
Do Developers Focus on Severe Code Smells?

Tsubasa Saika∗, Eunjong Choi∗, Norihiro Yoshida†, Shusuke Haruna∗ and Katsuro Inoue∗
∗Osaka University, Japan

{t-saika@ist, ejchoi@osipp, haruna@ist, inoue@ist}.osaka-u.ac.jp
†Nagoya University, Japan

yoshida@ertl.jp

Abstract—Code smells are structures in the code that suggest
the possibility of refactoring. To prioritize code smells in large-
scale source code, several tools for refactoring calculate their
severity based on software metrics. Although several metrics are
known as maintainability indicators, it is still unclear whether
these severity indicators are in line with developer’s perception.
In this paper, we investigate whether developers focus on severe
code smells. The result shows that developers focus on only
particular types of severe smells and refactoring do not decrease
the severity of code smell significantly.

I. INTRODUCTION

Developers tend to write source code with low maintainabil-

ity even when they can easily avoid it. (e.g., because they are

in a hurry or implementing urgent patches or simply making

suboptimal choices) [1].

Code smells (also known as bad smells) are symptoms

of poor design and implementation choices that may hinder

code comprehension and possibly increase change and fault-

proneness. They are also used to find structures in the code

that suggest the possibility of refactoring [2]. For example,

Blob Class [2] is a large and complex class that centralizes

the behavior of a portion of a system and only uses other

classes as data holders. It can rapidly grow out of control,

making it harder to fix bugs and add new features [1].

Many code quality analysis tools can detect code smell

in source code automatically (e.g., inFusion, PMD). Since

a number of code smells are detected by these tools in

large-scale source code, developers must determine which

code smells should be preferentially removed [3]. However,

each code smell indicates only the location and the kind of

symptoms but not the the severity.

To prioritize code smells in large-scale source code, sev-

eral tools (e.g., inFusion, inCode) calculate their severity

using software metrics as quantitative indicators of software

maintainability. Although several metrics are used for not only

maintainability indicators [4], [5] but also the identification of

refactoring opportunities [6], it is still unclear whether these

severity indicators are in line with developer’ perception. If

the severity is not in line with developers’ perception, severity-

based prioritization is inappropriate to support refactoring.

In this study, we investigate the refactorings that were

performed by developers in three mature and large-scale OSS

systems. If developers preferentially performed refactoring on

code with high severity in the OSS systems, the severity-

based prioritization is a useful approach to finding refactoring

opportunities. Also, if developers decreased the severity of

code smells by refactoring in the OSS systems, the severity is

in line with developers’ perception of maintainability.

We answer the following research questions :

RQ1 Do developers perform refactoring more frequently

on code with more sever code smell?

RQ2 Does refactoring decrease the severity of code

smells?

Our findings from the RQs are as follows:

• Developers focus on particular types of severe smells.

Therefore, the severity-based prioritization is a useful

approach to find the paticular type of refactoring oppor-

tunities.

• Refactoring do not decrease the severity of code smell

significantly. Therefore, the severity is not in line with

developer’s perception of the maintainability.

II. DATASETS OF REFACTORINGS AND CODE SMELLS

In this study, we analyzed datasets of refactorings and

code smells that were detected in 64 releases of three Java

OSS systems: Apache Ant (Ant)1, ArgoUML (Argo)2, and

Xerces-J (Xerces)3. Table I shows statistical data on each

of the systems. In this table, the last row shows the overall

number of three systems. In the following subsections, we

explain the dataset of refactorings (Section II-A) and the

extracted code smells (Section II-B).

A. Dataset of Refactorings

We used the dataset of refactorings that was collected in

a previous study by Bavota et al. [7]. This dataset contains

refactorings that were detected by Ref-finder [8], a templated-

based refactoring detection tool. Each refactoring was manu-

ally validated to exclude false positives. From the dataset, we

can observe distinct types, modified class names, and release

version of each refactoring. We selected this dataset because

its refactorings are reliable.

Table II depicts the total number of analyzed refactorings

and the number of distinct types of refactoring in the dataset.

1http://ant.apache.org/
2http://argouml.tigris.org/
3http://xerces.apache.org/xerces-j/

2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering

978-1-5090-1855-0/16 $31.00 © 2016 IEEE

DOI 10.1109/SANER.2016.117

1

TABLE I
STATISTICS DATA OF ANALYZED SYSTEMS

System Period Analyzed # Releases # Classes
Xerces Oct. 2003 - Nov. 2006 1.0.0-2.9.0 34 19,567
Argo Oct. 2002 - Apr. 2011 0.10.1-0.32.2 12 43,686
Ant Aug. 2003 - Dec. 2010 1.1-1.8.2 18 22,768
Overall - - 64 86,021

TABLE II
OVERVIEW OF REFACTORING DATASET

System # Refactorings # Distinct Types
Xerces 7,502 24
Argo 3,255 21
Ant 1,289 16
Overall 12,043 28

TABLE III
NUMBERS OF DETECTED CODE SMELLS

Type of Code Smell Xerces Argo Ant All
Blob Class 665 83 87 835
Data Class 71 3 28 102
Distorted Hierarchy 9 0 0 9
God Class 952 160 143 1,255
Refused Parent Bequest 114 14 81 209
Schizophrenic Class 39 48 4 91
Tradition Breaker 99 3 0 102
Classes w/ smells 1,949 311 343 2,603
Classes w/o smells 17,618 43,375 22,425 83,418
Overall classes 19,567 43,686 22,768 86,021

B. Dataset of Code Smells

For the detection of code smells, we used inFusion4, a tool

that detects 24 types of code smells based on code metrics 5.

To detect each type of code smell, inFusion uses pre-defined

conditional expression consisting of logical combination of

code metrics with different threshold values. For example,

Schizophrenic Class is detected based on two metrics named

Number of Public Methods and Tight Capsule Cohesion. It

outputs detected code smells and their severity score on a

scale of 1 to 10 based on how much relative metrics values

exceed the threshold value. We adopted inFusion because it

has ability to detect various types of code smells as well as to

measure their severity.

From the detected code smells, we chose class as level of

granularity because refactoring dataset only provides a class

name with each refactoring. Table III shows the number of

class-level code smells detected in the systems. In this table,

the last row shows the overall numbers of code smells in the

systems. As you can see in this table, only 7 class-level code

smells were detected. Because multiple code smell can be

detected in a single class, the overall number of classes might

contain more than one code smell.

4http://www.intooitus.com/products/infusion
5The details of the 24 types of code smells can be found at https://www.

intooitus.com/products/infusion/detected-flaws

TABLE IV
RESULTS OF MANN-WHITNEY U-TEST FOR RQ1

RQ1 RQ2
Blob Class � �
Data Class n/a n/a
Distorted Hierarchy n/a
God Class � �
Refused Parent Bequest
Schizophrenic Class �
Tradition Breaker �

III. INVESTIGATION AND RESULTS

This section details our investigation and results, aimed

at addressing the RQ1 and RQ2. This section also identifies

threats to validity of our results.

A. Do developers perform refactoring more frequently on code
with more severe code smell?

To answer RQ1, we investigated the relationship between

refactorings and the severity of code smells. We used the

Mann-Whitney U test [9], a nonparametric significance test

to find out whether refactored classes have more severe code

smells than non-refactored classes. The Mann-Whitney U

test was used to investigate the statistical significant of the

differences between two independent groups: refactored and

non-refactored classes that have at least one code smell. The

dependent variable is the severity of each code smell, which

is ordinal variable measured from 1 to 10.

The results of the Mann-Whitney U test can be seen in

Table IV. In this table, the check marks represent the existence

of significant differences (p > .05) and ‘n/a’ indicates that

the Mann-Whitney U test was not applied. As we can see in

the table, there are significant differences between refactored

classes and non-refactored classes for Blob Class, God Class,

Schizophrenic Class and Tradition Breaker. This implies that

developers tend to perform refactoring more frequently on

code with more severe Blob Class, God Class, Schizophrenic
Class and Tradition Breaker.

Summary for RQ1: For Blob Class, God Class,

Schizophrenic Class and Tradition Breaker, there are statis-

tical tendencies for developers to perform refactoring more

frequently on code with more severe code smell.

B. Does refactoring decrease the severity of code smells?

To answer RQ2, we analyzed refactorings and the changes

of the severity of code smell from the dataset. We conducted

the Mann-Whitney U test to reveal whether there are signif-

icant differences between the severity of refactored classes

2

and non-refactored classes. The Mann-Whitney U test was

only applied to classes that have at least one code smell. The

dependent variable is the change of the severity of each code

smell through release versions which are ordinal variables

measured from -10 to 10. If a refactoring largely increases

or decreases the severity of code smells, the test must show

significant differences.

The results of the Mann-Whitney U test can be seen in

Table IV. In this table, the check marks represent the existence

of significant differences (p > .05) and ‘n/a’ indicates that

the Mann-Whitney U test was not applied because they are

classes without code smells or non-refactored classes. From

this table, we can observe significant difference only from

Blob Class and God Class. This implies that in most case,

the effect of refactoring on the changes of severity of code

smell are relatively small. Especially for Blob Class and God
Class, the severity of code smells were increased as well as

decreased, regardless of performance of refactoring. From this

results, we can conclude that refactoring does not decrease the

severity of code smells.

Summary for RQ2: A comparison of refactored and

non-refactored classes shows that refactoring does not sta-

tistically decrease the severity of code smells.

C. Threats to Validity

Some threats need to be considered when interpreting our

study results. The first limitation was that the investigation

results might have been too dependent on the dataset and

output of the inFusion. However, the dataset were validated

in the [7] and inFusion is a commercial code smell detection

tool . Therefore, we believe that the results of investigation in

this study are reliable.

Moreover, investigating different systems could have led to

different results because our case study was conducted on three

Java OSS systems. However, we believe that our investigation

results can be generalized an applied to other open source

software systems because they spanned 64 release versions

from three separate systems.

IV. SUMMARY

To reveal whether developers focus on severe code smell,

this study investigated the effect of the severity of code smells

on refactorings in 64 releases of three Java OSS systems.

Based on our investigation results, it turns out that devel-

opers perform refactoring more frequently on code with more

severe code smell for Blob Class, God Class, Schizophrenic
Class and Tradition Breaker. Therefore, it is considered that

developers can use these severity of code smells as good

indicators for performing refactoring. It also revealed that

refactorings do not decrease the severity of code smells

significantly.

As future work, we plan to analyze additional software

systems to achieve the generality of our findings. In addition,

we would like to extend our investigation for more types of

code smells such as method-level code smells.

REFERENCES

[1] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, “Mining version histories for detecting code smells,” IEEE
Transactions on Software Engineering, vol. 41, no. 5, pp. 462–489, 2015.

[2] M. Fowler, Refactoring: Improving the Design of Existing Code. Addison
Wesley, 1999.

[3] A. Yamashita and L. Moonen., “Exploring the impact of inter-smell
relations on software maintainability: An empirical study,” in Proc. of
ICSE, 2013, pp. 682–691.

[4] B. Henderson-Sellers, Object-Oriented Metrics: Measures of Complexity.
Prentice Hall, 1996.

[5] R. Marinescu and D. Ratiu, “Quantifying the quality of object-oriented
design: the factor-strategy model,” in Proc. of WCRE, 2004, pp. 192–201.

[6] F. Simon, F. Steinbruckner, and C. Lewerentz, “Metrics based refactor-
ing,” in Proc. of CSMR, 2001, pp. 30–38.

[7] G. Bavota, B. D. Carluccio, A. D. Lucia, M. D. Penta, R. Oliveto, and
O. Strollo, “When does a refactoring induce bugs? an empirical study,”
in Proc. of SCAM, 2012, pp. 104–113.

[8] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-Finder: a refactor-
ing reconstruction tool based on logic query templates,” in Proc. of FSE,
2010, pp. 371–372.

[9] W. J. Conover, Practical nonparametric statistics. John Wiley & Sons,
1971.

3

