
VOL. E98-D NO. 11
NOVEMBER 2015

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.



1982
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.11 NOVEMBER 2015

LETTER

Improvement in Method Verb Recommendation Technique Using
Association Rule Mining

Yuki KASHIWABARA†a), Nonmember, Takashi ISHIO†, Member, and Katsuro INOUE†, Fellow

SUMMARY In a previous study, we proposed a technique to recom-
mend candidate verbs for a method name so that developers can consis-
tently use various verbs. In this study, we improve the rule extraction tech-
nique proposed in this previous study. Moreover, we confirm that the rank
of each correct verb recommended by the new technique is higher than that
by the previous technique.
key words: recommendation, verb in method name, association rule

1. Introduction

Developers take a considerably long time to understand a
program if identifiers poorly represent their roles in the pro-
gram [1]. Method names are important identifiers for pro-
gram readability because they are used for understanding
the behavior of methods without reading the program. Sev-
eral techniques are used to help developers to find a better
name for a method [2], [3]. Karlsen et al. [4] implemented a
tool that accurately points out inappropriate verbs used for
a method and recommends more appropriate verbs for re-
naming the method. Yu et al. proposed a technique to rec-
ommend a verb for a method name using machine learn-
ing for automatic naming [3]. In our previous study, we
proposed a technique to recommend candidate verbs for a
method name so that developers can find a better verb for
a method [5]. We extracted the relationship between verbs
used in method names and identifiers used in method bod-
ies from existing source files by using association rule min-
ing [6]. We assumed that the behavior of a method is often
characterized by identifiers such as method calls and field
access in the method body. By using the extracted rules,
we recommended candidate verbs likely to be used as a part
of a method name, along with the reason for recommenda-
tion: e.g., if a method calls next, hasNext, iterator, and
equals, then find is likely to be a verb representing the
behavior.

In this study, we improve the rule extraction technique
proposed in this previous study. We split an identifier into
words because it is difficult to extract rules for long iden-
tifiers comprising several words. In addition, we use new
clues to characterize the usage of a verb and a new threshold
to extract rules. To evaluate the improvement relative to the

Manuscript received March 23, 2015.
Manuscript revised July 6, 2015.
Manuscript publicized August 13, 2015.
†The authors are with Osaka University, Suita-shi, 565–0871

Japan.
a) E-mail: k-yuki@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.2015EDL8069

previous technique, we extracted rules from the same train-
ing set using both the new and the previous technique and
applied them to the same projects. We compared the rank
of correct verbs in each list. As a result, we confirm that the
ranks of correct verbs recommended by the new technique
are, on average, higher than those by the previous technique.

2. Improved Verb Recommendation

Our approach recommends candidate verbs for a method
name using association rule mining. This approach con-
sists of two steps. The first step extracts naming association
rules from verbs used in method names and the identifiers in
method bodies. The second step applies the rules to recom-
mend verbs for a method name. We improved only the first
step.

2.1 Extraction of Naming Association Rules

In this step, our approach extracts rules to recommend verb
candidates from a training data set using association rule
mining. A training data set represents a set of existing
projects. Toward this end, our approach takes methods from
a training data set, translates the methods to transactions,
and extracts rules from the transactions.

First, our approach takes methods from binary files in
the training data set. The identifiers used in these meth-
ods are more easily extracted from binaries than from source
files. We extract transactions from compilable projects. In
the implementation, we use the Java byte code framework
ASM∗ to extract methods from binary files. We ignore meth-
ods compiled without debug information because we extract
argument names from debug information in binaries.

Second, our approach generates a set of transactions
from methods by translating each method into a transaction
that is a set of elements. Each element is represented as
pairs of an identifier and its category, like “category:name,”
where category denotes the category of the identifier and
name represents the text of the identifier. In the new tech-
nique, we extract the following six categories of elements in
a target method.

method-verb: A verb used in the name of the target
method. As with the previous technique, we do not
use stemming. We analyze similar verbs including syn-
onyms individually.
∗http://asm.ow2.org/

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



LETTER
1983

return-type: Return type of the target method.
field-type: Type of field accessed in the target method.
argument-type: Type of argument of the target method.
call-verb: A verb used in the name of a method directly

called by the target method.
word: Each word in the name of an argument and in the

name of a field that is accessed in the target method and
each word in the name of a method directly called by
the target method. All words are treated as lowercase.
We filter out single-character words.

We add a field type because it represents the external
data used by a method as being similar to the argument-
type and return-type. We employed identifier splitting to
extract rules because a common word among identifiers may
represent functional commonalities [7], [8].

Figure 1 shows how a source file is translated into
transactions. The source file in Fig. 1 (a) includes a method:
containsName. Figures 1 (b) and (c) respectively show
transactions of t(containsName) extracted using the new
and the previous techniques. *symbols represent elements
that are different from one another.

Finally, our approach applies association rule mining to
the transactions. In our previous study, we established four
conditions.

(1) The antecedent of a rule contains no method-verbs.
(2) The consequent of a rule contains only one method-

verb.
(3) The number of items in the antecedent is less than or

equal to 4.
(4) The support value is more than or equal to 100.

In addition to these four conditions, we established two
conditions.

(5) Lift value is more than or equal to 1.

Fig. 1 Example of two transactions.

(6) The item in the antecedent is not { return-type:void }.
The lift value represents the performance of the extracted
rule. We established conditions (5) and (6) to extract mean-
ingful rules.

2.2 Recommendation of Verbs

This step is the same as in the previous study. In this step,
we use rules extracted from a training data set to recommend
verbs for a given method. We extract a transaction from the
given method and select rules whose antecedents are sub-
sets of the transaction of the given method. If more than one
rule recommends the same verb, we use only one rule with
the highest confidence value. A list of verbs sorted by de-
scending order of their confidence values is recommended
to developers.

3. Evaluation

We compared the accuracy of the new technique with that
of our previous technique. We extract two rule sets us-
ing the previous and the new techniques, respectively, and
we applied each extracted rule set to the same methods in
four OSS projects. We regarded a verb already used in
a target method name as the correct verb for the target
method. This assumption is the same as in [3], [5]. We
have evaluated the accuracy of our approach to answer the
following research question: “Can the new technique rec-
ommend more correct verbs than the previous technique?”
We extracted rules from binary files in 112 OSS projects
obtained in Qualitas Corpus (ver.20130901)†. 299,482 and
2,743,605 rules are extracted using the previous and the new
techniques, respectively, from 1,180,714 methods.

We applied the extracted rules to the training data set it-
self and four open source projects: BlueJ, NeoDatis, Saxon-
HE, and Order Portal used in [9]. The 112 projects men-
tioned above do not include these four projects.

Table 1 shows an overview of the training data set and
the target projects with the results. The domain represents
the type of domain of a project. The classification was re-
ferred to from [9]. #Method indicates the number of meth-
ods in the project, and #Target represents the number of con-
sidered methods as described in Sect. 2.1. #Recom and Top5
represent the results. #Recom denotes the number of meth-
ods whose existing verbs are recommended in each list (and
percentage of methods to the target methods). Top5 indi-
cates the number of methods recommended in the top 5 of
each list (and the percentage). (P) and (N) represent the re-
sult of the previous and the new techniques, respectively.

To answer the research question, we evaluated whether
the verbs currently used in projects can be recommended by
the rules. In Fig. 2, the vertical axis represents the percent-
age of the number of methods for which the existing verbs
are recommended. The horizontal axis represents the rank
of existing verbs. From Fig. 2, if we check the top 30 of the

†http://qualitascorpus.com/



1984
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.11 NOVEMBER 2015

Table 1 Overview and result of training data set and four open source projects.

project domain #Method #Target #Recom(P) Top5(P) #Recom(N) Top5(N)

Qualitas Corpus (NONE) 4,671,951 1,180,714 1,064,748(90.2%) 697,017(59.0%) 1,043,437(88.4%) 782,012(66.2%)
BlueJ 3.1.4† desktop application 8,188 2,800 2,394(85.5%) 1,093(39.0%) 2,184(78.0%) 1,351(48.3%)

OrderPortal 10.05.01†† web application 41,241 3,392 3,118(91.9%) 1,055(31.1%) 2,812(82.9%) 1,358(40.0%)
Saxon-HE 9.6.0.4††† xml 16,701 6,226 4,784(76.8%) 2,651(42.6%) 5,026(80.7%) 3,220(51.7%)

NeoDatis 1.9.30.689†††† database 4,472 1,445 1,224(84.7%) 701(48.5%) 1,230(85.1%) 786(54.4%)
sum (NONE) 70,602 13,863 11,520(83.1%) 5,500(39.7%) 11,252(81.2%) 6,715(48.4%)

Fig. 2 Rank of correct verbs for methods in four projects and training
data set.

recommended list for a method in the training date set using
the new technique, we can find existing verbs for 80% of the
target methods.

As a result,when using the previous technique, existing
verbs are recommended in the top 5 for 39.7% of the meth-
ods in four projects and 59.0% of the methods in the train-
ing dataset. When using a new technique, existing verbs
are recommended for 48.4% of the methods in four projects
and 66.2% of the methods in the training dataset. By using
Mann-Whitney U test, we confirm that the new technique
can recommend correct verbs with a higher rank than the
previous technique. The p value p = 2.2 × 10−16 < .05
was considered significant. The difference in the median is
3.5. In other words, the new technique recommended cor-
rect verbs with 3.5 higher rank, on average, than the previ-
ous technique.

Both the field types and the identifier splitting em-
ployed by the new technique contributed to this improve-
ment. Introducing field types provides new clues to find
commonalities missed by the previous technique. For exam-
ple, the new technique extracted a rule that some resolve
methods use a ClassLoader object stored in a field. Identi-
fier splitting is also effective because a method name usually
includes a verb and additional words. For example, remove
methods often call other remove methods including addi-
tional words in their names (e.g., removeSomething). The

†http://www.bluej.org/
††https://launchpad.net/orderportal
†††http://saxon.sourceforge.net/
††††http://sourceforge.net/projects/neodatis-odb/

new technique uses such “same action” methods [8].
While the new technique results in a better list of verbs,

#Recom(N) is lower than #Recom(P); i.e., the new tech-
nique can recommend verbs for less number of methods than
the previous technique. The rules extracted by the previous
and new techniques can recommend 432 and 405 verbs, re-
spectively (14.1% and 13.2% of 3,060 verbs that appeared in
the training data set). The differences are caused by the two
conditions added to exclude meaningless rules. For exam-
ple, the previous technique extracted the following rule for
29 reload methods: if a return of a method is void, then
reload is likely to be a verb representing the behavior. Al-
though the rule accidentally recommended the correct verb
for the methods, the new technique excluded the rule be-
cause methods returning void are omnipresent in projects.
This is a shortcoming in order to exclude meaningless rules
to improve a recommendation list. We believe that this is ac-
ceptable because developers find it difficult to choose a verb
recommended by such meaningless rules.

4. Threats to Validity

We extracted rules from binary files in open source projects.
As several copies of a library are included in different
projects, the methods in such a library are learned multiple
times. We use the same binary files for learning to compare
two techniques, and therefore, we consider that there is low
impact.

5. Conclusion

In this study, we proposed a technique to recommend can-
didates of appropriate method verbs to developers by using
naming association rules. We confirmed that the new tech-
nique recommended correct verbs with 3.5 higher rank, on
average, than the previous technique.

In future study, we need to reduce unnecessary rules.
Moreover, we would like to investigate how many verbs de-
velopers can check through a subjective experiment.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
bers 25220003 and 26280021.

References

[1] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? A
study of identifiers,” 14th IEEE International Conference on Program

http://dx.doi.org/10.1109/icpc.2006.51


LETTER
1985

Comprehension (ICPC ’06), pp.3–12, 2006.
[2] E.W. Høst and B.M. Østvold, “Debugging method names,” ECOOP

2009 — Object-Oriented Programming, Lecture Notes in Computer
Science, vol.5653, pp.294–317, Springer, Berlin, Heidelberg, 2009.

[3] S. Yu, R. Zhang, and J. Guan, “Properly and automatically nam-
ing Java methods: A machine learning based approach,” Advanced
Data Mining and Applications, Lecture Notes in Computer Science,
vol.7713, pp.235–246, Springer, Berlin, Heidelberg, 2012.

[4] E.K. Karlsen, E.W. Høst, and B.M. Østvold, “Finding and fixing Java
naming bugs with the Lancelot Eclipse plugin,” Proc. ACM SIG-
PLAN 2012 Workshop on Partial Evaluation and Program Manipu-
lation, PEPM ’12, pp.35–38, 2012.

[5] Y. Kashiwabara, Y. Onizuka, T. Ishio, Y. Hayase, T. Yamamoto, and
K. Inoue, “Recommending verbs for rename method using associa-
tion rule mining,” 2014 Software Evolution Week, IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), pp.323–327, 2014.

[6] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” ACM SIGMOD Record,
vol.22, no.2, pp.207–216, 1993.

[7] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically captur-
ing source code context of NL-queries for software maintenance and
reuse,” 2009 IEEE 31st International Conference on Software Engi-
neering, pp.232–242, 2009.

[8] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for Java
methods,” Proc. IEEE/ACM International Conference on Automated
Software Engineering, ASE ’10, pp.43–52, 2010.

[9] Y. Hayase, Y. Kashima, Y. Manabe, and K. Inoue, “Building domain
specific dictionaries of verb-object relation from source code,” 2011
15th European Conference on Software Maintenance and Reengineer-
ing, pp.93–100, 2011.

http://dx.doi.org/10.1109/icpc.2006.51
http://dx.doi.org/10.1007/978-3-642-03013-0_14
http://dx.doi.org/10.1007/978-3-642-35527-1_20
http://dx.doi.org/10.1145/2103746.2103756
http://dx.doi.org/10.1109/csmr-wcre.2014.6747186
http://dx.doi.org/10.1145/170036.170072
http://dx.doi.org/10.1109/icse.2009.5070524
http://dx.doi.org/10.1145/1858996.1859006
http://dx.doi.org/10.1109/csmr.2011.15

