
Extracting a Unified Directory Tree
to Compare Similar Software Products

Yusuke Sakaguchi, Takashi Ishio, Tetsuya Kanda, Katsuro Inoue
Graduate School of Information Science and Technology, Osaka University, Japan

{s-yusuke, ishio, t-kanda, inoue}@ist.osaka-u.ac.jp

Abstract—Source code is often reused in software develop-
ment. Although developers can avoid re-implementing features
in existing products, doing so may result in a large number of
similar software products. To understand the commonalities and
variabilities of similar products, comparing their source code
is critical. However, a product may change its own directory
structure, even if the products share the same source code with
other products. Hence, comparing source code among products
in a systematic manner is difficult.

In this paper, we propose a technique to extract and visualize
a unified directory tree to compare the source code of similar
products. This tree includes all directories of given products
and merges corresponding directories into a single node. Since
a node in a tree corresponds to multiple directories in products,
developers can easily compare the contents of products. In
our study, we implemented the visualization as a GUI tool. In
addition, we conducted a case study using four Android products
to demonstrate the tool’s ability to assist developers in accessing
the source code of multiple products.

I. INTRODUCTION

In software development, source code reuse is a common
practice to reduce the cost of development. Developers often
create a new product by copying and modifying an existing one
or importing libraries [1], [2]. Furthermore, they often reuse
the developed product to create yet another new product. This
method of code reuse is called a “clone-and-own” approach.

Since the clone-and-own approach is common, the industry
already maintains a large number of derived software products.
Although Software Product Line Engineering is promising
for managing such software products, the construction of a
software product line from existing products requires that
developers understand the commonalities and variabilities of
them [3].

Source code comparison is an important step in under-
standing the features of products [4]. In general, since a
directory of a product (e.g. a Java package) is assumed to
represent a feature, comparing multiple products in units of
directories is efficient [5], [6]. Duszynski et al. [7] proposed
comparing corresponding directories among similar products.
They visualized the numbers of the lines of both common
and product-specific source code. However, developers must
know the correspondence of directories before comparison; if
directories have been moved or renamed among the products,
determining correspondences may be difficult. Some existing
techniques [8], [9] can extract corresponding directories be-

tween two similar products, but they cannot analyze more than
two products at any one time.

In this paper, we propose a technique to extract and
visualize automatically a unified directory tree representing
corresponding directories among products. A unified directory
tree includes all directories including source code of given
products. Since a directory may be moved or renamed, we
regard directories that include similar files as corresponding.
We merge similar directories into a single node in a unified
tree so that developers can easily compare their contents.

In our study, we implemented a tool that automatically
extracts a unified directory tree from the given source code
of products. The tool translates directory trees into a single
connected graph and then extracts a spanning tree on the
graph. The resulting tree is visualized using a tree view
widget. Similar to existing file managers, selecting a directory
node in the tree then our tool shows the details of the node.
Since a node represents multiple directories of products, our
tool provides a table of files summarizing the contents of
directories. Developers can examine file similarities on the
table, and compare pairs of files using an external source code
differencing tool if necessary.

We conducted a case study with four open source archives
of the Android operating system provided by two companies.
The viewer enables us to compare multiple products in units
of directories.

The reminder of the paper is organized as follows. Section
II describes the background of our study. Section III illustrates
the manner in which we visualize source code of similar
products in a single unified directory tree. Section IV presents
the case study. We conclude the paper in Section V.

II. BACKGROUND

Clone-and-own reuse is a popular method of enhancing an
existing product. Dubinsky et al. [10] reported that industrial
developers tend to copy source code from existing products.
Hemel et al. [11] analyzed industrial variants of Linux kernels
using a code clone detection technique.

Duszynski et al. [7] proposed a visualization technique to
distinguish common source code in products from product-
specific code. Since their technique assumes input products
have the same directory structure, developers must manually
investigate directory structures to identify moved or renamed
directories.

978-1-4673-7525-2/15/$31.00 c© 2015 IEEE VISSOFT 2015, Bremen, Germany

52

165

Yoshimura et al. [8] extracted corresponding directories
between two products by using code clone detection in order
to merge two similar products. However, this approach has not
been designed for comparing more than two products. Holten
et al. [9] proposed a visualization that compares a pair of
directory trees. It visualizes the manner in which directories in
two products correspond to one another. Although it provides
a global overview of structural differences, the technique does
not aim to compare multiple products. A file-level rename
tracking has been proposed by Lavoie et al. [12]. The tech-
nique identifies the most similar source file pairs between
versions. We use file similarity at a directory level.

Beck et al. [13] proposed an asymmetric visualization to
compare a pair of directory trees. It visualizes a primary
directory tree in a large plot and embeds a secondary directory
tree in the nodes of the primary tree. It enables developers to
identify similarities between two directory trees. Our tool does
not directly visualize similarities. Instead, our visualization
facilitates file comparison among directory trees.

Lin et al. [14] proposed a source code comparison tool that
is specialized for multiple instances of code clones. Although
the tool visualizes commonalities among code clones on a code
fragment level, it is not a tool used to investigate directory-
level similarities.

III. VISUALIZATION

We visualize the source code of similar products in a single
unified directory tree. We use as input a set of directories
R = {r1, r2, · · · , r|R|}, where ri is the root of a directory tree
containing the source code of a product. We regard a directory
tree as a directed graph. We obtain a unified directory tree from
given directory trees through the following three steps.

1) Create a node for each set of directories that contain
similar source files,

2) Connect nodes with weighted arcs representing subdi-
rectory relationships in products, and

3) Extract a directed spanning tree from the resultant graph.

We implement a viewer for a unified directory tree, which
provides several features to investigate and compare source
files in the directory tree.

A. Directory Tree Extraction

To enable developers to compare similar source files across
software products, we create a node for each set of directories
that include similar files. We introduce a content similarity
metric sim(d1, d2) for two directories d1 and d2 in different
products. The single node represents d1 and d2 if sim(d1, d2)
is equal to or greater than a predetermined threshold th.
Although sim(d1, d2) ≥ th and sim(d2, d3) ≥ th does
not always imply that sim(d1, d3) ≥ th, we assign the
same node to represent all of them so that developers can
analyze the differences among the directories. We use D(n)
to represent a set of directories represented by a node n.
The content similarity sim(d1, d2) between two directories is

p1

src

a c

b

p2

src

a b c

p3

src

a b

Fig. 1. Example directory trees of products

defined according to the following, using the Jaccard similarity
coefficient:

sim(d1, d2) =
|L(d1) ∩ L(d2)|
|L(d1) ∪ L(d2)|

where L(d) is a set of lines extracted from all non-binary
files directly contained in a directory d. Since developers may
change the source code layout and line separator characters,
we remove white space characters from lines.

For example, consider three products p1, p2, and p3, each
consisting of three components a, b, and c. The components
are stored in different directory trees as shown in Fig. 1. In this
case, we introduce three nodes na, nb, and nc to represent
the component directories as follows.

D(na) = {p1/src/a,p2/src/a,p3/src/a}
D(nb) = {p1/src/a/b,p2/src/b,p3/src/b}
D(nc) = {p1/src/c,p2/src/c}

The source code of a software product is usually organized
into directories without files. For example, the src directory
in a Java program contains only subdirectories that represent
Java package names. We assign a single node to represent
such directories if their subdirectories are represented by the
same node. In other words, if two directories d1 and d2 are
represented by a single node n (d1, d2 ∈ D(n)), their parent
directories dp1 and dp2 are represented by a common parent
node. In the case of the example directory trees, we merge
src directories in the products into a single node, even if
they possess no source files.

To ensure that the resultant graph is a connected graph, we
introduce the root node r that represents all root directories
of products, irrespective of product similarity. The root node
represents the root of a unified directory tree to be extracted.

The created nodes are connected using weighted arcs. Given
a pair of nodes n1 and n2, we compute their weight according
to the following:

w(n1, n2) = |{(d1, d2) : d1 ∈ D(n1) ∧ d2 ∈ D(n2)

∧subdir(d1, d2)}|

where a predicate subdir(d1, d2) means that d1 is a parent
directory of d2. If w(n1, n2) > 0, an arc connects two nodes
with the weight, and if w(n1, n2) = 0, no arc exists because

166

r: {p1, p2, p3}

nsrc: {p1/src, p2/src, p3/src}

 3

na: {p1/src/a, p2/src/a, p3/src/a}

3

nb: {p1/src/a/b, p2/src/b, p3/src/b}

2 nc: {p1/src/c, p2/src/c}

2

1

Fig. 2. A unified directory graph for the example directory trees

r: {p1, p2, p3}

nsrc: {p1/src, p2/src, p3/src}

na:
 {p1/src/a,
 p2/src/a,
 p3/src/a}

nb:
 {p1/src/a/b,

 p2/src/b,
 p3/src/b}

nc:
 {p1/src/c,
 p2/src/c}

Fig. 3. A unified directory tree for the example directory trees

no parent-subdirectory relationships exist among nodes n1 and
n2. Because a node representing a directory has arcs to nodes
representing its subdirectories, all nodes are reachable from the
root node r. As a result of this step, the example directory trees
are translated into a directed graph as shown in Fig. 2. Since
directory b is a subdirectory of a in p1 but a subdirectory
of src in p2 and p3, the corresponding node nb has two
incoming arcs that indicate the relationships.

We extract a directed spanning tree from the resultant graph.
The extraction process is a simple greedy loop according to
the following.

1) Initialize a spanning tree V = {r}, E = φ, where V
represents a set of vertices and E represents a set of
selected arcs.

2) Select the arc (t, n) having the maximum weight w(t, n)
among t ∈ V, n /∈ V . If the weights are identical, select
that which is closest to r.

3) Update V ← V ∪ {n}, E ← E ∪ {(t, n)}
4) Repeat Steps 2 and 3 until V includes all nodes. Finally,

E includes arcs of the spanning tree.

Given the graph shown in Fig. 2, the algorithm produces a
tree as shown in Fig. 3. The tree includes arcs from nsrc to
na, nb, and nc and ignores an edge from na to nb. Thus,
the resultant unified tree is the same as the directory tree of
p2. The directory p1/src/a/b is virtually regarded as a
subdirectory of src, because two other products have similar
directories at that location.

The most time-consuming aspect of our algorithm is cal-
culating sim, and its complexity is O(|d|2) where |d| is the
number of input directories. In general, |d| is much smaller
than the number of input file |f |. Therefore, our algorithm has
less complexity than when performing file-to-file comparisons.

B. Aligning the tree with a specific product

Our algorithm as previously described evenly unifies direc-
tory trees. In other words, a unified directory tree may be
different from all input products. If developers have expertise
in a specific product, aligning directories of other products to
a specific well-known product is reasonable. To support such
developers, we introduce an extended weight for targeting a
specific product. Given a target product P and an arc between
nodes n1 and n2, we compute the weight according to the
following:

w(n1, n2, P) =


∞ if ∃d1 ∈ D(n1), d2 ∈ D(n2) :

d1 ∈ P ∧ d2 ∈ P∧
subdir(d1, d2)

w(n1, n2) otherwise.

With this weight function, arcs representing a subdirectory
relationship in the target product is always selected in the
spanning tree extraction process. In addition, arcs connecting
directories unique to other products are selected.

C. Directory Viewer

We implemented a visualization tool for a unified directory
tree. The viewer enables developers to explore a unified
directory tree and examine differences of directories in a
node. Fig. 4 is a screenshot of the tool. The tool contains
product selection buttons on the top to align a unified tree
to a particular product. The remaining area consist of three
views: a tree, a file list, and a file matrix.

1) Tree View: The tree view shows the unified directory
tree. Our algorithm unifies the inputs into a single tree. Thus,
this view shows only a single tree and users are free to
compare multiple large trees. A node in the view represents a
node in the tree. The name of each node is based on directory
names in the node. If a node corresponds to several directories,
the tree view uses the most popular name among them.

A node also reveals the number of directories x and number
of variants y included as (y in x). The number of variants
indicates the number of directories that include different file
contents from one another. For example, (2 in 3) means this
node has three directories but one of them has different content
from the other directories, whereas (1 in 3) means this node
has three directories with the same file content. The number
of variants is based on file contents directly contained in the
directories represented by the node. Thus, the (1 in 3) node
may have a subdirectory with variants. If a node contains
multiple variants, the node is colored in blue.

In addition, if a node contains a “moved” directory, that is,
if a directory in the node has a different name or a different
file path than the tree node, then the node is marked by “*”.

167

Fig. 4. An overview of the Directory Viewer

2) File List View: A file list view shows a table of files con-
tained in a selected node. The first column denotes filenames.
The second and subsequent columns correspond to directories
contained in the node. Each cell shows the hash value of a
file in a directory. A gray value indicates that the files of the
same name have the same content. A black value indicates
that some differences exist among the files.

The list can be sorted by either filename or colors of hash
values so that developers can focus on files with multiple
variants.

The full paths of the directories shown are listed at the
bottom of the table. Clicking a path opens the directory using
a default file manager (e.g., Explorer in Microsoft Windows).

3) File Matrix View: A file matrix view shows the similarity
of files having the same file name selected in a file list
view. Rows and columns correspond to directories (i.e., like
the columns of the file list view). A cell (i, j) shows the
sim(fi, fj) between files in the selected directories. The cell
is colored using color scale white (sim = 1) to yellow
(sim = 0.5) to red (sim = 0). Developers can quickly see
the amount of differences in files among the input products.

After one of the cells is selected, an external diff tool (e.g.,
WinMerge 1) is executed in order to compare two files.

IV. CASE STUDY

We demonstrate the proposed method using four variants of
Android’s source code released in the fourth quarter of 2013,
including three products designed by Fujitsu and one by Sony.
They all employ a Qualcomm MSM8974 CPU, Android 4.2
series OS. The list of inputs is shown in Table I.

Because these products use similar software versions, we
expect that most parts of the source code are similar whereas
some product specific parts are different. In addition, we
expect that some directories and files in SO-01F are different
from other Fujitsu products. In this case study, we show how
to explore the code of these products using our tool.

We specified four directories as input for our tool. We
ran the tool on a machine equipped with two Intel Xeon
E5507 processors (2.27 GHz, 4 cores) and 24 GB RAM.

1http://winmerge.org

Approximately 42 minutes were required to read files, compute
similarity among directories, and extract a unified directory
tree for the products. The tool used a predetermined similarity
threshold th = 0.8.

The resultant unified directory tree comprises 9,037 nodes,
and 245 nodes contain moved or renamed directories. In
addition, 673 nodes contain different contents from other
products.

Looking into the /kernel directory (Fig. 5), we observed
that several files have different contents. For example, files
AndroidKernel.mk and Makefile in SO-01F are differ-
ent from other Fujitsu products. Makefile in Fujitsu prod-
ucts are only slightly customized and similarity to SO-01F is
95.01%. By contrast, the similarity of AndroidKernel.mk
is 40.52% as shown in the file matrix view in Fig. 5. We
found that developer-specific options for the kernel build is
mainly written in this file. The file MAINTAINERS of F-01F
is different from others. Although they all use the same kernel
version, some files in F-01F lack some non-ASCII characters
(e.g., umlaut). It seems that the characters are accidentally
replaced by a developmental environment.

Because the /vendor directory in Fujitsu products contain
completely different files from /vendor in SO-01F, the
directories are shown as independent nodes in the unified
tree. Similarly, the content of the /external/chronium
directory in Fujitsu products is distinguished from the SO-
01F version. For example, a file Android.mk is removed
from the Fujitsu code. By contrast, common subdirectories of
/external/chronium are nearly similar among the four
products. Therefore, common subdirectories are merged into
nodes in Fujitsu’s /external/chronium node. Another
/external/chronium node for SO-01F retains only sub-
directories unique to the version.

The node /external/llvm contains six directories
from Fujitsu products, three from /external/llvm, and
three from /external/llvm/projects/sample. The
sample directories are accidentally merged because the di-
rectories share similar files such as configure files.

In the case study, we explored the unified directory structure
as if it is a single product, and we easily focused on the

168

TABLE I
LIST OF INPUT PRODUCTS. ALL OF THEM ARE VARIANTS OF ANDROID 4.2.

Product Vendor Mobile Network Operator Release #Dirs #Files #Lines

FJL22 Fujitsu au Nov. 2013 7,683 107,945 26,178,588
301F Fujitsu SoftBank Dec. 2013 7,708 108,334 25,629,778
F-01F Fujitsu NTT DOCOMO Oct. 2013 7,582 105,397 25,740,695
SO-01F Sony NTT DOCOMO Oct. 2013 5,840 90,736 22,225,611

Fig. 5. Output for /kernel directory and similarity matrix for AndroidKernel.mk.

directories having differences. Although four Android source
code archives included 28,813 total directories, the unified tree
covered the entire structure in 9,037 nodes. Because directories
are represented by independent nodes if they have different
contents, we did not analyze such directories. In addition,
since subdirectories are merged independently of their parent
directories, we focused on the comparison of similar files in
such subdirectories.

V. CONCLUSION

Source code comparison is crucial to understanding com-
monalities and variabilities among products. In this study,
we presented a technique to extract a unified directory tree
that includes all directories of multiple software products. We
implemented a viewer of the tree and conducted a case study
using four Android products. The tool enables developers to
identify different files easily among products and compare
them.

For a future work, we want to evaluate the quality of
an extracted unified tree. Furthermore, we want to conduct
a controlled experiment on the effectiveness of the tool for
source code comparison tasks.

ACKNOWLEDGMENT

This work is supported by Japan Society for the Promotion
of Science, Grant-in-Aid for Scientific Research (S) “Col-
lecting, Analyzing, and Evaluating Software Assets for Ef-
fective Reuse”(No.25220003) and Osaka University Program
for Promoting International Joint Research, “Software License
Evolution Analysis.”

REFERENCES

[1] J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik, “Managing forked
product variants,” in Proceedings of the 16th International Software
Product Line Conference, 2012, pp. 156–160.

[2] N. Kawamitsu, T. Ishio, T. Kanda, R. G. Kula, C. De Roover, and
K. Inoue, “Identifying source code reuse across repositories using lcs-
based source code similarity,” in Proceedings of the 14th International
Working Conference on Source Code Analysis and Manipulation, 2014,
pp. 305–314.

[3] J. Bosch, “Maturity and evolution in software product lines: Approaches,
artefacts and organization,” in Proceedings of the 2nd Conference
Software Product Line Conference, 2002, pp. 257–271.

[4] C. W. Krueger, “Easing the transition to software mass customization,”
in Revised Papers from the 4th International Workshop on Software
Product-Family Engineering, 2002, pp. 282–293.

[5] M. de Jonge, “Build-level components,” IEEE Transactions on Software
Engineering, vol. 31, no. 7, pp. 588–600, 2005.

[6] ——, “Multi-level component composition,” in Proceedings of the 2nd
Groningen Workshop Software Variability Modeling, no. 2004-7, 2004.

[7] S. Duszynski, J. Knodel, and M. Becker, “Analyzing the source code
of multiple software variants for reuse potential,” in Proceedings of the
18th Working Conference on Reverse Engineering, 2011, pp. 303–307.

[8] K. Yoshimura, D. Ganesan, and D. Muthig, “Assessing merge potential
of existing engine control systems into a product line,” in Proceedings
of the International Workshop on Software Engineering for Automotive
Systems, 2006, pp. 61–67.

[9] D. Holten and J. J. van Wijk, “Visual comparison of hierarchically
organized data,” in Proceedings of the 10th Joint Eurographics / IEEE
- VGTC Conference on Visualization, 2008, pp. 759–766.

[10] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czar-
necki, “An exploratory study of cloning in industrial software product
lines,” in Proceedings of the 17th European Conference on Software
Maintenance and Reengineering, 2013, pp. 25–34.

[11] A. Hemel and R. Koschke, “Reverse engineering variability in source
code using clone detection: A case study for linux variants of consumer
electronic devices,” in Proceedings of the 19th Working Conference on
Reverse Engineering, 2012, pp. 357–366.

[12] T. Lavoie, F. Khomh, E. Merlo, and Y. Zou, “Inferring repository
file structure modifications using nearest-neighbor clone detection,” in
Proceedings of the 19th Working Conference on Reverse Engineering,
2012, pp. 325–334.

[13] F. Beck, F.-J. Wiszniewsky, M. Burch, S. Diehl, and D. Weiskopf,
“Asymmetric visual hierarchy comparison with nested icicle plots,” in
Proceedings of the 1st International Workshop on Graph Visualization
in Practice, 2014.

[14] Y. Lin, Z. Xing, Y. Xue, Y. Liu, X. Peng, J. Sun, and W. Zhao, “Detecting
differences across multiple instances of code clones,” in Proceedings of
the 36th International Conference on Software Engeneering, 2014, pp.
164–174.

169

