
修士学位論文

題目

Detection of License Inconsistencies

in Free and Open Source Software Projects

指導教員

井上 克郎 教授

報告者

Yuhao Wu

平成 28年 2月 9日

大阪大学 大学院情報科学研究科

コンピュータサイエンス専攻 ソフトウェア工学講座

平成 27年度 修士学位論文

Detection of License Inconsistencies in Free and Open Source Software Projects

Yuhao Wu

内容梗概

Free and open source software (FOSS) plays an important role in source code reuse

practice. They usually come with one or more software licenses written in the header part

of source files, stating the requirements and conditions which should be followed when

been reused.

Removing or modifying the license statement by re-distributors will result in the incon-

sistency of license with its ancestor, and may potentially cause license infringement. In

this paper, we describe and categorize different types of license inconsistencies and pro-

pose a method to detect them. Then we apply this method to Debian 7.5 and a collection

of 10,514 Java projects on GitHub and present the license inconsistencies found in these

systems.

With a manual analysis, we summarized various reasons behind these license incon-

sistencies, some of which imply license infringement and require the attention from the

developers. This analysis also exposes the difficulty to discover license infringements,

highlighting the usefulness of finding and maintaining source code provenance.

主な用語

Software license

Code clone

License inconsistency

1

目 次

1 Introduction 4

2 License Inconsistencies 7

2.1 Definition . 9

2.2 Example . 9

2.3 Categorization . 10

3 Study Approach 12

3.1 License Inconsistency Metrics . 13

3.2 Method of Detecting License Inconsistencies 14

3.3 Example . 15

4 Empirical Study 17

4.1 Empirical Study on Debian 7.5 . 17

4.1.1 Results . 17

4.1.2 Manual Analysis . 22

4.2 Empirical Study on Java Projects . 25

4.2.1 Results . 25

4.2.2 Manual Analysis . 26

5 Discussion 29

5.1 Discussion of the Results . 29

5.2 Answering RQs . 30

5.3 Improvement of the Method . 31

5.3.1 Debian 7.5 . 31

5.3.2 Java Projects . 32

5.4 What appears to be a copy might not be a copy 32

5.5 Threats to Validity . 33

6 Related Work 35

7 Conclusion and Future Work 36

謝辞 37

2

参考文献 38

3

1 Introduction

Software reuse has long been advocated as a good practice to reduce development time

and increase product quality [19, 22, 3]. The popularity of Free and Open Source Software

(FOSS) has made software reuse a common practice. FOSS software can be defined as

software that is licensed under a free and open source license. In a nutshell, a free and

open source license allows the software to be freely used, modified, and redistributed

(in modified or unmodified form) by anyone, as long as the conditions of its license are

satisfied. The Open Source Initiative (OSI) has defined a set of characteristics that an

open source license should have, and published a list of approved open source licenses1.

The Free Software Foundation defines a set of similar conditions that a license should

satisfy in order to be considered a free software license2.

Developers who reuse FOSS should pay special attention to the license under which a

source file is made available, and make sure that they satisfy the conditions and limitations

of its license. Otherwise they risk losing the right to reuse the software. Typically, the

license of a file is located in the initial part of the file. We will refer to this area of the file

as the license statement of the file.

The license of a file can only be changed by its copyright owner. In some special cases,

the license terms allow others to change the license of the file. Otherwise, if the license

is changed there is the potential for copyright infringement. For example in a case of

XimpleWare Corp v. Versata Software Inc. et al3, Versata was sued for including GPL-

licensed code into one of its products but removing the copyright and use notices required

by GPL. This case was settled out of court in favor of Ximpleware.

For the purpose of this paper, we are interested in the situation where a copy of a file has

a different license than the original file. If the new license has not been approved by the

copyright owner we are confronted with a potential license violation. However, in many

cases it is not clear whether the change in license has been approved by the copyright

owner. For example, the copyright owner might have approved, via direct communication,

a change in license. Under this scenario, the copy has a different license than the original,

but it is not a license violation. For this reason, when a copy of a file has a different license

than the original, we say that there is a license inconsistency between the licenses of the

two files. Some license inconsistencies might turn to be license violations.

1https://opensource.org/licenses/alphabetical
2http://www.gnu.org/licenses/license-list.html
3http://www.ifross.org/en/artikel/versata-saga-settled-prejudice-1

4

Anyone who wants to reuse FOSS software should concern that the software being reused

is properly licensed. If the reused software contains files that have been copied from other

sources, and these files have license inconsistencies, then it is important to resolve these

inconsistencies. Otherwise the reuser of these files might be involved in legal disputes with

the original copyright owner.

Previous study by Li et al. [16] shows that 36% of the developers who reused the OSS

components changed the source code, but they did not point out whether these changes

involve the license statement. In our study, we focus on the license statement changes and

the license inconsistencies introduced between the different copies of the files.

To the best of our knowledge, no research has been done to discover and study the

characteristics of license inconsistencies in software reuse. For example, how many types

of license inconsistency are there? Do they exist in open source projects? If so, what is

the proportion of each type? What caused these license inconsistencies?

Based on these questions, we set our research question as follows:

• RQ1 How can we categorize license inconsistencies?

• RQ2 Do license inconsistencies exist in open source projects?

• RQ3 What is the proportion of each type of license inconsistency?

• RQ4 What caused these license inconsistencies? Are they potential license viola-

tions?

The contributions of this paper are:

1. We describe and categorize different types of license inconsistencies.

2. We propose a method to detect license inconsistencies in large collections of open

source projects, which can show the existence and number of each type of license

inconsistency inside these projects.

3. We perform an empirical evaluation on our method using two sets of FOSS projects.

This study reveals that license inconsistencies exist and proved the feasibility of our

method.

4. We perform a manual analysis of some license inconsistency cases to understand the

reasons behind them. We then summarized these reasons into 4 categories. Among

them, two categories indicate license problems and require the developers’ attention.

5

This paper is organized as follows. Section 2 describes background on FOSS licenses

and license inconsistencies. Section 3 introduces our research method. An empirical study

that uses this method is described in Section 4, followed by Section 5 with a discussion

of the results. After a description of related work in Section 6, Section 7 concludes this

paper and points out the future direction.

6

2 License Inconsistencies

A software license is a permission to reproduce, modify and redistribute a software,

usually granted under certain conditions. An open source license is a software license

that follows Open Source Definition4 and is approved by Open Source Initiative. As of

today, only 70 licenses have been approved as Open Source License. However Black Duck

Software claims that the Black Duck Knowledge Base includes over 2200 licenses5. Some

licenses have been grouped under the same name as different versions. For example, the

General Public License (GPL6) has versions 1, 2 and 3. Each version is, in legal terms, a

totally independent license.

To reuse OSS source code files, developers must identify the license under which the

files are made available, understand their terms, and satisfy their requirements. This is

not a trivial task because one open source license does not usually allow easy integration

with software under another license (German et al. gave a detailed discussion on this

issue [6]). For example, software under the Apache Public License version 2 (APL-2.0)

can be reused and integrated into software licensed under the GPL-3.0. On the other

hand, software under the GPL-2.0 cannot be combined with software under the GPL-3.0

(however software under the GPL-2.0+, that is version 2 or any later version of the GPL,

can be). Therefore, developers must know the licenses of files they reuse in order to avoid

license violations.

It is also known that very frequently, the source code files in an application are under

different licenses [18, 17]. In addition, copies of the same file might have different license

because the copyright owner has licensed the file accordingly. For example, the copyright

owner has decided to change the license from one version of the software to the other (even

if the software did not have any changes).

Confusion can arise when a developer wishing to reuse a given file finds that two or more

copies of it have different licenses. Let us assume that a developer wants to reuse two copies

of the same file (not necessarily identical, due to to their own evolution). The first copy,

copy A, has license LA, and copy B has license LB. If the files both came directly from

the copyright owner, then it can be assumed that both files have valid licenses; but if the

4http://opensource.org/definition
5http://www.blackducksoftware.com/products/knowledgebase
6In this paper we will use the abbreviations of FOSS licenses of the Software Package Data Exchange

(SPDX), found at http://spdx.org/licenses/.

7

files came from third parties, one has to question if such parties have modified the licenses

without the approval of the copyright owner (resulting in a potential license violation).

Usually, the license of an open source file is indicated in its license statement, found in

the first comments of each source file. Here is an example of a license statement taken

from getopt.c file in GNU library, which states that the file is under the GPL-3.0+:

/* Getopt for GNU.

* NOTE: getopt is part of the C library, so if you don’t

* know what "Keep this file name-space clean" means, talk

* to drepper@gnu.org before changing it!

* Copyright (C) 1987-1996, 1998-2004, 2006, 2008-2012 Free

* Software Foundation, Inc.

* This file is part of the GNU C Library.

*

* This program is free software: you can redistribute it

* and/or modify it under the terms of the GNU General Public

* License as published by the Free Software Foundation;

* either version 3 of the License, or (at your option) any

* later version.

*

* This program is distributed in the hope that it will be

* useful, but WITHOUT ANY WARRANTY; without even the implied

* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

* PURPOSE. See the GNU General Public License for more

* details.

*

* You should have received a copy of the GNU General Public

* License along with this program.

* If not, see <http://www.gnu.org/licenses/>.

*/

Generally, the license statement of a source file can only be modified by its copyright

owner. Reusers shall never modify the license statement unless it is under the permission

of the copyright owner or allowed by the terms of the license.7 Otherwise, the reusers may

incur a license violation.

In order to identify potential license violations, the first step is to identify license in-

consistencies between files of different projects. In the following subsections, we introduce

our definition of license inconsistency and give an examples of license inconsistencies we

7Some licenses, such as the Mozilla tri-license (which allowed the reuse of the file under either the

MPL-1.0, the GPL-2.0+ or the LGPL-2.1) allows the user to remove one or two licenses. Similarly, files

are frequently licensed with the ability to use newer versions of the license (corresponding to the + sign

in the SPDX abbreviations of license names, such as GPL-2.0+).

8

have found in Debian 7.5. Finally we categorize them based on our analysis of our two

target datasets.

2.1 Definition

For the purpose of this research, a license inconsistency refers to the situation when two

source files that have evolved from the same original code have license statements which

include different licenses.

2.2 Example

In the Debian 7.5 Linux distribution, two packages, dpkg and anubis, contain a file

named obstack.c. Except for the license statement, these two files are identical. For this

reason we assume that these two files share the same provenance.

From package dpkg, the license of this file is GPL-2.0+:

[...]

This program is free software; you can redistribute it

and/or modify it under the terms of the GNU General Public

License as published by the Free Software Foundation; either

version 2, or (at your option) any later version.

[...]

While from package anubis the license is GPL-3.0+:

[...]

This program is free software: you can redistribute it

and/or modify it under the terms of the GNU General Public

License as published by the Free Software Foundation; either

version 3 of the License, or (at your option) any

later version.

[...]

As we can see, the licenses of the two files are different: GPL-2.0+ and GPL-3.0+. The

first file can be combined with software under the GPL-2.0, but the second cannot (the

GPL-2.0 is incompatible with the GPL-3.0 or any later version of the GPL). Based on our

definition, this is a case of license inconsistency. Without tracing the history of each of

these files, it is not possible to determine if both licenses are valid (i.e. if the copyright

owner of made the file available under both licenses). The following are three of many

potential scenarios that lead to this inconsistency:

9

• The first file is the original one and was copied to the second project, where the

license was changed from GPL-2.0+ to GPL-3.0+. In this case, since the original

license allows to use newer versions of the license, the change can be done by anybody,

and it is not a potential license violation.

• The second file is the original one and was copied to the first project. The first

project changed the license version from GPL-3.0+ to GPL-2.0+. This could be a

potential violation if the change was made without the approval of the copyright

owner of the file.

• Both of the files are copied from the same third-party project (who created the file).

Each project made the copy at different times, one before, and one after the license

of the file was changed by the original project copyright owner. In this case, there

is no potential license violation.

To determine which one is the actual reason of the inconsistency, we need to examine the

repository history of these two projects and try to determine the true origin and rationale

for the of license. This topic will be discussed in Section 4.1.1.

2.3 Categorization

Based on the analysis of our two datasets, we observed 5 cases of license evolution. They

are either executed by the original author or reuser:

1. License Addition: The source file was without a license, and a license is added in

a later release.

2. License Removal: The source file was under a certain license, and the license is

removed in a later release.

3. License Upgrade: The source file was under a certain version of the GPL license,

and it is upgraded to a newer version of the GPL license.

4. License Downgrade: The source file was under a certain version of the GPL

license, and it is downgraded to an older version of the GPL license.

5. License Change: The source file was under a certain license, and it is changed to

another license (except for License Upgrade and License Downgrade).

10

Note that, in the case of license upgrade and downgrade, we only consider the GPL

license. This is because currently only the GPL licenses have a “or later” option (e.g.

GPL-2.0+, LGPL-2.1+) which allows the reuser to choose a later version of GPL as the

license for redistribution (i.e. to upgrade to a newer version). Although some other licenses,

such as Apache license, may have different versions, reusers are not allowed to choose an

arbitrary version of the license. Thus it is reasonable to treat various versions of these

licenses as completely different licenses. For such reason we treat the license evolution

between different versions of licenses other than GPL as license change in our research.

License inconsistencies are naturally caused by changes in the license of the files. We use

the following types to denote different types of license inconsistencies between two files:

LAR License Addition or Removal. One of the two files contains a license while the other

file contains no license. This type of license inconsistency is usually caused either a

License Addition or a License Removal.

LUD License Upgrade or Downgrade. One of the two files contains a certain version of a

license while the other file contains a different version of the same license. This type

of license inconsistency is caused by either upgrading or downgrading the license of

the file.

LC License Change. Two files contain different licenses. This type of license inconsistency

is usually caused because the license of the file was changed.

11

3 Study Approach

In our previous work [25], we have proposed a method that can efficiently detect license

inconsistencies. However, a major issue with that method is that it only considers license

inconsistencies among files that have the same base name in order to achieve a fast per-

formance. Thus if files are renamed during the process of copy-and-own reuse, the license

inconsistencies will not be detected. To solve this problem and make our result cover more

license inconsistencies, we propose a new method in this paper. A detailed comparison of

these two methods will be discussed in Section 5.

In our new approach, we focus on detecting license inconsistencies among file clones.

In the scenario of source code reuse where source files are imported from an upstream

project, the contents of reused source files remain almost the same, sometimes with small

changes (such as modifying comments, renaming identifiers etc.) [21].

To decide whether source files are copies of each other—or in other words whether they

share the same provenance—we compare their normalized token sequences[20]. Normalized

token sequences are generated from the source file by removing the comments, redundant

white spaces, new lines, carriage returns and then converting identifiers to normalized

tokens. If two files have the same normalized token sequences, then it is likely that

they are copies of each other and we call them file clones, which are actually Type-2

code clones[20, 21]. We use CCFinder [14], a code clone detection tool, to analyze and

determine if files are file clones. CCFinder will generate a pre-process file which contains

the normalized token sequences of the source file. For those file clones with the same

normalized token sequences, we assume that they come from the same origin, and then

gather them into the same file group. Files in the same file group might have different

base names but similar program statements, possibly with different comments including

license statement.

Once that we group these similar files, we identify the license of the files in each group. In

our approach we adopted Ninka to detect the license of source files, since Ninka is reported

to have the highest precision of all the license detection tools including FOSSology, ohcount

and OSLC in the research by German et al. [7]. Ninka is a sentence-based license detection

tool which can identify 110 different licenses with 93% accuracy, and it can handle more

than 600 files per minute. There are two special results from Ninka: one is UNKNOWN,

which represents that Ninka has found a license but does not recognize it. The other one

is None, which states that the source file has no license.

12

We then compare the licenses of each file in the license list of each group. If all the files

have no license, or all of them have the same license, then there is no license inconsistency.

Otherwise, the group is likely to contain license inconsistencies. And then, based on the

relation between licenses, our approach identifies the type of license inconsistency. Note

that a group may have multiple license inconsistencies. For example, if a group include

a file under GPL-2.0+, another file under GPL-3.0+ and the other file under Apache-

2.0, the group has two license inconsistencies: LUD between GPL-2.0+ and GPL-3.0+,

LC between GPL-2.0+/GPL-3.0+ and Apache-2.0. For such reason, we calculate License

Inconsistency Metrics for each of these groups, from which we can measure what type of

license inconsistencies and how many of each type exist in the groups.

3.1 License Inconsistency Metrics

The following 5 metrics are introduced to help measure the license inconsistencies for a

file group:

#File: Number of files in this group.

#Lic: Number of different licenses in this group. If there are two or more licenses found,

then it is likely that there is a license inconsistency. If no license, or only one license

is found, then all the files are either without license, or they have the same license.

#Unknown: Number of files with an unknown license in this group. For our purposes

we consider all the files with unknown licenses as if they have the same license (this

might under-estimate the number of inconsistencies).

#None: Number of files without any license in this group. If #None > 0 and #Lic > 0

then it is possible that at least one file in the group had its license added or removed

(i.e. LAR inconsistency).

#GPL: Number of licenses in GPL family. This metric allows us to identify LUD in the

GPL family.

These metrics are calculated for each file group based on their license lists. The strategies

shown in Table 1 enable us to decide whether a certain type of license inconsistency exists

in this group.

Specifically, if we query the metrics result for those groups with #None > 0 and #Lic

> 0, which means there are one or more files with no license, and also one or more files

13

Table 1: Strategies to decide whether a certain type of license inconsistency exists in a

group.

Inconsistency Type Strategy

LAR #None > 0 and #Lic > 0

LUD #GPL ≥ 2

LC #GPL ≤ 1 and #Lic ≥ 2

contain a license. According to our definition, this is LAR ; If we query for those whose

#GPL ≥ 2, which tells us that there are two or more different licenses in GPL family

(such as GPL-2.0+ and GPL-3.0+), and should be LUD ; If we query for those items with

#GPL ≤ 1 and #Lic ≥ 2, which means there are more than two licenses appear in this

group and no more than one GPL license exists (to exclude LUD case), it seems to be the

case that one license is changed to another one, which should be a LC .

3.2 Method of Detecting License Inconsistencies

As a summary, our method is divided into 3 steps:

1. Create groups of file clones: For all the source files in the target projects, we

apply CCFinder to extract the normalized token sequences of each file. By computing

and categorizing the hash value of these token sequences, we then create a group for

files that have the same normalized token sequences. Each group contains at least

two files; i.e. a single unique file is not contained in any group.

2. Identify licenses for files in each group: For each group of file clones, Ninka

is employed to identify the license(s) of each file. The result is a list of licenses for

each file group.

3. Report groups that contain license inconsistencies and calculate the in-

consistency metrics: We compare the license list of each file group. File groups

are reported to have license inconsistencies unless all the licenses on the list are ex-

actly the same. The result is a list of file groups that contain one or more types of

license inconsistencies.

14

3.3 Example

We illustrate our method with a simple imaginary project shown in Figure 1. This

project consists of 4 packages. The source code of foo.c file in Pkg2 is exactly the same

with the one in Pkg1, but the license statement is changed from GPL-2.0+ to GPL-3.0+;

The source code of foo.c in Pkg3 is different from the one in Pkg1, i.e. they happen to

have the same base name. It is reused in Pkg4 with its name changed to foo100.c and

license statement removed.

Project Root

Packages

Files

License

Proj

Pkg4

foo100.c

NONE

Pkg3

foo.c

BSD-3-Clause

Pkg2

bar.java

Apache

foo.c

GPL-3.0+

Pkg1

bar.cpp

LGPL

foo.c

GPL-2.0+

Figure 1: Hierarchy of an imaginary project and the license of each source file. Note that

the foo.c file in Pkg1 was imported to Pkg2 with the license changed to GPL-3.0+; The

foo.c in Pkg3 contains totally different source code than the one in Pkg1, and was imported

to Pkg4 with its name changed to foo100.c and license removed.

1. Create groups of file clones: In this step, we use CCFinder to generate token files

for each source file. Since the foo.c file from Pkg1 and Pkg2 have the same source

code (except for their code comments which include license statement), CCFinder

treats them the same, and generate the same token file. This also applies to foo.c

Directory

Directory

Files

Root

Group2

foo100 Pkg4.cfoo Pkg3.c

Group1

foo Pkg2.cfoo Pkg1.c

Figure 2: Hierarchy of the grouped files.

15

Table 2: License list of the selected files from the imaginary project.

Base name GroupID Package name License

foo.c 1 Pkg1 GPL-2.0+

foo.c 1 Pkg2 GPL-3.0+

foo.c 2 Pkg3 BSD-3-Clause

foo100.c 2 Pkg4 NONE

Table 3: List of the license inconsistency metrics for each file group in the imaginary

project.

GroupID #File #Lic #None #Unknown #GPL

1 2 2 0 0 2

2 2 1 1 0 0

file from Pkg3 and foo100.c from Pkg4. Thus we can compare the hash value of the

token files and group them into two groups, as shown in Figure 2.

2. Identify licenses for files in each group: For each file in the group, we use

Ninka to detect their licenses and make a list of the base name, group index and the

licenses, as shown in Table 2. Base name is the name of the source file. GroupID

indicates the index we use to identify file groups.

3. Report groups that contain license inconsistencies and calculate incon-

sistency metrics: We examine the licenses of each group and found that both of

these groups contain license inconsistencies. Thus we report both of these groups

and compute the inconsistency metrics for each of them, as shown in Table 3.

According to our rule, #GPL ≥ 2 in Group 1 indicates a case of LUD in this group,

while #None > 0 and #Lic > 0 in Group 2 indicates a case of LAR in this group. This

conclusion is consistent to the scenario in our imaginary project, since the two foo.c files

in Pkg1 and Pkg2 contain GPL-2.0+ and GPL-3.0+ respectively which is LUD , and the

file foo.c in Pkg3 and foo100.c in Pkg4 contain BSD-3-Clause and no license respectively

which is LAR .

16

Table 4: Main characteristics of Debian 7.5.

Characteristics Number

Source Packages 17,160

Total files 6,136,637

.c files 472,861

.cpp files 224,267

.java files 365,213

4 Empirical Study

We have selected two target datasets for analysis: Debian 7.5 Linux distribution8 and a

large number of Java projects downloaded from GitHub9. We then conducted our method

on both datasets respectively. Since it is hardly feasible to determine how many and what

types of license inconsistencies are there in the target projects, it is difficult to get an oracle

data set and to perform a quantitative evaluation of our method, specially regarding its

recall. However, a qualitative evaluation of this method is discussed in Section 5.5.

The following subsections will present the results obtained from the two datasets, re-

spectively.

4.1 Empirical Study on Debian 7.5

We conducted our study using a large open source Linux distribution, Debian 7.5. The

source code was downloaded from its official site and its main characteristics are shown

in Table 4. Only .cpp, .c and .java files are used, since they account for the majority of

source code in the Debian distributions and are the only file formats that are supported

by CCFinder.

4.1.1 Results

In the first step, we grouped the files under each set by their normalized token sequences

and resulted in 125,092 groups in total. And the number of files within one group ranges

from 2 to 160, and the average number of files per group is 2.8 with a median value of 2.

The breakdown of each file type is shown in Table 5.

8https://www.debian.org/
9https://github.com/

17

Table 5: Breakdown of number of groups and files for each type in analyzing Debian 7.5.

File type Group count File count #Files(mean) #Files(median)

.c 68,568 207,620 3.0 2

.cpp 16,202 38,617 2.4 2

.java 40,322 108,868 2.7 2

Total 125,092 355,105 2.8 2

Table 6: Partial list of the license inconsistency metrics for each file group in

detecting Debian 7.5.

Base name* GroupID #File #Lic #None #Unknown #GPL

obstack.c 6645 19 2 0 0 2

getopt.c 46474 6 2 3 0 0

getopt.c 52662 9 2 1 7 1

...

* Each group may contain files with different file names, here we show the most

frequent base name in that group.

Completing the following two steps, 6,763 groups were reported to have at least one

type of license inconsistency, which is 5.4% of the 125,092 groups in total. For the sake of

space, we show only part of them in Table 4.1.1.

Then we calculate the number of each type of license inconsistency and their proportion.

The result is shown in Table 7. From this table, we can see that from the total of 6,763

groups that contain one or more license inconsistencies, 67.5% of them contain LC , followed

by LUD and then LAR . As it can be seen, LC is the most common license inconsistency,

suggesting that developers are likely to change the license of the source file to another one.

For such reason, further study is urged to investigate the legality of these modifications.

In the following paragraphs, we show examples for each type of license inconsistencies.

– LAR :

Examining the getopt.c in second line from the inconsistency result list in Table 4.1.1,

we get the license list of that group in Table 8. The rest files that contain the same licenses

are omitted from this list.

18

Table 7: Number of different license inconsistency types and their proportion in Debian

7.5. Note that one group may contain more than one inconsistency types, so that the total

percentage can exceed 100%.

Inconsistency type Frequency Perc.

LC 4,562 67.5%

LUD 2,137 31.6%

LAR 883 13.1%

Table 8: Example of LAR inconsistency, in getopt.c

Package name License

icedove NONE

iceweasel MPL-2.0

We can see that the license of the getopt.c file from the iceweasel package has an

MPL-2.0 license while the one from package icedove has no license (marked as NONE).

The contents of each file is as follows.

getopt.c from icedove package:

#include <stdio.h>

#include <string.h>

[...]

int main(int argc, char **argv)

{

PLOptState *opt;

PLOptStatus ostat;

[...]

return 0;

}

getopt.c from iceweasel package:

/* This Source Code Form is subject to the terms of the

* Mozilla Public License, v. 2.0. If a copy of the MPL

* was not distributed with this file, You can obtain one

* at http://mozilla.org/MPL/2.0/.

*/

#include <stdio.h>

#include <string.h>

[...]

int main(int argc, char **argv)

{

19

PLOptState *opt;

PLOptStatus ostat;

[...]

return 0;

}

As we can see in the file from icedove package, there is no license statement at all,

while the file getopt.c from iceweasel package contains a MPL-2.0 license. Meanwhile,

the other parts of these two files are exactly the same, hence we consider it safe to assume

that the origin of both files is the same. There are several possible explanations to this

case of license inconsistency:

1. The file from icedove package is the original one, and the developers of iceweasel

project reused the file and added a license to it.

2. The file from iceweasel package is the original, and developers of icedove project

reused this file and removed the license statement.

3. Both of the files in these two projects reused different versions of this file from

another project (where the license was added or removed).

One way to try to discover which one is the true explanation is to look at the history of

the files in their corresponding version control repositories. By tracing the revision history

of both files, we found that the third possible explanation reflects the actual history of

the files: the files in these two projects were imported from a third project named nspr,

where the getopt.c file was created without a license in version 4.7.1, and, for version 4.9.1

the license was changed to the MPL-2.0. It seems that icedove reused this file before the

license statement was added, while iceweasel imported the version after the license was

added, thus caused the inconsistency of license.

– LUD :

To exemplify this inconsistency, we will use obstack.c, which is the first in Table 4.1.1.

Table 9 shows two packages that reuse this file. As we can see from this table, the first

file is licensed under GPL-2.0+ while the second one is under GPL-3.0+.

The license statements of the files from dpkg and anubis package were listed in Section

2.2. Both of these files contain more than 400 lines of code, and they are exactly the same

except for their license statements. Tracing the file history in both projects we found

that this file was originally created in gnulib. The license of this file was upgraded–in

20

Table 9: License list of group 6645 of obstack.c where LUD exists.

Package name License

dpkg GPL-2.0+

anubis GPL-3.0+

Table 10: License list of group 52662 of getopt.c where LC and LAR exist.

Package name License

p0f NONE

snort GPL-2.0

sofia-sip UNKNOWN (IBM)

gnulib—from GPL-2.0+ to GPL-3.0+. By examine the commit log of dpkg, we found

that the developers of dpkg intentionally reused the older version of the file from gnulib

project (they wanted the file to be licensed GPL-2.0+, not GPL-3.0+), which caused the

license inconsistency.

– LC :

We demonstrate this inconsistency using getopt.c, the third line from the Table 4.1.1.

As shown in Table 10, getopt.c from snort package contains GPL-2.0 while the license

of the one from sofia-sip could not be recognized.

The contents of these files are as follows.

getopt.c file from snort package:

[...]

** it under the terms of the GNU General Public License

** Version 2 as published by the Free Software Foundation.

** You may not use, modify or

[...]

getopt.c file from sofia-sip package:

[...]

* COPYRIGHTS:

*This module contains code made available by IBM

*Corporation on an AS IS basis. Any one receiving the

*module is considered to be licensed under IBM copyrights

*to use the IBM-provided source code in any way he or she

*deems fit, including copying it, compiling it, modifying

[...]

21

Table 11: The count and percentage of each category for the 25 investigated license in-

consistency cases.

Category Count Perc.

Safe changes 14 56%

Unsafe changes 5 20%

Uncertain cases 6 24%

Total 25 100%

From the header we know that the second file is licensed under IBM copyrights, but this

is not a standard version of IBM Public License, thus Ninka reported it as UNKNOWN.

Since both these files contain the same program code, we may assume that someone

changed the license from one to the other. We tried to find out the direction of this change,

but due to lack of history it was not possible to do so. This shows that determining the

true provenance of a file is difficult in general.

4.1.2 Manual Analysis

To decide whether these license inconsistencies may indicate legal problems or not, we

have conducted a manual analysis on the history of a subset of the files.

We randomly chose the samples using trial-and-error methodology, that is, first we

randomly select a case of license inconsistency and investigate whether it is legally safe or

not, then we randomly select the next case and repeat the process. Due to the difficulties

and the time invested, we have only sampled 25 cases in total. Then we tried to categorize

them according to the reason that caused such inconsistencies. They are divided them

into three categories: safe changes (no violation is found), unsafe changes (there appears

to be a violation) and uncertain (it was not possible to determine whether it was safe

or unsafe.). The results are shown in Table 11, and the a detailed explanation of each

category is as follows:

– Safe Changes: In this category, either the original author or the developers who reused

the file changed the license statement, but the change they made is based on the terms

described in the license thus we classify it as a safe change. They are further divided into

2 groups:

22

Original author modified/upgraded the license. In this case, the author of that file modified

the license statement (either by upgrading or totally changing it to another license), while

the reusers still use the old version of the file (either intentionally or unintentionally).

For example, we examined a file named obstack.c in our inconsistency result. This file

originates from gnulib project, and its license is upgraded from GPL-2.0+ to GPL-3.0+

in a commit on 10/7/2007. This file was reused in the dpkg project but with a GPL-2.0+

license, and in the last commit on 9/25/2011 the log is as follows:

libcompat: Update obstack module from gnulib. The version taken is the one

before the switch to GPL-3.0+. With a slight code revert to not have to include

exitfail.c and exitfail.h.

[...]

We can see that in this case, the reuser intentionally takes an older version from the

original project, which caused the inconsistency of license.

In another example, there is a file named paintwidget.cpp, which originates from Qt

project with BSD-3-Clause license. In another project called PySide, this same file is

licensed under LGPL-2.1/GPL-3.0 dual license. Since these two projects both belong to

Digia plc, which were acquired from Nokia, this shall be a legal license modification.

The file was originally multi-licensed and reusers chose either one. The author of the file

licensed the file under two or more licenses, and the reusers can choose either one of them.

There is a file named SimpleXMLParser.java which originates from iText project and

was under the MOzilla MPL-1.1/LGPL-2.0+ dual license. This license allows the removal

of one license. Developers in pdftk project reused this file removing the MPL-1.1 license

and chose LGPL-2.0+ as its license.

– Unsafe Changes: Under this category, developers who reused the source file seemed

to have modified the license statement which is not allowed by the original license terms.

This change may lead to legal disputes, thus we say it is an unsafe change. We should

clarify that we have reached this conclusion based on the historical evidence available. The

consequence is that anybody who would like to reuse these files should pay special attention

to these cases, and do due diligence to determine what is the appropriate licensing of the

file, and if it indeed poses a legal risk.

Reuser replaced the original license, and changed the copyright owner. The file is under

a certain license in the original project and developers who reused the file changed the

license statement and the copyright owner.

23

From our inconsistency list, we examined a file named SpringUtilities.java. According

to the copyright year, Oracle is the copyright owner, and licensed the file under BSD-3-

Clause. When reused in freemind project, developers changed the license to GPL-2.0+

and the copyright header, which is not allowed in BSD-3-Clause. This kind of changes to

the license statement by the reuser may lead to license infringement, and may involve the

reuser into legal disputes.

Reuser added one or more licenses. The original file is under some licenses, and the reuser

added one or more licenses to it while retaining the original license.

From the result we examined a file named DOMException.java. This author of this file

is World Wide Web Consortium (W3C), and was licensed under W3C Software License.

When developers reused this source file in ikvm project, they added a GPL-2.0 License to it

resulting a composition of these two licenses. Meanwhile, the program code of this file was

not changed at all. We consider this case as unsafe, since this type of license modification

makes it unclear which part contains the original license and which part contains the new

license, since they added the license without adding any source code changes to the file.

– Uncertain Cases: This category contains the license inconsistency cases which are

difficult to determine whether they are legally safe or not due to several reasons:

Source files are too small. Some files contain the same source code, but due to their small

size it is difficult to decide whether one is reused by the other or they just happen to be

the same. This problem is discussed in Section 5.5.

Files can not be found in the upstream repositories. We found many cases of licenses

inconsistencies in the projects in Debian 7.5 that, when investigated the upstream project’s

repository, the file no longer existed.

For example, our method reported a file named jim-win32.c in jimtlc package with

BSD-2-Clause license and in openocd package with Apache-2.0 license. When we tried to

look for this file in the repository of openocd project, it was not found. One explanation

is that the file was removed in the project, but was not yet updated in Debian 7.5.

Project repository not available. Some project repositories could not be found due to lack

of documentation, while some could not be accessed due to server error.

One example is, when we tried to checkout the source code of axis project using the

SVN command on its official website10, the command returned an error that the URL

does not exist.

10https://axis.apache.org/axis/cvs.html (Last access: Oct. 2nd, 2015)

24

Table 12: Main characteristics of Java projects cloned from GitHub.

Characteristics Number

Projects 10,514

Total files 3,374,164

.c files 15,627

.cpp files 21,176

.java files 3,337,361

Table 13: Number of groups and files in each group in analyzing Java projects.

File type Group count File count #Files(mean) #Files(median)

.java 199,284 769,220 3.9 2

4.2 Empirical Study on Java Projects

The other data set we studied is a large collection of Java projects cloned from GitHub.

The snapshot was taken in Mar. 2015, and only those projects that consist of at least 100

commits are selected. Table 12 shows the characteristics of these projects. Since .java files

are 98.9% of all the files, we will focus our following analysis on them only.

4.2.1 Results

In the first step, source files are grouped by their parameterized token sequences. The

result was 199,284 groups. The number of files within each group ranges from 2 to 1514,

and the average number is 3.9 with a median value of 2, as shown in Table 13.

With the following steps being done, 13,916 groups are reported to contain license

inconsistencies, which is 7.0% of the 199,284 groups in total.

Furthermore, the number and proportion of each type of license inconsistency is shown

in Table 14.

Table 14: Number of different license inconsistency types and their proportion in Java

projects.

Inconsistency type Number Perc.

LC 12,653 90.9%

LAR 6,179 44.4%

LUD 1,316 9.5%

25

Table 15: The count and percentage of each category for the 17 investigated license in-

consistency cases in the Java projects.

Category Count Perc.

Safe changes 11 65%

Unsafe changes 1 6%

Uncertain cases 5 29%

Total 17 100%

4.2.2 Manual Analysis

As we did in the Debian study, we examined a random sample of the inconsistent groups.

We sampled 17 cases, and tried to categorize them according to the reason that caused such

inconsistencies. As described before, they are divided into three categories, the percentage

of each category is shown in Table 15, and the explanation to each category is as follows:

– Safe Changes:

Source files are in the same project but with different licenses. Some projects were imported

from other version control systems, such as SVN, where branching and tagging makes

copies of the whole project. When the license of source files in the main branch (trunk)

changes, license inconsistency occurs among these branches.

For example, there is a project named weka which was imported from SVN. In this

project, files were originally licensed under GPL-2.0+ and then upgraded to GPL-3.0+.

Developers made a serious of tags in the SVN repository, leaving several copies of the

whole project. Thus license inconsistency exists between the files under the tags which

were made before the license upgrade and those in the trunk.

Some other cases are, the source files are in the same project but exist under different

directories with different licenses.

Duplicated projects are not up-to-date. Some entire GitHub projects—or subdirectories in

other cases–act as a backup (or a copy) of another project, and their license of source code

is not updated while the original project changed its license.

We examined two projects: JCrypTool11 and JCT-CA12. A file named ResizeHelper.java

exists in both projects with the same normalized token sequences. The one in JCT-CA

11https://github.com/jcryptool/crypto
12https://github.com/Kalliope/minica

26

is without a license, while the one in JCrypTool was originally with no license but then

added with a EPL-1.0. The readme file from JCT-CA states:

JCT-CA is going to be a plugin for the JCrypTool regarding Public

Key Infrastructure. Main development is done in the master branch,

others (if any) are just for backing up older parts of the project

and keeping master clean.

From this notice we can see that, this project is a partial backup of the JCrypTool

project, but its license is not up-to-date when the original copy has changed, resulting in

license inconsistencies.

Reusers added a same license to the source file. One rare case we found is, the developers of

a reused a source file—under Apache-2.0— added another exactly same Apache-2.0 license

description in the header. One explanation is that the developers are using automated

tools to manage the licenses, but did not check whether the file already contains a license.

Though it does not conflict with the license terms, we consider it as a bad smell.

– Unsafe Changes:

Reusers modified the license terms. Some developers reused the code from other projects

but made some modifications to the license terms. In this case, if it is not with the

permission from the original author, these modifications are unsafe.

There is a file named MNP.java in both kawa-fork13 and classpath14. This file is

originally from Kawa, and kawa-fork is a fork of the this project. The license of this file in

Kawa is MIT, while the one in classpath was changed to GPL-2.0+ with link exception.

– Uncertain Cases:

Licenses are modified outside the scope of their repositories. There are cases that, the

source files in different projects are with different licenses, but their license statements

have never changed since they were imported into these repositories. Another alternate

explanation is that developers downloaded the software and modified the license before

the first commit into the new repository, making it impossible to track the point where

the license was changed.

Source files are too small. This case is same as the one in Debian data set. They will be

discussed in Section 5.5.

For example, a file named ReaderInputStream.java was found in bingo-core project with

an Apache-2.0 license and in hibernate-orm project with an LGPL license. However,

13https://github.com/maoueh/kawa-fork
14https://github.com/penberg/classpath

27

the source code contents of these files are quite small, which merely contains two empty

constructor methods. The source code part excluding the comments is shown as following:

[...]

import java.io.IOException;

import java.io.InputStream;

import java.io.Reader;

public class ReaderInputStream extends InputStream {

private final Reader reader;

public ReaderInputStream(Reader reader){

this.reader = reader;

}

@Override

public int read() throws IOException {

return reader.read();

}

}

It is possible that different developers write the same code like this from scratch, thus

it is difficult to judge whether these files are copies of each other.

28

5 Discussion

In this section, we first analyze the results from the previous section, and present some

problems we met with in the process of data analysis. Then we summarize the answers

to our research questions. Next, we show the improvement we made to the research

method with a comparison between these two methods. Finally, we present a reply from

a developer team we contacted.

5.1 Discussion of the Results

From these results we can see that the license inconsistencies are not uncommon: in

Debian 7.5, out of 125,092 file groups, 6,763 (5.4%) of them contain one or more license

inconsistencies: LC has the highest proportion with 67.5%, followed by LUD with 31.6%,

LAR comes next with 13.1%. While in Java projects, out of 199,284 file groups, 13,916

(7.0%) of them contain one or more license inconsistencies: LC has the highest proportion

with 90.9%, followed by LUD with 44.4%, LAR comes next with 9.5%.

The manual analysis of several cases of license inconsistencies gives us a rough under-

standing of the how many of these cases are safe or not. From Table 11 and Table 15

we can see that, both in Debian 7.5 and Java projects we selected, unsafe and uncertain

cases take up 44% and 35% respectively. This shows that it is not uncommon that license

inconsistencies might lead to potential license violation problems.

During this process of analysis, we also found several challenges that prevent us from

automatically analyzing the history of files.

Many files in an open source project are frequently imported from other projects. It

is not a trivial task to find the repositories of these upstream projects. Take the Debian

distribution as an example: some of the packages contain a file indicating the repository

URL of that package, but some do not. For such packages, we needed to search for the

official site of the upstream project and try to find its repository URL. There are packages

that appear not to use version control systems. They simply provide source code tarballs

for each version on their server. In this case, we have to download each tarball and track

the license change manually. This makes provenance tracing more difficult.

In some cases the change of the license statement is not recorded in the revision history

because the license statement is changed (we presume) before the file is added to the

repository’s project. In this case, we have to check other information (e.g. on the official

29

site of the project or in the commit comment where the file was added) to find out the

reason why developers changed the license.

Also, after we found out that the files with same normalized token sequences in different

packages contain different licenses, we have to determine where the file comes from, i.e.

the original project of that file, in order to decide the direction of the license change. But

to the best of our knowledge, there is no good way to find the true origin of a certain file.

We address this problem by using the date of the first commit of that file as a reference.

When we have two copies in different repositories, we assume that the file with the oldest

commit is the original, and files with newer dates are copies of it. If the commit date is

not available—e.g. when not using a version control system—we have to manually check

the comments of the source file to see if it contains information about its true origin or its

license. If not, then we are not able to decide which file comes first.

5.2 Answering RQs

Revisiting the research questions:

• RQ1: How can we categorize license inconsistencies? We categorize license incon-

sistencies into these 3 types: i) LAR , which is typically caused by license addition

or removal; ii) LUD , which is related to license upgrade or downgrade in the GPL

family; iii) LC , which is usually caused by license change in the process of license

evolution.

• RQ2: Do license inconsistencies exist in open source projects? Yes, license incon-

sistencies exist in open source projects. As we have shown in our empirical studies

of Debian 7.5 and a large collection of Java projects on GitHub, various types of

license inconsistencies were detected.

• RQ3: What is the proportion of each type of license inconsistency? In the case

study of Debian 7.5, out of 125,092 file groups, 5.4% of them contain one or more

license inconsistencies. The proportion of each type is: LAR (13.1%), LUD (31.6%)

and LC (67.5%). In the case study of Java projects, out of 199,284 file groups we

selected, 7.0% of them contain one or more license inconsistencies. The proportion

of each type is: LAR (9.5%), LUD (44.4%) and LC (90.9%).

30

• RQ4: What caused these license inconsistencies? Are they legally safe? The reasons

that caused license inconsistencies can be summarized into these groups according

to our observation:

i) Original author modified/upgraded the license.

ii) The file was originally multi-licensed and reusers chose either one.

iii) Reuser added one or more licenses.

iv) Reuser appear to have replaced the original license, and changed the copyright

owner.

We consider the last two types of modification as unsafe, which would require further

analysis to determine the legal risk associated with using them.

5.3 Improvement of the Method

As described in Section 3, our previous method [25] omits the cases if the files are

renamed during the process of copy-and-paste reuse to achieve higher performance.

In the old method, we assume that many copy-and-paste reuse are conducted without

renaming the source files. Thus we first create file sets where each set contains source files

with the same base name. And then, under each file set, we then group the files by their

normalized token sequences. Finally, we detect the licenses for each file in every file clone

group and calculate the license inconsistency metrics.

In this paper, however, the new method treats all the source files as a whole set, and

groups them by their normalized token sequences. Thus it should obtain a more compre-

hensive result of license inconsistencies.

The following two subsections compare the two methods on the two data sets we used,

respectively.

5.3.1 Debian 7.5

Table 16 shows the comparison of results obtained by the two methods, for Debian 7.5.

As we can see from the table, the new method covers all the groups that the old method

reported. Besides, it also reported 1419 (21.0%) more license inconsistency groups. As a

conclusion: the result from the new method is a superset of the one from the old method,

which is consistent with our expectation.

31

Table 16: Comparison of two methods on Debian 7.5.

Number of groups New method Old method

Total 6763 5344

Intersectioni 5344 5344

Relative complementii 1419 0

i Intersection indicates the groups both method re-

ported.

ii Relative complement indicates the groups reported in

one method but not the other.

Table 17: Comparison of two methods on Java projects.

Number of groups New method Old method

Total 13,916 13,894

Intersection 13,894 13,894

Relative complement 22 0

5.3.2 Java Projects

Table 17 shows the comparison of results obtained by the two methods when applied to

the Java projects in GitHub.

Again we can see from this table, the new method covers all the groups that the old

method reported. However, there are merely 22 more groups reported by the new method,

from which we can infer that the renaming operations are not frequently conducted in the

process of copy-and-paste code reuse in these Java projects. This also proves that our old

method is able to produce a good result in detecting license inconsistencies where rename

operation are not often conducted during the process of code reuse.

5.4 What appears to be a copy might not be a copy

We sent emails to the 3 development teams of the projects where unsafe license modifi-

cation were found, to understand why they modified the license and whether they consider

it as an illegal modification. However, only one of them replied us, claiming that they

wrote the source code all from scratch, and denied that this source file was copied from

somewhere else. This source file was so small which contains merely two empty construc-

tors, thus we believe it is possible that different developers happen to create the same file.

32

Note that, this is not a false positive case of our method, since our method is designed

to detect the license inconsistencies in the target projects, not the license violation cases.

However, it stresses the need to consider a minimum size threshold, in order for these

small files not be considered in the analysis.

5.5 Threats to Validity

In this study, we use CCFinder to detect file clones which are exactly identical to each

other regarding their normalized token sequences. However, source code files are evolving:

those that come from the same provenance may differ from each other dramatically, making

their normalized token sequences different after being modified by developers. But since

we can still get large numbers of file groups that contain license inconsistencies using the

proposed method, we believe that it is enough for this exploratory study. To mitigate this

problem, we can use similarity metrics instead.

On the other hand, during our manual analysis we found files clones that contain the

same normalized token sequences, but due to their small size and simplicity, it is difficult

to decide whether they are copies of each other or they were written from scratch by

independent developers. If the later one is the real case, then it would be a false positive

of our result. But we believe it might be good practice to report these cases, have a manual

investigation on them and ask the developers directly.

One aspect that is important to highlight is that the our method relies on the ability to

detect copies of files. In our previous paper [25], we found copies of files by analyzing files

with the same name. In this paper we compared the normalized token sequences of files.

We could also do full clone detection and consider two files to be copies of each other only

if they were above certain threshold. This process would have been significantly more time

consuming. Ultimately, detecting license inconsistencies is a balance between performance

of the detection vs. recall. If necessary, step one of our method can be replaced with other

methods that provide better recall, at the expense of being slower, and potentially require

more manual analysis to filter false positives.

It is also important to highlight that the ability to detect license inconsistencies relies

heavily on having a comprehensive corpus to compare against. In this study we have used

two collections of source code: Debian 7.5 and Java GitHub projects. License inconsisten-

cies in the source code that an organization reuses can only be found if the original code

is in the corpus that is being compared against.

33

In the process of license identification, as we employed Ninka to identify the license

of source files, its accuracy should also be considered. German et al. reported that the

accuracy of Ninka is 93% [7]. We believe this is sufficiently high, so that the license de-

tection result is good enough to support our analysis. In addition, we regard UNKNOWN

licenses as the same license within each group, different from any other licenses. If these

UNKNOWN licenses in a same group are actually different from each other, we may under-

estimate license inconsistencies. But this concern is mitigated according to our observation

to these UNKNOWN licenses: most of those in the same group actually contain the same

license statement, either a license that is not approved by OSI or a user modified version

of an OSI-approved license. On the other hand, if these UNKNOWN licenses are actually

the same as those recognized ones (e.g. GPL-2.0, BSD-3-Clause etc.) in the same group,

this could be considered as a false positive. In this case, these UNKNOWN licenses are

not exactly the same as the original license (since Ninka has reported a different license),

meaning that someone must have modified the license statement. We believe that it is

necessary to check whether these changes are legal or not. Thus it is reasonable to treat

them as license modifications, which is consistent with our assumption. To obtain more

precise results, it is necessary to improve license identification.

34

6 Related Work

Many studies address inconsistent changes among code clones. Krinke [15] studied on

changes applied to code clones in open source software systems and showed that half of the

changes to code clone groups are inconsistent changes and these changes are not solved if

they occurred in a near version. Göde et al. [11] studied patterns of consecutive changes

to code clone in real software systems. Some approach to find inconsistent changes are

proposed [5, 13]. On the other hand, Bettenburg et al. [2] showed that only 1% ∼ 4%

of inconsistent changes to code clone introduce software defects. In addition, Göde et al.

[12] showed that most code clones do not evolve and the number of inconsistent changes is

small. Our work does not address inconsistency in changes to code clones but inconsistency

among licenses under which source files including code clones are distributed.

In addition, many studies in software engineering investigated software license. Some

approaches for software license identification are proposed [7, 10, 23]. Using these ap-

proaches, some researches analyzed software licenses in open source projects and revealed

some license issues. Di Penta et al. [4] provided an automatic method to track changes

occurring in the licensing terms of a system and did an exploratory study on license

evolution in six open source systems and explained the impact of such evolution on the

projects. German et al. [8] proposed a method to understand licensing compatibility issues

in software packages. They mainly focused on the compatibility between license declared

in packages and those in source files. In another research by Di Penta et al. [9], they

analyzed license inconsistencies of code siblings (a code clone that evolves in a different

system than the code from which it originates) between Linux, FreeBSD and OpenBSD,

but they did not explain the reasons underlying these inconsistencies. Alspaugh et al. [1]

proposed an approach for calculating conflicts between licenses in terms of their condi-

tions. However, our work proposed an approach to find license inconsistencies in similar

files. By investigating the revision history of these files, we summarized the factors that

caused these license inconsistencies and tried to decide whether they are legally safe or

not. Recently Vendome et al. [24] performed a large empirical study of Java applications

and found that changing license is a common event and a lack of traceability between

when and why the license of a system changes.

35

7 Conclusion and Future Work

This paper describes and categorizes different types of license inconsistencies, some of

which might lead to potential license violations. We also proposed a method to identify

files that might have license inconsistencies. With the proposed method, we managed to

detect all these types of license inconsistency from two data sets of open source projects: a

Linux distribution Debian 7.5 and Java projects selected from GitHub. These results show

the existence of license inconsistency in open source projects and proves the feasibility of

our method.

With a manual analysis on some license inconsistency cases, we discovered that there are

several reasons behind license inconsistencies: in some cases the copyright owner changed

the license statement; sometimes the reuser exercise the permission that the file license

gave her to remove one or more licenses from the file; in other cases, the reuser added

another license to the file, and finally, the reuser modified the license. Among them, the

last two categories are potentially unsafe and require further investigation.

In the process of our manual analysis, we came across a great difficulty to find out the

reason behind each license inconsistency case. On one hand, it is difficult to find out from

where a certain file in a project is imported when lacking enough information. On the

other hand, it is also not a trivial task to decide which file is the original work when they

are found in multiple projects. These problems highlight the need for a method to find

and maintain the provenance between applications.

For future work, we will apply our tool to large numbers of open source projects and

examine the proportion of each type of license inconsistency. With the increased number

of projects, we believe that much more license inconsistency cases will be found. And we

will try to make a quantitative evaluation of this tool. Furthermore, we will try to develop

a method to help us analyze the history of each file, so that we can decide the safety of

these inconsistencies efficiently.

36

謝辞

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Katsuro

Inoue, who gave me this precious opportunity to study in Japan. He continuously helps

me and leads me to the right direction whenever I have any concerns with my research or

writing this thesis. It would not have been possible for me to finish my this thesis without

his support and help.

Besides my supervisor, I would like to thank the rest of the members in my research

group: Prof. Daniel M. German, Prof. Yuki Manabe and Dr. Tetsuya Kanda, for their

numerous invaluable suggestions and comments in my research.

I would also like to thank the rest of the members in my laboratory, who helped me a

lot in learning Japanese and getting used to the life in Japan. I would give my special

thanks to Mrs. Mizuho Karube, who is always ready to support me whenever I meet with

any trouble in my stay in Japan.

Last but not least, I would like to thank my family for their constant support of my

study and living in Japan.

37

参考文献

[1] T.A. Alspaugh, H.U. Asuncion, and W. Scacchi. Intellectual property rights require-

ments for heterogeneously-licensed systems. In Proceedings of the 17th International

Requirements Engineering Conference (RE2009), pp. 24–33, 2009.

[2] Nicolas Bettenburg, Weyi Shang, W. Ibrahim, B. Adams, Ying Zou, and A.E. Has-

san. An empirical study on inconsistent changes to code clones at release level. In

Proceedings of the 16th Working Conference on Reverse Engineering (WCRE2009),

pp. 85–94, 2009.

[3] Barry W. Boehm. Improving software productivity. Computer, Vol. 20, No. 9, pp.

43–57, September 1987.

[4] Massimiliano Di Penta, Daniel M. German, Yann-Gaël Guéhéneuc, and Giuliano

Antoniol. An exploratory study of the evolution of software licensing. In Proceedings

of the 32nd International Conference on Software Engineering (ICSE2010), pp. 145–

154, 2010.

[5] Mark Gabel, Junfeng Yang, Yuan Yu, Moises Goldszmidt, and Zhendong Su. Scalable

and systematic detection of buggy inconsistencies in source code. In Proceedings of the

25th International Conference on Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA2010), pp. 175–190, 2010.

[6] Daniel M German and Ahmed E Hassan. License integration patterns: Addressing

license mismatches in component-based development. In Software Engineering, 2009.

ICSE 2009. IEEE 31st International Conference on, pp. 188–198. IEEE, 2009.

[7] Daniel M German, Yuki Manabe, and Katsuro Inoue. A sentence-matching method

for automatic license identification of source code files. In Proceedings of the 25th

International Conference on Automated Software Engineering (ASE2010), pp. 437–

446, 2010.

[8] D.M. German, M. Di Penta, and J. Davies. Understanding and auditing the licens-

ing of open source software distributions. In Proceedings of the 18th International

Conference on Program Comprehension (ICPC2010), pp. 84–93, 2010.

[9] D.M. German, M. Di Penta, Y.-G. Gueheneuc, and G. Antoniol. Code siblings:

Technical and legal implications of copying code between applications. In Proceedings

38

of the 6th Working Conference on Mining Software Repositories (MSR2009), pp. 81–

90, 2009.

[10] Robert Gobeille. The FOSSology project. In Proceedings of the 5th Working Confer-

ence on Mining Software Repositories (MSR2008), pp. 47–50, 2008.

[11] Nils Göde and Jan Harder. Oops! . . . I changed it again. In Proceedings of the 5th

International Workshop on Software Clones (IWSC2011), pp. 14–20, 2011.

[12] Nils Göde and Rainer Koschke. Frequency and risks of changes to clones. In Proceed-

ings of the 33rd International Conference on Software Engineering (ICSE2011), pp.

311–320, 2011.

[13] Yoshiki Higo and Shinji Kusumoto. MPAnalyzer: A tool for finding unintended

inconsistencies in program source code. In Proceedings of the 29th International

Conference on Automated Software Engineering (ASE2014), pp. 843–846, 2014.

[14] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: A multilin-

guistic token-based code clone detection system for large scale source code. IEEE

Transactions on Software Engineering, Vol. 28, No. 7, pp. 654–670, 2002.

[15] Jens Krinke. A study of consistent and inconsistent changes to code clones. In

Proceedings of the 14th Working Conference on Reverse Engineering (WCRE2007),

pp. 170–178, 2007.

[16] Jingyue Li, R. Conradi, C. Bunse, Marco Torchiano, O. Slyngstad, and Maurizio Mori-

sio. Development with off-the-shelf components: 10 facts. IEEE Software, Vol. 26,

No. 2, pp. 80–87, March 2009.

[17] Yuki Manabe, DanielM. German, and Katsuro Inoue. Analyzing the relationship

between the license of packages and their files in free and open source software. In

Proceedings of the 10th International Conference on Open Source Systems (OSS2014),

pp. 51–60, 2014.

[18] Yuki Manabe, Yasuhiro Hayase, and Katuro Inoue. Evolutional analysis of licenses

in FOSS. In Proceedings of the Joint ERCIM Workshop on Software Evolution and

International Workshop on Principles of Software Evolution (IWPSE-EVOL2010),

pp. 83–87, 2010.

39

[19] M Douglas McIlroy, JM Buxton, Peter Naur, and Brian Randell. Mass-produced

software components. In Proceedings of the 1st International Conference on Software

Engineering (ICSE1968), pp. 88–98, 1968.

[20] Chanchal K Roy, James R Cordy, and Rainer Koschke. Comparison and evaluation

of code clone detection techniques and tools: A qualitative approach. Science of

Computer Programming, Vol. 74, No. 7, pp. 470–495, 2009.

[21] Yusuke Sasaki, Tetsuo Yamamoto, Yasuhiro Hayase, and Katsuro Inoue. Finding file

clones in FreeBSD ports collection. In Proceedings of the 7th Working Conference on

Mining Software Repositories (MSR2010), pp. 102–105. IEEE, 2010.

[22] Thomas A. Standish. An essay on software reuse. IEEE Transactions on Software

Engineering, Vol. SE-10, No. 5, pp. 494–497, Sept 1984.

[23] Timo Tuunanen, Jussi Koskinen, and Tommi Kärkkäinen. Automated software li-

cense analysis. Automated Software Engineering, Vol. 16, No. 3-4, pp. 455–490, 2009.

[24] Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di

Penta, Daniel M. Germán, and Denys Poshyvanyk. License usage and changes: A

large-scale study of java projects on github. In The 23rd IEEE International Confer-

ence on Program Comprehension, ICPC 2015, 2015.

[25] Yuhao Wu, Yuki Manabe, Tetsuya Kanda, Daniel M German, and Katsuro In-

oue. A method to detect license inconsistencies in large-scale open source projects.

In Proceedings of the 12th Working Conference on Mining Software Repositories

(MSR2015), pp. 324–333, 2015.

40

