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Abstract

In large-scale software development, a version control system is frequently used. However, if

multiple persons change the same piece of code in parallel, conflicts may occur. In order to merge

the changes successfully, the developer must investigate the cause, re-edit the code. This can take

hours or even days, delaying the project ’s development schedule while the developer repeatedly

reviews to identify the reason for the conflict and find a solution.

In the previous research, a machine learning model was created to determine how to solve

merge conflicts from meta information such as the number of lines of merge conflicts, the date

and time when commits were created, and the developers who created them. In this research,

by adding source code metrics to the model, we aim to investigate the influence on the judging

model that suggests how to resolve appropriate merge and which source code metrics contribute

more to the model. Also, we examine the adaptability of the model for a different language.

20 Java projects and 7 Python projects were used from the OSS projects published by the Apache

Software Foundation. In the case of Java, the average changed from 78.56% to 77.88%. In python,

the average increased from 64.79% to 70.28%
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1 Introduction

In large-scale software development projects, it is common for multiple developers to work

together. For multi-person development, it is necessary to record information such as “when”,

“who”, and “what changes were made” for trouble shooting afterwards. To record these informa-

tion, a version control system was frequently used. While projects can be efficiently developed

by multiple people, parallel development may cause problems. After completing a newly created

branch from the mainstream, if the mainstream also edits it, there will be a situation where it can-

not be merged when merging it into the mainstream. This is called a merge conflict. Merge conflict

is one of the most annoying problems. It has been clarified that it occurs relatively frequently in

software development using a version control system. In the research by Brun et al., as a result

of investigating the development history of nine open-source software (hereinafter, OSS) , merge

conflicts occurred in all projects. It has been shown that the ratio of merge conflicts occurs to all

merges is about 19% on average and the maximum is about 42% [1].

The problem with merge conflict is that it takes time and effort to resolve them. If a merge

conflict occurs, the developer must investigate the cause, re-edit the code, and debug until the

merge is successful. This can take hours or even days, delaying the project to the development

schedule while the developer repeatedly reviews to identify the reason for the conflict and find a

solution [2].

In some existing studies, the characteristics of merge conflicts and their resolution methods have

become clear. It has been clarified that the higher the number of lines where merge conflicts occur,

the higher the rate of merge conflicts would be [3]. In Shiraki’s research [4], a model was created

using machine learning to determine how to resolve merge conflicts from meta information such

as the number of lines of merge conflicts, the date and time when commits were created, and

the developers who created them. It became clear that the number of lines of the merge conflict

contributes to the method of resolving the merge conflict.

Ahmed et al. have also shown that bugs lead to merge conflicts [5]. Bad code design not only

impacts maintainability, it also impacts the day-to-day operations of a project, such as merging

contributions. Ahmed et al. indicate that research is needed to identify better ways to support

merge conflict resolution to minimize its effect on code quality. In other research, it became clear

that the complexity of the program calculated by the source code metrics is also related to the

defects of the program [6]. From the above, we realized it is possible that source code metrics

are potential indicators of merge conflict. By adding source code metrics to the model, we aim to

create a model that suggests how to resolve appropriate merge conflicts with higher accuracy.
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In this paper, Chapter 2 describes the background of the research, Chapter 3 introduces the

previous research, Chapter 4 proposes methods for model extension and parameter improvement,

and Chapter 5 evaluates the improved model. Chapter 6 discusses the limitations of this study.

Finally, we summarize the research in Chapter 7.
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2 Background

2.1 Version Control System

For multi-person development, it is necessary to record each version of project as developing

history for trouble shooting afterwards. In that case, a version control system is frequently used.

There are numerous version control system products, of which Apache SubVersion (commonly

known as SVN) and Git are used in many projects.

SVN has spread rapidly because it is free of charge, it is compatible with various operating

systems, and it is provided as one of the functions of programming software. However, since

there is only one repository on the server, it is not suitable for large-scale development projects

because it is difficult for individuals to manage assets under development, and it is not possible to

manage versions while offline. So, you can’t make a commit until all the work is completely done.

Therefore, Git was released to support large-scale development projects, and the biggest feature is

that in addition to the remote repository on the server shared by multiple people, it has a copy of

the remote repository as a local repository on the client’s personal computer [6]. This has made

it possible for individuals to manage assets under development in a local repository even when

offline. Then, in the case of parallel development using Git, a new derivative branch is created

from the branch that is the mainstream of development, and after the deliverable is completed, it

is integrated (merged) into the mainstream branch. As a result, multiple developers can proceed

with development at the same time, and efficient software development can be realized.

Therefore, Git has gradually become more popular than SVN because it has the feature of being

able to develop using branches, has abundant functions, and has a sophisticated operating system.

Thanks to Git, multiple people’s development can be easily realized. On the other hand, using Git

may cause problems. Merge conflict is a classical problem with a long history while using VCS

for parallel development.

In this paper, we aim to improve a model that suggests how to resolve appropriate merge con-

flicts by adding more useful information.

2.2 Merge Conflict

In Git, a repository is created locally and most of the development is done in the local environ-

ment, and work is done in units called branches. Merge is a way to bring branches back. The git

merge command is a command created using git branch to merge multiple independent branches.

However, if an edit in the same area is detected in both commits, a merge conflict will occur.
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Figure 1: An example of merge conflict

(source:Shiraki,開発履歴のメタ情報を用いたマージコンフリクト解消支援手法, 2020, p5)
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Figure 2: When a merge conflict occurs

(source:Shiraki,開発履歴のメタ情報を用いたマージコンフリクト解消支援手法, 2020, p7)

In merging, 3-way merging is common. Figure 1 shows an example of a 3-way merge conflict.

A branch is created in ancestor commit P, and commit P1 is created with edits to line 10 of file A.

Next, another branch is created from commit P, and commit P2 is created with another compilation

for the line 10 of file A. Commit P1 and P2 are a commit pair to merge. Then, commits P1 and P2

try to merge their respective revisions. Currently, there are duplicates in the edited part. A merge

conflict occurs in file A’.

In addition to textual conflicts, there are merge conflicts called build conflicts and test conflicts

[1, 7]. Build conflicts and test conflicts appear to be successfully merged in the text, When you

actually run a program build or test, you get an error due to a merge. Building conflicts and test

conflicts have been found to be less than half as likely as textual conflicts [7]. Therefore, this study

does not deal with build conflicts, and hereafter, merge conflicts refer to textual conflicts.

2.3 Detection and Solution of Merge Conflict

When investigating a merge conflict from the development history, we should check whether

a merge conflict has occurred in a merge commit with two commits P1 and P2. If the following

command is executed and a merge conflict occurs in commits P1 and P2, CONFLICT is output as

shown in the first line of the output result in Figure 2.

In addition, regarding the specific method of resolving merge conflicts, there are many cases

where the merge conflict is resolved by adopting the editing of one of the commit pair and deleting

the other one as shown in Figure 1. This is called one-sided adoption. A study by Yuzuki reveals

that about 98% of all merge conflicts that occur within methods in Java projects are resolved by

one-sided adoption [8].
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Figure 3: Evolutionary commit and the distance

(source:Shiraki,開発履歴のメタ情報を用いたマージコンフリクト解消支援手法, 2020, p12)

2.4 Evolutionary Commit and Distance

In each of the commits P1 and P2 where the merge conflict occurred, there is a commit edited

in the branch from the common ancestor to P1 and P2 where the merge conflict occurred. Of all

the edited locations where merge conflicts occur, the commits closest to P1 and P2 are called Evo-

lutionary Commits [9]. In the previous research, the distance between the Evolutionary Commit

and the commit in which the merge conflict occurred was obtained and used to create the model.

The number between green and red commit in Figure 3 is the distance explained above.

2.5 Source Code Metrics

Source code metrics are measurements of various aspects of software code. Some metrics are at

an high level, spanning the entire code, while others are at a lower level, covering classes, methods,

or even smaller blocks of code. For example, the number of the lines of code, the number of

comments in the code, the number of variables, functions, developers, and so on. In these metrics,

a lot of valuable information about the program is hidden. For example, in Meirelles ’s study,

the relationship between source code metrics and the attractiveness in free software projects has

become clear [10]. They suggest software projects with higher structural complexity have lower

attractiveness. On the other hand, projects with more lines of code have higher attractiveness.

Lanubile et al. [6] shows that source code metrics are related to the defects of the program. Since

the source code metrics can tell us so many stories, it is quite possible that the metrics we get from

the source code in the development history would give us useful information related to merge
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Figure 4: Flow of the input and output of Lexer

conflict.

2.6 ANTLR

ANTLR1 or ANother Tool for Language Recognition is a Lexer and parser generator aimed

at building and walking parse trees. It makes it effortless to parse nontrivial text inputs such as

a programming language syntax. It is a tool that automatically generates a so-called analyzer,

which is a function required for parsing an abstract syntax tree, using a grammar file (g4 file) as

input. Since the grammar file does not depend on the programming language of the analyzer, it

is possible to generate an analyzer for multiple programming languages. The analyzer consists of

three parts: Lexer, Parser, and Listener. In the experiment we only used Lexer, Figure 4 shows the

flow of how Lexer works.

Lexer is a procedure that analyzes character strings such as natural language sentences and

programming language source code to obtain a sequence of “tokens”, which is the smallest unit in

parsing(shown in Figure 4). Parser is a process that reads the text to be analyzed and decomposes

it into a syntax tree. Listener is an API for users to create their own analyzer.

In this study, in order to obtain the source code metrics, Lexer is used to decompose it into the

smallest unit “token”, and the source code metrics are obtained from there. In this paper, we will

analyze Java projects and Python projects. Since a grammar file is required for each language, it

is necessary to generate Lexer using the grammar files for Java language and Python language,

respectively.

1https://www.antlr.org/
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Figure 5: Merge conflict resolution model proposed in previous research

(source:Shiraki,開発履歴のメタ情報を用いたマージコンフリクト解消支援手法, 2020, p9)

3 Previous research

In this research, we extend the model created by Shiraki. In this chapter, we will explain the

previous research by Shiraki and his results.

3.1 Experimental Approach

They aimed to suggest to developers how to resolve merge conflicts when they occur. According

to the research by Yuzuki [8], it is often resolved by adopting one and deleting the other for the

commit pair when the merge conflict occurred. Based on this result, Shiraki proposed a method

for resolving merge conflicts using machine learning. They created a judgement model (shown

in Figure 5) for determining the method for resolving merge conflicts from development history

information related to merge conflicts that occurred in the past. To build the model, random forest

is used as the learning algorithm.
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Table 1: Project used in the experiment

beam camel cassandra

cordova-android curator dubbo

flink geode groovy

hbase hive ignite

incubator-heron jmeter lucene-solr

mahout maven nifi

nutch rocketmq

Figure 6: Distinguishing Commit Pairs with Merge Conflicts (source:Shiraki,開発履歴のメタ情
報を用いたマージコンフリクト解消支援手法, 2020, p10)

3.2 Data Collection

In the previous research, 20 Java projects were shown in table one collected from the OSS

provided by Apache.

The determination of the resolution method by the judgment model is performed for each com-

mit pair in which a merge conflict has occurred. As shown in Figure 6, to distinguish each commit

of the commit pair, P1 is the commit on the mainstream branch and P2 is the commit on the newly

derived branch.

The resolution method proposed to developers is a set of resolution methods for each commit

(P1 resolution method / P2 resolution method). Table 2 defines the list of resolution methods for

each commit.
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Table 2: Definition of merge conflict resolution method in Shiraki’s study

ADOPT Adopt all edits

DELETE Delete all edits

EDIT Make additional edits, adopt part of the edits, or both

ZERO 0 lines to edit

Table 3: Parameters used to build the model

Parameter Parameter meaning

P1

linenum(P1) Number of lines in P1 where merge conflicts occur

time(P1) P1 commit creation date and time

author ratio(P1) ratio of commit made by P1 creater to total commit number

distance(P1) Distance between P1 and its Evolutionary Commit

P2

linenum(P2) Number of lines in P2 where merge conflicts occur

time(P2) P2 commit creation date and time

author ratio(P2) ratio of commit made by P2 creater to total commit number

distance(P2) Distance between P2 and its Evolutionary Commit

Difference

linenum(d) linenum(P2) - linenum(P1)

time(d) time(P2) - time(P1)

author ratio(d) author ratio(P2) - author ratio(P1)

distance(d) distance(P2) - distance(P1)

Development history information was acquired from the repository for each commit P1 and P2

in which a merge conflict occurred. Table 3 is the list of parameters used to create the machine

learning model.

3.3 Experiment result

20 Java projects collected from the OSS provided by Apache were used for the experiment. The

correct answer rate is a result of cross-validation by dividing the merged conflict data into five for

each project. The correct answer rate was 66.41% on average and 94.43% at maximum. It became

clear that the solution method can be determined with high accuracy.

To find out which parameter the created model determines the resolution method, an index

called importance is used. Importance is the percentage of each parameter contributing to the

12



Figure 7: The Parameter importance in previous research (source:Shiraki, 開発履歴のメタ情報
を用いたマージコンフリクト解消支援手法, 2020, p21)

classification in the model, and the sum of the importance of all parameters is 1. Figure 7 shows

the importance of the parameter in each project. The number of lines line num (P1) and line num

(P2) where merge conflicts occur are both as large as 0.15 or more. Also, from the figure, there are

many projects whose importance is over 0.1 even for lines (d). So, it can be said that the number

of lines where conflicts occur greatly contributes to the determination of how to resolve merge

conflicts in any project.

I will add source code metrics to this model to see how the accuracy changes. And I would like to

investigate whether the model can be used in Python, which is also an object language. Obtaining

metrics for each language may reveal language-specific characteristics. I attempt to improve the

accuracy of the model by using both development history data and source code metrics for each

language.
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Figure 8: An overview of the model proposed in this research

4 Model Expansion

The goal of this research is to improve the prediction accuracy by improving the existing feature

and adding new metrics extracted from source code. An overview of the model is shown in Figure

8.

Shiraki’s method [4] used only language-independent features. However, as introduced in Chap-

ter 2, source code metrics also possibly have an effect on software quality. So, we add source code

metrics to this model to see how the accuracy changes. We also aim to verify whether a judgment

model should be created for each language or regardless of the language. Since merge conflicts

often occur in parallel development using Git regardless of programming language, another goal

of this research is to help resolve merge conflicts not only in Java language projects but also in

other languages.

4.1 New judgment model by adding code metrics

Some studies have also shown that bugs lead to merge conflicts [5]. In other research, it has

become clear that the complexity of the program calculated by the source code metrics is also

related to the defects of the program [6]. Therefore, it is quite possible that there is a connection

between merge conflict and the complexity of the program calculated by the source code metrics.
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Table 4: Source code metrics to get

P1

Name Num(P1) the number of variables and functions in P1

Operator Num(P1) the number of operators in P1

Keyword Num(P1) the number of keywords in P1

P2

Name Num(P2) the number of variables and functions in P2

Operator Num(P2) the number of operators in P2

Keyword Num(P2) the number of keywords in P2

Difference

Name Num(d) Name Num(P2) - Name Num(P1))

Operator Num(d) Operator Num(P2) - Operator Num(P1)

Keyword Num(d) Keyword Num(P2) - Keyword Num(P1)

There are many metrics that describe the complexity of a program. Cyclomatic complexity,

number of lines of code, number of methods, number of function calls, and so on. It is conceivable

that complicated programs tend to have a large amount of information. Metrics that represent the

amount of information that can be easily obtained including the number of lines in the program in

which the merge conflict occurred, the number of variables and functions, the number of operators,

and the number of keywords. And since the number of lines of each commit has already been

acquired in previous research, this time we will add the number of variables and functions, the

number of operators, and the number of keywords words as source code metrics for building the

new model. Table 4 below shows the new metrics to get for the judgment model.

4.2 The method of extracting code metrics

The method of getting the code metrics from development history can be described into several

steps:

1. Get the development history file contents corresponding to file path and commit

2. Generate the Lexer of Java or Python according to the project language

3. Pass the file contents as strings to Lexer to obtain a sequence of “tokens”
4. Implement a program to stat the number of the metrics in need

15



Figure 9: The flow of source code metrics extraction

First of all, I used git show command: “git show commitHash:/path/to/file” to get the developing

history file contents corresponding to file path and commit hash. The way of getting the source

code metric is by using a language recognizer. I used ANTLR introduced in chapter 2.7 to generate

a Lexer from Java and Python grammar file respectively. Then I used Lexer of each language to

analyze projects in each programming language source code to obtain a sequence of “tokens”,

which is the smallest unit in parsing. Figure 9 describes the flow of source code metrics extraction.

According to the grammar file, thirty-four kinds of operator and fifty kinds of keyword are

defined for Java and thirty-nine kinds of operator, and thirty-five kinds of keyword are defined for

Python. Table 5 shows the keyword of Java and Python language.

Finally, I wrote a program to stat the number of variables and functions, the number of opera-

tors, and the number of keywords from the tokens, which are the source code metrics needed for

building the new model.
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Table 5: Keywords of Java and Python language

keywords of Java language(50 in total)

abstract continue for new switch

assert default if package synchronized

boolean do goto private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

keywords of Python language(35 in total)

False None True and as

assert async await break class

continue def del elif else

except finally for from global

if import in is lambda

nonlocal not or pass raise

return try while with yield
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Figure 10: The time feature used in previous research

4.3 Parameter Improvement

In the previous research, the creation dates and times of commits P1 and P2 were acquired and

used as features of the learning model. For example, if a commit was created at 12:30:25 on May

21, 2019, it would feature an 8-digit date“ 20190521”and a 6-digit time“ 123025”, a total of

14-digit numbers“ 20190521123025”(shown in Figure 10).

It is a quantity and since the subtraction of the time of P1 and the time of P2 is also subtracted as

a decimal number of 14 digits, its usage is a little inconsistent with the concept of time. In Costa

et al.’s research [11], factors that contribute to the occurrence of conflicts are listed as number of

changed files, number of changed lines, number of commits, number of developers, branching-

duration, lack of communication, developer working in several branches and so on. They asked

109 software developers to conduct a survey on factors that they think lead to conflicts. In this

question, participants were allowed to mark more than one answer. 76 (69.7%) developers marked

the option ”branching-duration”. From this result, it is considered that the time from each com-

mit’s creation time to the merge time is more related to the merge conflict than the commit creation

date and time. Therefore, I calculated the duration from each commit’s creation time to the merge

time as Time1 and Time2 in seconds. In figure 7, Fixed time1, Fixed time2 show the time from

18



Figure 11: The new time feature Fixed time1, Fixed time2 used in this research

each commit’s creation time to the merge time, which are used as features for the new model.
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Table 6: Parameters (source code metrics) used in the experiment

parameter meaning

P1

linenum(P1) Number of lines in P1 where merge conflicts occur

Fixed time(P1) duration from P1 creation time to merge time

author ratio(P1) ratio of commit made by P1 creater to total commit number

distance(P1) Distance between P1 and its Evolutionary Commit

P2

linenum(P2) Number of lines in P2 where merge conflicts occur

Fixed time(P2) duration from P1 creation time to merge time

author ratio(P2) ratio of commit made by P2 creater to total commit number

distance(P2) Distance between P2 and its Evolutionary Commit

Difference

linenum(d) linenum(P2) - linenum(P1)

Fixed time(d) Fixed time(P2) - Fixed time(P1)

author ratio(d) author ratio(P2) - author ratio(P1)

distance(d) distance(P2) - distance(P1)

5 Evaluation

In order to investigate the effectiveness of the source code metrics for the judgment model,

we conducted evaluation experiments on Java projects and Python projects with and without the

source code metrics. Same with Shiraki’s research, 20 Java projects were used from the OSS

projects published by the Apache Software Foundation. For the Python project, 15 new OSS

projects published by the Apache Software Foundation are selected in order of popularity. Projects

with no conflicts and projects with extremely few conflicts (less than 10) are excluded, and 8

projects remained. table 6 shows modified parameter used for judgement model and table 7 shows

the list of projects used in the experiment and the number of merge conflict.

Twenty java projects and seven python projects were used in the experiment. For each project,

the correct answer rate is a result of cross-validation by dividing the merged conflict data into five.

The learning algorithm Random Forest was used.

After modifying the parameter in Shiraki’s research, the accuracy of the model increased from

66.41% to 74.99% in case of Java project, and 55.32% to 61.87% in case of Python project. From

the result, it is clear that the new parameter Fixed time1, Fixed time2 defined contribute

more to the model.
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Table 7: List of Java and Python projects used in the experiment

Java project(20 in total)

project name # merge conflict

beam 1449

camel 44

cassandra 17837

cordova-android 973

curator 287

dubbo 401

flink 3454

geode 573

groovy 353

hbase 187

hive 3246

ignite 2850

incubator-heron 61

jmeter 693

lucene-solr 2562

mahout 195

maven 251

nifi 157

nutch 658

rocketmq 56

Python project(8 in total)

project name # merge conflict

airavata 72

airflow 61

allura 28

cassandra 200

incubator-datalab 449

incubator-spot 10

libcloud 2082

predictionio 14
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Figure 12: Importance of source code metrics in case of Python and Java

5.1 RQ1: How will the results change if both developing history data and language-specific

source code metrics are used?

In the case of Java, the average changed from 74.99% to 75.54%. In Python, the average

changed from 61.87% to 61.76%, which were almost unchanged.

Figure 12 shows the ratio of source code metrics to all features. Source code metrics (9 in total)

are 29.32% for Java and 26.65% for python (the grey area pulled out by the line). Among all the

9 source code metrics, d NameNum, d OperatorNum, and d KeywordNum came to the top in

both Java and Python projects. The rankings are different, but the top three are exactly the same.

Therefore, from the source code metrics extracted from each commit pair, it was found that the

difference between the source code metrics of the two commits contributes more to the result of

the judgment model than the metrics extracted from each commit. It is conceivable that source

code metrics are related to the amount of information in a program, and programs with a large

amount of information tend to have merge conflicts. However, it became clear that the difference

between the code metrics of two commits contributed to the result.

Since the difference of code metrics from two commit tend to have stronger relevance, we made

another experiment of the model only consist of the difference of code metrics and parameters

used in Shiraki’s model. Table 8 shows the parameter and the accuracy of each model. Figure 13

and Figure14 show the result of 3 different models in the case of Java and Python project.
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Table 8: Parameters used in each model

parameter improved Shiraki’s model expanded model expanded model

(difference only)

linenum(P1) ✓ ✓ ✓
Fixed time(P1) ✓ ✓ ✓
author ratio(P1) ✓ ✓ ✓

distance(P1) ✓ ✓ ✓
linenum(P2) ✓ ✓ ✓

Fixed time(P2) ✓ ✓ ✓
author ratio(P2) ✓ ✓ ✓

distance(P2) ✓ ✓ ✓
linenum(d) ✓ ✓ ✓

Time(d) ✓ ✓ ✓
author ratio(d) ✓ ✓ ✓

distance(d) ✓ ✓ ✓
Name Num(P1) ✓

Operator Num(P1) ✓
Keyword Num(P1) ✓

Name Num(P2) ✓
Operator Num(P2) ✓
Keyword Num(P2) ✓

Name Num(d) ✓ ✓
Operator Num(d) ✓ ✓
Keyword Num(d) ✓ ✓

Java Accuracy 74.99% 75.54% 75.01%

Python Accuracy 61.87% 61.76% 65.77%
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Figure 13: Result of Python with/without code metrics

Figure 14: Result of Python with/without code metrics
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As a result, source code metrics are about one-third as important in the two languages. How-

ever, there was a variation in the total importance of the source code metrics. Table 9 shows the

importance of code metrics in each Java project.

In case of Java project, the maximum was 55.37% for project jmeter, compared to only 11.49%

for project hbase. In the 20 Java project, 9 project’s accuracy increased, 6 stayed the same and 5

decreased. When I visually checked the source code metrics, the difference between the source

code metrics obtained from each commit d NameNum, d OperatorNum, and d KeywordNum

were large in of some of the projects. These projects’ source code metrics tend to have larger

importance. On the other hand, when the metrics taken from each commit are almost the same,

d NameNum, d OperatorNum, and d KeywordNum would be almost 0. In this case, source

code metrics did not make contributions to the decision model.

From the above, it became clear that source code metrics are not useful if each commit does not

change the number of names, the number of operators, and the number of keywords. For example,

if two developers only change the name of the variable or function, the number of names stays

the same. Also, if two developers add a similar piece of code or change the order of the code

in a program, the difference between two commits still stays the same as before. In this kind of

situation, source code metrics may not contribute as much as we expected.

In conclusion, the source code metrics may not contribute to the model as much as the feature

existed, but the difference of the code metrics from each commit pair surely has an influence on

the model.
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Table 9: Importance of source code metrics (CM) in each Java project

project name # conflicts Shiraki model expanded model CM importance

beam 1449 96.28% 95.91% 31.54%

camel 44 83.33% 83.33% 37.36%

cassandra 17837 65.50% 66.58% 35.04%

cordova-android 973 70.00% 71.43% 21.55%

curator 287 69.12% 66.18% 37.48%

dubbo 401 65.96% 61.70% 17.23%

flink 3454 76.10% 76.26% 29.78%

geode 573 73.28% 72.41% 24.47%

groovy 353 91.04% 89.55% 35.71%

hbase 187 60.98% 60.98% 11.49%

hive 3246 71.33% 70.90% 23.62%

ignite 2850 79.01% 81.23% 27.52%

incubator-heron 61 28.57% 35.71% 28.29%

jmeter 693 98.50% 98.50% 55.37%

lucene-solr 2562 73.32% 73.87% 19.04%

mahout 195 91.11% 91.11% 23.14%

maven 251 84.78% 84.78% 36.64%

nifi 157 60.00% 66.67% 29.29%

nutch 658 79.31% 81.38% 33.78%

rocketmq 56 82.35% 82.35% 28.10%

average 1814.35 74.99% 75.54% 29.32%
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Figure 15: Feature importance in case of Python and Java

5.2 RQ2: How is the developing history data that contributes to the judgment different

between Java and Python language projects?

There are 20 features in total, including 11 metrics acquired from the development history and

9 extra source code metrics extracted from the source code this time. In Figure 15, each feature is

a comparison of importance in Java and python. From this figure, it can be seen that Java project

features that are of high importance tend to have high importance in Python as well. The same

result came up even when building the model without the source code metrics. Table 10 shows

importance of all twenty features in largest order. Features in bold are source code metrics. It be-

came clear that line num, distance, Fixed time, and the differences in the source code

metrics of commit pair were of high importance. In conclusion, it was found that the source code

metrics extracted from each language had no language-dependent characteristics, in other words,

Java and Python language don’t have obvious difference in number of variables and functions,

operators and keywords.

In this research, we got the source code metrics from the entire file for each commit pair. From
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Table 10: Ranking of feature importance

ranking Java Python

1 line num1 8.55% line num1 10.93%

2 d line num 8.50% d line num 8.44%

3 d distance 7.61% line num2 8.40%

4 distance1 7.51% distance1 7.90%

5 line num2 7.02% d distance 7.59%

6 distance2 6.40% distance2 6.67%

7 Fixed time2 5.74% Fixed time1 5.50%

8 Fixed time1 5.43% d NameNum 4.79%

9 d KeywordNum 4.98% Fixed time2 4.57%

10 author ratio2 4.19% d KeywordNum 4.55%

11 d OperatorNum 4.06% d OperatorNum 4.11%

12 d NameNum 3.96% NameNum2 4.07%

13 d author ratio 3.90% author ratio2 3.55%

14 author ratio1 3.64% OperatorNum2 3.38%

15 NameNum2 3.57% KeywordNum2 3.36%

16 KeywordNum1 3.43% d author ratio 3.00%

17 OperatorNum1 2.98% KeywordNum1 2.61%

18 KeywordNum2 2.98% OperatorNum1 2.46%

19 OperatorNum2 2.85% NameNum1 2.27%

20 NameNum1 2.68% author ratio1 1.86%

the result, the difference between the source code metrics extracted from commit pairs contributed

more to the judgment result than metrics from each commit. Therefore, instead of the whole file,

source code metrics extracted from lines where conflict occurs may be more useful for the model

creation.

In conclusion, the features used for building the model don’t have obvious differences between

Java and Python language.
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6 Limitations

All the projects used in this study are OSS provided by Apache, and there is no certainty that

the results will be similar to the results of this study in other OSS or other commercial projects.

Also, among the OSS provided by Apache, the number of python projects is smaller than Java, so

it is difficult to evaluate with data of the same scale. In the future, I think it will be necessary to

conduct research not only on Apache but also on various projects in various languages.

Also, in this research, as the information used for the parameters of model creation, we traced

back to the development history and used the metrics extracted from the source code of the file

during the development. However, it is possible that some hidden valuable information that has

not been used this time, so the combination of parameters used by the model created in this study

is not always optimal. However, from the correct answer rate obtained in this study, it can be said

that the model in this study may be useful for resolving merge conflicts.
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7 Conclusion

Using the information in the development history, we proposed a model that traces back to the

file contents during the development phase, extracts the metrics, and contributes to a judgment

model based on the source code metrics. As a result of comparing the judgment results of the

Java language project and the python language project, it can be seen that the features with high

importance of the Java project tend to be of high importance also in Python.

Also, if the difference between each commit pair is significant, the source code metric in the

decision model tends to contribute more. However, if the difference between the modifications of

the commit pair is small, the contribution of the source code metric tends to decrease. From this

result, it is considered that the importance in the judgment model may be higher when the source

code metrics are extracted only in the part where the conflict occurs, not in the whole source file.

Since different languages have different grammar, it is necessary to extract source code metrics

for each language, but there is also a lot of language-dependent information that remains hidden.

Therefore, it is possible that there is room for further improvement in accuracy by increasing the

kinds of source code metrics in each language in the future. When a developer encounters a merge

conflict, the judgement model can be useful as a reference to determine how to resolve it.
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