011-3026

juced v1.2.21 YES CVE-2007-5267 CVE-2008-1382 CVE-2009-0040 No version Information,

CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 Only imported but no update

upp-mirror v1.2.22 CVE-2008-1382 CVE-2009-0040 CVE-2011-2690 Only imported but no update

CVE-2011-2692 CVE-2011-3026

libset v1.2.23 CVE-2008-1382 CVE-2009-0040 CVE-2011-2690 Only imported but no update

CVE-2011-2692 CVE-2011-3026

xbmc v1.2.24 CVE-2008-1382 CVE-2009-0040 CVE-2011-2690 Only imported but no update

CVE-2011-2692 CVE-2011-3026

ovw v1.2.24 CVE-2008-1382 CVE-2009-0040 CVE-2011-2690 Only imported but no update

CVE-2011-2692 CVE-2011-3026

o3d v1.2.27 CVE-2009-0040 CVE-2011-2690 revert v1.2.34 to 1.2.27

CVE-2011-2692 CVE-2011-3026

wiiflow v1.2.29 YES CVE-2009-0040 CVE-2011-2690 merged together, mixing with

CVE-2011-2692 CVE-2011-3026 other file, no version information

pseuwow v1.2.32 CVE-2009-0040 CVE-2011-2690 using irrilicht, update once from

CVE-2011-2692 CVE-2011-3026 irrilicht v1.3 to v1.4

dava-framework v1.2.33 CVE-2009-0040 CVE-2011-2690 Only imported but no update, different

CVE-2011-2692 CVE-2011-3026 version in different directory

dynamica v1.2.34 CVE-2009-0040 CVE-2011-2690 using wxWidgets, no Update

CVE-2011-2692 CVE-2011-3026

Visualization-Library v1.2.35 CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 Only imported but no update

guliverkli2 v1.2.37 CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 well managed, keep updating, 1.2.32,

1.2.24, 1.2.35, 1.2.37

ulsgd v1.2.39 CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 using irrilicht, Never Update

opennero v1.2.39 CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 using irrilicht, Never Update

ease-sdk v1.2.40 CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 Never Update

snes9x-rr v1.2.40 CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 1.2.1, 1.2.40

Portalarium-Player v1.2.40 CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 Never Update

fs2open v1.2.42 CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 No version Information,

Only imported but no update

angel-engine v1.4.1 CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 Only imported but no update

shared-libs v1.2.43 CVE-2010-1205 CVE-2011-2690 Only imported but no update. Wrong info

CVE-2011-2692 CVE-2011-3026 in version (said to be v1.2.38)

vsfiltermod v1.4.2 CVE-2010-1205 CVE-2011-2690 Only imported but no update

CVE-2011-2692 CVE-2011-3026

chipmunk-spacemanager v1.2.44 CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 Updated from 1.2.38 to 1.2.44

ftk v1.2.44 YES CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 mixing with other file, no version

information, never update

openjpeg v1.4.4 CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 No version Information,

Only imported but no update

adosbox v1.4.6beta06 CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 Only imported but no update

lcdhost-LH Lua v1.5.1 CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 Only imported but no update

thesnow v1.5.1 CVE-2011-2690 CVE-2011-2692 CVE-2011-3026 No version Information,

Only imported but no update

webpagetest v1.5.4 CVE-2011-3328 CVE-2011-3464 CVE-2011-3026 Updated from 1.2.7 to 1.5.4

fbarr v1.5.4 CVE-2011-3328 CVE-2011-3464 CVE-2011-3026 Only imported but no update

IM-An image tool v1.5.7 CVE-2011-3464 CVE-2011-3026 Updated from 1.2.20 to 1.5.7

Embedded-Master-ARM v1.2.46 YES CVE-2011-3026 Never Update

V8monkey v1.4.8 YES CVE-2011-3026 Modified based on 1.4.8

cocos2d-iphone v1.2.49 CVE-2012-3386 well managed, keep updating

APITrace v1.5.9 CVE-2011-3048 Updated from 1.5.1 to 1.5.9

miranda v1.5.9 CVE-2011-3048 using FreeImage, keep updating

Irrlicht v1.5.9 CVE-2011-3048 well managed, keep updating

repositorium v1.5.10 well managed, keep updating

dava-framework v1.5.12 Only imported but no update

FreeImage v1.5.13 well managed, keep updating

harbour-project v1.5.13 well managed, keep updating

32

3
5

4

15

3
2

3
4

6

0

2

4

6

8

10

12

14

16

V1.1.3 V1.1.4 V1.2.1.1 V1.2.3 V1.2.3.2 V1.2.4 V1.2.5 V1.2.6 V1.2.7

#
 P

ro
je

ct
s

th
a

t
re

u
se

d
 z

li
b

Reused zlib versions

No vulnerability reported Warnings from project homepage Vulnerability reported by NVD

2

1 1

2

1 1

2

1 1

3

1

3

1 1 1 1 1 1 1 1

0

1

2

3

4

5

#
 P

ro
je

ct
s

th
a

t
re

u
se

d
 l
iv

cu
rl

Reused libcurl versions

0

1

2

3

4

5

v
1
.0
.1
1

v
1
.2
.1

v
1
.2
.7

v
1
.2
.8

v
1
.2
.5

v
1
.2
.1
2

v
1
.2
.1
6

v
1
.2
.2
1

v
1
.2
.2
2

v
1
.2
.2
3

v
1
.2
.2
4

v
1
.2
.2
7

v
1
.2
.2
9

v
1
.2
.3
2

v
1
.2
.3
3

v
1
.2
.3
4

v
1
.2
.3
5

v
1
.2
.3
7

v
1
.2
.3
9

v
1
.2
.4
0

v
1
.2
.4
2

v
1
.4
.1

v
1
.2
.4
3

v
1
.4
.2

v
1
.4
.4

v
1
.2
.4
4

v
1
.4
.6
b
e
ta
0
6

v
1
.5
.1

v
1
.5
.4

v
1
.5
.7

v
1
.2
.4
6

v
1
.4
.8

v
1
.2
.4
9

v
1
.5
.9

v
1
.5
.1
0

v
1
.5
.1
2

v
1
.5
.1
3

#
 P

ro
je

ct
s

th
a

t
re

u
se

d
 l
ib

p
n

g

Reused libpng versions

Figure 7: Reused third-party code versions

33

projects have upgraded to the latest version. Moreover, v1.2.3 seems to be a stable

version. It is the most reused one.

• For libcurl, the 28 projects in this study reused 20 different versions of its code. 24

(85.7%) projects are reusing out-dated libcurl code. Only 4 projects are using newer

versions of code without vulnerabilities and only 1 project is using the latest version.

• For libpng, 37 different versions of its code are spreading in the 50 projects in this

study. 46 (92%) projects are reusing out-dated libpng code. only 4 projects are

using newer versions of code without vulnerabilities and 2 projects are using the

latest version.

In all the 123 projects, 84 (68.3 %) of them are reusing out-dated third-party code.

This result indicates that a large number of open source software are containing code with

vulnerabilities.

3.3.2 Potential Defects of Open Source Software

In our point of view, the vulnerabilities reported in NVD are almost serious defects

which could make those projects using such third-party code to be good target for attack-

ers. We have investigated some of the projects, for example, the ”pcsx2 CDVDisoEFP

Plugin” project is a plugin for images file compression and decompression in a Playstation

2 emulator. ”zlib” of v1.2.1.1 is one of the core compression libraries used here. However,

this version is reported to contain vulnerability CVE-2004-0797. The description of this

vulnerability is as follow:

zlib 1.2 and later versions allows remote attackers to cause a denial of service (crash) via

a crafted compressed stream with an incomplete code description of a length greater

than 1, which leads to a buffer overflow, as demonstrated using a crafted PNG

file. The impact of this vulnerability is: provides user account access, allows partial

confidentiality, integrity, and availability violation; allows unauthorized disclosure of

information; allows disruption of service.

As this vulnerability described, if attackers make such kind of crafted image files and

distribute them to pcsx2 users, they would possibly have done a successfully attack.

We did not confirm whether all of the projects reusing out-dated third-party code in

this study are indeed affected by the reported vulnerabilities. But in our consideration,

using a newer version of third-party code without vulnerabilities could be a better choice

for developers.

34

3.3.3 Third-party Code Management Information in Open Source Software

From the statistics, we can observe that as Figure 8 shows:

In all the 123 projects we studied, 27 (22.0%) of them modified the third-party code.

The left 96 (78.0%) projects reused the third-party code with ”copy&paste”.

In all the 123 projects we studied, only 18 projects managed the third-party code well

and update them frequently; while 83 projects did not update third-party code at

all, and in these 83 projects 23 (18.7%) of them have no version information of the

third-party code. Those project only reused the source code of third-party libraries

but ignored the introduction or changelog files. Those project owners cannot know

what version of third-party code they are using. The ”Other” set in Figure 8 means

those projects update third-party code sometimes, or we are not very clear about

them.

In all the 123 projects, 6 (4.9%) projects changed directory names or mix the third-party

code with other code, which could lead to difficulty in third-party code management.

In all the 123 projects, 2 (1.6%) projects revert third-party code from new versions to

older versions.

3.4 Case Study Results

Using the approach proposed in Section 2, we studied 45 projects that reused zlib, 28

project that reused libcurl, and 50 projects that reused libpng. Basing on the case study

statistics, we are trying to answer the raised questions as follows:

• What is the proportion of out-dated third-party code reused in the open source

software?

In this study, 68.3% open source software are reusing out-dated third-party code.

• What are the potential defects caused by such reuse?

Software Vulnerabilities of third-party code could cause potential defects in open

source software, the detailed information could be checked in NVD . In the case of

reusing zlib, libcurl and libpng, according to the vulnerabilities descriptions, denial

of service or execute arbitrator code are some examples of the potential defects.

• How do developers manage those out-dated third-party code?

Broadly speaking, more the half of the open source projects did not manage the

third-party very well. Many of them just ”copy&paste” thrid-party code to their

project. A large number of developers only imported third-party code into their

35

modified

22%

copy&paste

78%

Whether modified

keep

updating

15%

reverted

1%

other

16% no

version

info

19%

no update

68%

Whether well managed

Figure 8: Code Management Information

36

projects, after those code were working, they left those code alone and don’t tough

them any more. Some projects lost the version information of third-party code and

cannot manage it any more. And a few projects changed directory names or mix

the third-party code with their own code.

37

4 Discussion

4.1 The Reason That Out-dated Third-party Code Are Not Updated

In the above case studies we discovered some unexpected results. We found that

out-dated third-party code are widely spreading in the open source software, and many

developers don’t update those code. Even some projects revert to older versions.

I’ll take the project ”mtasa-blue” as example. In revision 4722, developers reverted

the libcurl library from v7.R27.0 to v7.19.4. However, v7.27.0 is a newer version without

any software vulnerabilities reported, while v7.19.4 is an older version with vulnerabilities.

The log message in repository is ”Reverted 4711, 4712, 4714 due to problems”.

In our view, what developers firstly care about is the functional implements but not the

security vulnerabilities. Thus, the priority of updating those code would not be very high,

unless some security problems really happens. What’ more, there are risks for developers

to update the code that currently working, just as ”mtasa-blue” did.

4.2 Reproducible of Reported Vulnerabilities

Although many vulnerabilities of third-party libraries are reported, the reproducibility

depends on how people reuse these code. Taking libpng for example, many vulnerabilities

are reproducible in the condition of reading a crafted picture. If a project only use this

library to read their own pictures, these vulnerabilities would not be problems. However,

if the software, such as a web browser, use libpng library to read pictures from external

users, they have to take these vulnerabilities seriously.

Anyway, to use newer version of third-party library would be a safer choice.

4.3 Subject Open Source Projects Returned by OpenCCFinder

Totally 123 projects are studied in this study. To a certain extent the results from

these projects can reflect how open source software reuse and manage third-party code.

However, as we know, there are millions as open source software in the world. The

candidate projects returned by OpenCCFinder are only in a very small subset of them.

These projects are from google code search, github code search, and search[code] search

engine. Since we don’t know the detailed searching and ranking algorithm of those external

search engines, there might be selection bias in this study.

Moreover, currently only the third-party libraries of C language that reused in the

form of source code were studied. It is possible that we will get different results if we

study the libraries in other language or in the form of binary code.

38

4.4 Future Work

Since many open source software did not manage their third-party code very well,

as future work, we would like to collect more popular third-party code information other

than zlib, libcurl, libpng, and then develop a support system to help developers to manage

those code.

This system should be able to automatically detect and identify the third-party code

used by developers, and provide developers with defect informations of the currently ver-

sion of third-party code. This system also should support automatically updating for

third-party code.

39

5 Related Works

5.1 Code Clone Detection and Analysis

There are many active researches on code clone detection and analysis [12], [19]. Among

those, there are works focusing on code clone search with scalability and performance for

the large scale repositories. Lee et. al. proposes a clone indexing method for detect-

ing similar code fragment in a large repository [18]. Keivanloo et. al. also proposes a

hybrid approach to real-time and scalable code clone search using two types of indexing

[14]. Those are important and useful techniques for the code clone search for the local

repositories. And there are works on File clone detection. Y. Sasaki proposed a file clone

detection approach in 2010[21], but it can only detect Type 1 clone.

5.2 Code Search Engines

We use OpenCCFinder to search for similar code from open source project hosting fa-

cilities. The external code search engines in OpenCCFinder is google code search, github

code search and search[code]. In addition to these ordinary keyword-based search engines,

many complicated search mechanisms have been proposed. Javacio is a meta search engine

for source code, JAR les, and documents, which executes a query for a keyword set and

returns search results using Google Code Search, Koders and others [1]. Exemplar is a

code search engine which expands the user’s query keywords to API calls by a dictionary

made by help documents [10]. CodeBroker is an interactive development tool to support

code completion by searching and providing useful code fragments in the repository, which

exibly extracts various information from a partial code fragment on edit, and nds appro-

priate artifacts[23]. There are many other approaches to code search, and Grechanik el.

al. have well summarized and classied those engines in [10].

5.3 Third Party Evolution Impact Analysis

There are existing researches on third-party evolution impact analysis. Kotonya et

al.[16] proposed approach of assuming a black box view on integrated components. They

also use an architecture description language and process-based approach to manage

evolving third-party components. B. Klatt et al.[15] copes with the trend of integrat-

ing open source components that provide access to source code and software management

information with further possibilities for the impact and development reliability analysis.

Clarksen[8] et al. and Bohner[20] use dependecy analysis in source code based impact

analysis. However, none of them had done empirical study on the evolution of third-party

component in open source software.

40

謝辞

It would not have been possible to write this master thesis without the help and support

of the kind people around me, to only some of whom it is possible to give particular mention

here.

Above all, I would like to thank my supervisor, Professor Katsuro Inoue, who gives

me the opportunity to study and work in Software Engineering Laboratory, and provided

important suggestions and guidance to my research. I am very grateful to Associate

Professor Makoto Matsushita, Assistant Professor

Takashi Ishio and Specially Appointed Assistant Professor Yuki Manabe for their valu-

able comments and helpful criticism which have helped guide and shape the development

of this thesis.

I would like to thank all members in Software Engineering laboratory for creating such

a great research environment with their passion and creativity. Especially Mr. Masakazu

Ioka helps me a lot with my study during these years.

I also would like to thank Mrs. Mizuho Karube, who help me a lot with my life in

Japan. Without her help I would not have been able to concentrate on study and research.

41

参考文献

[1] javacio.us. http://javacio.us/.

[2] jgments. http://code.google.com/p/jgments/.

[3] libcurl. http://curl.haxx.se/libcurl/.

[4] libpng. http://www.libpng.org/pub/png/libpng.html.

[5] National vulnerability database. http://nvd.nist.gov/.

[6] zlib. http://www.zlib.net/.

[7] C.K.Roy and J.R.Cordy. A survey on software clone detection research. Queen ’s

School of Computing TR, 541:115, 2007.

[8] P.J. Clarkson, C. Simons, and C. Eckert. Predicting change propagation in complex

design. Journal of Mechanical Design(Transactions of the ASME), 126(5):788–797,

2004.

[9] C. Ebert. Open source software in industry. IEEE Software, 25(3):52–53, 2008.

[10] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and C. Cumby. A

search engine for finding highly relevant applications. In Software Engineering, 2010

ACM/IEEE 32nd International Conference on, volume 1, pages 475–484. IEEE, 2010.

[11] S. Haefliger, G. Krogh, and S. Spaeth. Code reuse in open source software. Manage-

ment Science, 54(1):180–93, 2008.

[12] K. Inoue, J. Cordy, and R. Koschke. Iwsc 2012. In 6th International Workshop on

Software Clones, Zurich, Switzerland, 2012.

[13] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multilinguistic token-based

code clone detection system for large scale source code. Software Engineering, IEEE

Transactions on, 28(7):654–670, 2002.

[14] I. Keivanloo, J. Rilling, and P. Charland. Seclone-a hybrid approach to internet-scale

real-time code clone search. In Program Comprehension (ICPC), 2011 IEEE 19th

International Conference on, pages 223–224. IEEE, 2011.

[15] B. Klatt, Z. Durdik, H. Koziolek, K. Krogmann, J. Stammel, and R. Weiss. Identify

impacts of evolving third party components on long-living software systems. In Soft-

ware Maintenance and Reengineering (CSMR), 2012 16th European Conference on,

pages 461–464. IEEE, 2012.

42

[16] G. Kotonya and J. Hutchinson. Analysing the impact of change in cots-based systems.

COTS-Based Software Systems, pages 212–222, 2005.

[17] Kuhar and Benjamin B. Twitter malware collection system: An automated url ex-

traction and examination platform. Master’s thesis, Air Force Inst of Tech Wright-

patterson AFB of Graduate School of Engineering and Management, 2011.

[18] M.W. Lee, J.W. Roh, S. Hwang, and S. Kim. Instant code clone search. In Proceed-

ings of the eighteenth ACM SIGSOFT international symposium on Foundations of

software engineering, pages 167–176. ACM, 2010.

[19] C.K. Roy, J.R. Cordy, and R. Koschke. Comparison and evaluation of code clone

detection techniques and tools: A qualitative approach. Science of Computer Pro-

gramming, 74(7):470–495, 2009.

[20] S.A.Bohner. Extending software change impact analysis into cots components.

In Software Engineering Workshop, 2002. Proceedings. 27th Annual NASA God-

dard/IEEE, pages 175–182. IEEE, 2002.

[21] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue. Finding file clones in freebsd

ports collection. In Mining Software Repositories (MSR), 2010 7th IEEE Working

Conference on, pages 102–105. IEEE, 2010.

[22] P. Xia, Y. Manabe, N. Yoshida, and K. Inoue. Development of a code clone search

tool for open source repositories. Technical report, IPSJ SIG Technical Reports, 2010.

[23] Y. Ye and G. Fischer. Supporting reuse by delivering task-relevant and personal-

ized information. In Proceedings of the 24th international conference on Software

engineering, pages 513–523. ACM, 2002.

43

付録

Table 16: Candidate Vendee Projects for zlib Library
ID Project Name Repository Url Project Homepage

1 natpad http://natpad.googlecode.com/svn/ http://www.natpad.net/

2 terkos http://terkos.googlecode.com/svn/ http://code.google.com/p/terkos/

3 albumart http://albumart.googlecode.com/svn/ http://albumart.org/

4 winxgui http://winxgui.googlecode.com/svn/ http://winxgui.wikidot.com/

5 ldd6410 http://ldd6410.googlecode.com/svn/ http://code.google.com/p/ldd6410/

6 uos-embedded http://uos-embedded.googlecode.com/svn/ http://embedded.uos.ac.kr/

7 node https://github.com/joyent/node/ http://nodejs.org/

8 splayer https://bitbucket.org/Tomasen/splayer/src/ http://www.splayer.org/

9 nocnnic http://nocnnic.googlecode.com/hg/ https://code.google.com/p/nocnnic/

10 filepirate http://filepirate.googlecode.com/hg/ http://code.google.com/p/filepirate/

11 multitheftauto http://multitheftauto.googlecode.com/svn/ http://www.multitheftauto.com/

12 cleancodequake2 http://cleancodequake2.googlecode.com/svn/ http://code.google.com/p/cleancodequake2/

13 juced http://juced.googlecode.com/svn/ http://www.rawmaterialsoftware.com/juce.php

14 v8monkey https://github.com/zpao/v8monkey.git https://github.com/zpao/v8monkey/

15 indielib-crossplatform https://github.com/DarthMike/indielib-crossplatform.git https://github.com/DarthMike/indielib-crossplatform/

16 zlib-win64 http://zlib-win64.googlecode.com/git/ http://code.google.com/p/zlib-win64/

17 harbour-project https://harbour-project.svn.sourceforge.net http://harbour-project.sourceforge.net/

/svnroot/harbour-project

18 tothemax http://tothemax.googlecode.com/svn/ https://sites.google.com/site/musicrpggroup/

19 vba-rerecording http://vba-rerecording.googlecode.com/svn/ http://code.google.com/p/vba-rerecording/

20 slim-runtime http://slim-runtime.googlecode.com/svn/ http://code.google.com/p/slim-runtime/

21 pcsx2(CDVDisoEFP Plugin) http://pcsx2.googlecode.com/svn/ http://pcsx2.net/

22 wiredplane-wintools http://wiredplane-wintools.googlecode.com/svn/ http://www.wiredplane.com/en/commons/about.php

23 q3ce http://q3ce.googlecode.com/svn/ http://code.google.com/p/q3ce/

24 snake-os http://snake-os.googlecode.com/svn/ http://code.google.com/p/snake-os/

25 vx32 http://vx32.googlecode.com/hg/ http://code.google.com/p/vx32/

26 tmlinux http://tmlinux.googlecode.com/svn/ http://code.google.com/p/tmlinux/

27 xbmc git://github.com/xbmc/xbmc.git http://xbmc.org/

28 rt-thread http://rt-thread.googlecode.com/svn/ http://en.rt-thread.org/

29 tastools http://tastools.googlecode.com/svn/ http://code.google.com/p/tastools/

30 upp-mirror http://upp-mirror.googlecode.com/svn/ http://code.google.com/p/upp-mirror/

31 dynamica http://dynamica.googlecode.com/svn/ https://code.google.com/p/dynamica/

32 page-speed http://page-speed.googlecode.com/svn/ https://developers.google.com/speed/pagespeed/

33 WazeWP7 git://github.com/meirtsvi/WazeWP7.git http://meirtsvi.wordpress.com/

34 gamekit http://gamekit.googlecode.com/svn/ http://code.google.com/p/gamekit/

35 realxtend-naali-deps http://realxtend-naali-deps.googlecode.com/svn/ http://realxtend.org/

36 rtemssparc64 http://rtemssparc64.googlecode.com/svn/ http://code.google.com/p/rtemssparc64/

37 pcsx2 http://pcsx2.googlecode.com/svn/ http://pcsx2.net/

38 vsfiltermod http://vsfiltermod.googlecode.com/svn/ https://code.google.com/p/vsfiltermod/

39 Haiku-services-branch git://github.com/Barrett17/Haiku-services-branch.git http://www.haiku-os.org/

40 maxmods http://maxmods.googlecode.com/svn/ http://code.google.com/p/maxmods/

41 jslibs http://jslibs.googlecode.com/svn/ https://code.google.com/p/jslibs/

42 repositorium http://repositorium.googlecode.com/svn/ http://zarezky.spb.ru/projects/repository.html

43 ogredeps https://bitbucket.org/cabalistic/ogredeps/src/ https://bitbucket.org/cabalistic/ogredeps/

44 lazzalf-trinitycore https://github.com/TrinityCore/TrinityCore.git http://www.trinitycore.org/

45 sumatrapdf http://sumatrapdf.googlecode.com/svn/ http://blog.kowalczyk.info/software/sumatrapdf/

free-pdf-reader-ja.html

44

Table 17: Candidate Vendee Projects for libcurl Library
ID Project Name Repository Url Project Homepage

1 maxmods http://maxmods.googlecode.com/svn/ http://code.google.com/p/maxmods/

2 doom3-gpl https://github.com/TTimo/doom3.gpl.git http://store.steampowered.com/app/9050/

3 bclcontrib-scriptsharp http://bclcontrib-scriptsharp.googlecode.com/hg/ http://scriptsharp.com/

4 Enemy-Territory-gpl https://github.com/id-Software/Enemy-Territory.git http://www.splashdamage.com/content

/wolfenstein-enemy-territory-barracks

5 w3monitor http://w3monitor.googlecode.com/svn/ http://tigerlogic.com/tigerlogic/pick/support/

documentation/fc/38/ProgGuide/w3monitor.htm

6 PortaPhone-3rdpartylibs http://3rdpartylibs.googlecode.com/svn/ http://www.portaphone.com/

7 custom-qutecom http://custom-qutecom.googlecode.com/svn/ https://code.google.com/p/custom-qutecom/

8 greentimer http://greentimer.googlecode.com/svn/ http://code.google.com/p/greentimer

9 mp-onlinevideos2 http://mp-onlinevideos2.googlecode.com/svn/ https://code.google.com/p/mp-onlinevideos2/

10 astromap http://astromap.googlecode.com/svn/ https://code.google.com/p/astromap/

11 storwords http://storwords.googlecode.com/svn/ https://code.google.com/p/storwords/

12 dlfm http://dlfm.googlecode.com/svn/ https://code.google.com/p/dlfm/

13 ketonal http://ketonal.googlecode.com/svn/ https://code.google.com/p/ketonal/

14 telebision http://telebision.googlecode.com/svn/ https://code.google.com/p/telebision/

15 sina-weibo-common http://sina-weibo-common.googlecode.com/svn https://code.google.com/p/sina-weibo-common/

16 juced http://juced.googlecode.com/svn/ http://www.rawmaterialsoftware.com/juce.php

17 warmux-11.04 git://pkgs.fedoraproject.org/warmux http://sourceforge.net/projects/warmux.mirror/

18 mtasa-blue http://mtasa-blue.googlecode.com/svn/ https://code.google.com/p/mtasa-blue/

19 snake-os http://snake-os.googlecode.com/svn/ http://code.google.com/p/snake-os/

20 u2reader http://u2reader.googlecode.com/svn/ https://code.google.com/p/u2reader/

21 rhodes-rhomobile https://github.com/MacBoyPro/rhodes.git http://www.rhomobile.com

22 imgur-uploader http://imgur-uploader.googlecode.com/svn/ https://code.google.com/p/imgur-uploader/

23 waitzar http://waitzar.googlecode.com/svn/ https://code.google.com/p/waitzar/

24 crazy-mad-face http://crazy-mad-face.googlecode.com/svn/ https://code.google.com/p/crazy-mad-face/

25 cmsupload http://cmsupload.googlecode.com/svn/ https://code.google.com/p/cmsupload/

26 qwreptile http://qwreptile.googlecode.com/svn/ https://code.google.com/p/qwreptile/

27 curl-ssh-android http://curl-ssh-android.googlecode.com/svn/ https://code.google.com/p/curl-ssh-android/

28 peerblock http://peerblock.googlecode.com/svn/ http://www.peerblock.com/

45

Table 18: Candidate Vendee Projects for libpng Library
ID Project Name Repository Url Project Homepage

1 Irrlicht https://irrlicht.svn.sourceforge.net/svnroot/irrlicht http://irrlicht.sourceforge.net/

2 miranda http://miranda.googlecode.com/svn/ https://code.google.com/p/miranda/

3 APITrace https://github.com/apitrace/apitrace http://apitrace.github.com/

4 IM-An image tool https://github.com/kmx/mirror-im/ http://www.tecgraf.puc-rio.br/im/

5 fbarr http://fbarr.googlecode.com/svn/ https://code.google.com/p/fbarr/

6 webpagetest http://code.google.com/p/webpagetest/ http://www.webpagetest.org/

7 harbour-project https://harbour-project.svn.sourceforge.net http://harbour-project.sourceforge.net/

/svnroot/harbour-project

8 FreeImage http://freeimage.cvs.sourceforge.net/viewvc/freeimage/ http://freeimage.sourceforge.net/

9 dava-framework https://github.com/dava/dava.framework.git http://www.davaconsulting.com/technology/

10 repositorium http://repositorium.googlecode.com/svn/ http://zarezky.spb.ru/projects/repository.html

11 thesnow http://thesnow.googlecode.com/svn/ https://code.google.com/p/thesnow/

12 lcdhost-LH Lua https://code.google.com/p/lcdhost/ http://code.google.com/p/lcdhost/

13 v8monkey https://github.com/zpao/v8monkey.git https://github.com/zpao/v8monkey/

14 adosbox http://adosbox.googlecode.com/svn/ http://androiddosbox.appspot.com/

15 openjpeg http://openjpeg.googlecode.com/svn/trunk/ http://www.openjpeg.org/

16 vsfiltermod http://vsfiltermod.googlecode.com/svn/ https://code.google.com/p/vsfiltermod/

17 angel-engine http://angel-engine.googlecode.com/svn/trunk/ https://code.google.com/p/angel-engine/

18 fictionbookeditor http://fictionbookeditor.googlecode.com/svn/trunk/ http://code.google.com/p/fictionbookeditor/

19 crashrpt http://code.google.com/p/crashrpt/ http://code.google.com/p/crashrpt/

20 uos-embedded http://uos-embedded.googlecode.com/svn/ http://embedded.uos.ac.kr/

21 fds-smv http://fds-smv.googlecode.com/svn/ https://code.google.com/p/fds-smv/

22 cocos2d-iphone https://github.com/hansoninteractive/cocos2d-iphone.git http://www.cocos2d-iphone.org/

23 Embedded-Master-ARM https://github.com/OESF/Embedded-Master-ARM.git http://www.oesf.biz/

24 chipmunk-spacemanager http://chipmunk-spacemanager.googlecode.com/svn/ https://code.google.com/p/chipmunk-spacemanager/

25 ftk http://ftk.googlecode.com/svn/ https://code.google.com/p/ftk/

26 shared-libs http://shared-libs.googlecode.com/svn/ https://code.google.com/p/shared-libs/

27 fs2open https://github.com/sobczyk/fs2open.git http://scp.indiegames.us/

28 Portalarium-Player https://github.com/Portalarium/Portalarium-Player.git http://developer.portalarium.com

29 snes9x-rr https://github.com/snes9x-rr/snes9x.git http://www.snes9x.com

30 ease-sdk https://github.com/Ease/easesdk.git https://apperian.jira.com/wiki/display/pub/EASE+SDK+Guide

31 opennero http://opennero.googlecode.com/svn/ https://code.google.com/p/opennero/

32 ulsgd http://ulsgd.googlecode.com/svn/ http://code.google.com/p/ulsgd/

33 guliverkli2 https://github.com/athomasm/guliverkli2.git http://sourceforge.net/projects/guliverkli2/

34 Visualization-Library https://github.com/Velrok/Visualization-Library.git http://www.visualizationlibrary.com

35 dynamica http://dynamica.googlecode.com/svn/ https://code.google.com/p/dynamica/

36 dava-framework https://github.com/dava/dava.framework.git http://www.davaconsulting.com/technology/

37 pseuwow https://github.com/BThallid/pseuwow.git http://mangosclient.org/

38 wiiflow http://wiiflow.googlecode.com/svn/ https://code.google.com/p/wiiflow/

39 o3d http://o3d.googlecode.com/svn/ https://code.google.com/p/o3d/

40 ovw http://ovw.googlecode.com/svn/ http://www.openvirtualworld.com/

41 xbmc git://github.com/xbmc/xbmc.git http://xbmc.org/

42 libset http://libset.googlecode.com/svn/ https://code.google.com/p/libset/

43 upp-mirror http://upp-mirror.googlecode.com/svn/ http://code.google.com/p/upp-mirror/

44 juced http://juced.googlecode.com/svn/ http://www.rawmaterialsoftware.com/juce.php

45 mtasa-blue http://mtasa-blue.googlecode.com/svn/ https://code.google.com/p/mtasa-blue/

46 MultiTheftAuto http://multitheftauto.googlecode.com/svn/ http://www.multitheftauto.com/

47 fop-miniscribus http://fop-miniscribus.googlecode.com/svn/ https://code.google.com/p/fop-miniscribus/

48 WazeWP7 git://github.com/meirtsvi/WazeWP7.git http://meirtsvi.wordpress.com/

49 vba-rerecording http://vba-rerecording.googlecode.com/svn/ http://code.google.com/p/vba-rerecording/

50 VTK git://github.com/Kitware/VTK.git http://www.vtk.org

46

